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Figure 1. Open-vocabulary 3D Scene Understanding. We propose OpenScene, a zero-shot approach to 3D scene understanding that
co-embeds dense 3D point features with image pixels and text. The examples above show a 3D scene with surface points colored by how
well they match a user-specified query string – yellow is highest, green is middle, blue is low. Because its features are language-based,
OpenScene answers a wide variety of example queries, like “soft”, “kitchen”, or “work”, without labeled 3D data.

Abstract
Traditional 3D scene understanding approaches rely on

labeled 3D datasets to train a model for a single task with
supervision. We propose OpenScene, an alternative ap-
proach where a model predicts dense features for 3D scene
points that are co-embedded with text and image pixels in
CLIP feature space. This zero-shot approach enables task-
agnostic training and open-vocabulary queries. For exam-
ple, to perform SOTA zero-shot 3D semantic segmentation
it first infers CLIP features for every 3D point and later
classifies them based on similarities to embeddings of ar-
bitrary class labels. More interestingly, it enables a suite
of open-vocabulary scene understanding applications that
have never been done before. For example, it allows a user
to enter an arbitrary text query and then see a heat map
indicating which parts of a scene match. Our approach is
effective at identifying objects, materials, affordances, ac-
tivities, and room types in complex 3D scenes, all using a
single model trained without any labeled 3D data.

1. Introduction
3D scene understanding is a fundamental task in com-

puter vision. Given a 3D mesh or point cloud with a set of

posed RGB images, the goal is to infer the semantics, af-
fordances, functions, and physical properties of every 3D
point. For example, given the house shown in Figure 1, we
would like to predict which surfaces are part of a fan (se-
mantics), made of metal (materials), within a kitchen (room
types), where a person can sit (affordances), where a person
can work (functions), and which surfaces are soft (physical
properties). Answers to these queries can help a robot inter-
act intelligently with the scene or help a person understand
it through interactive query and visualization.

Achieving this broad scene understanding goal is chal-
lenging due to the diversity of possible queries. Tradi-
tional 3D scene understanding systems are trained with su-
pervision from benchmark datasets designed for specific
tasks (e.g., 3D semantic segmentation for a closed set of 20
classes [5, 12]). They are each designed to answer one type
of query (is this point on a chair, table, or bed?), but provide
little assistance for related queries where training data is
scarce (e.g., segmenting rare objects) or other queries with
no 3D supervision (e.g., estimating material properties).

In this paper, we investigate how to use pre-trained text-
image embedding models (e.g., CLIP [43]) to assist in 3D
scene understanding. These models have been trained from
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Figure 2. Key idea. We co-embed 3D points with text and im-
age pixels in the CLIP feature space (visualized with T-SNE [51])
which has structure learned from large image and text repositories.

large datasets of captioned images to co-embed visual and
language concepts in a shared feature space. Recent work
has shown that these models can be used to increase the flex-
ibility and generalizability of 2D image semantic segmen-
tation [17, 30, 44, 57, 59, 60]. However, nobody has inves-
tigated how to use them to improve the diversity of queries
possible for 3D scene understanding.

We present OpenScene, a simple yet effective zero-shot
approach for open-vocabulary 3D scene understanding. Our
key idea is to compute dense features for 3D points that are
co-embedded with text strings and image pixels in the CLIP
feature space (Fig. 2). To achieve this, we establish associ-
ations between 3D points and pixels from posed images in
the 3D scene, and train a 3D network to embed points using
CLIP pixel features as supervision. This approach brings
3D points in alignment with pixels in the feature space,
which in turn are aligned with text features, and thus en-
ables open vocabulary queries on the 3D points.

Our 3D point embedding algorithm includes both 2D and
3D convolutions. We first back-project the 3D position of
the point into every image and aggregate the features from
the associated pixels using multi-view fusion. Next, we
train a sparse 3D convolutional network to perform feature
extraction from only the 3D point cloud geometry with a
loss that minimizes differences to the aggregated pixel fea-
tures. Finally, we ensemble the features produced by the
2D fusion and the 3D network into a single feature for each
3D point. This hybrid 2D-3D feature strategy enables the
algorithm to take advantage of salient patterns in both 2D
images and 3D geometry, and thus is more robust and de-
scriptive than features from either domain alone.

Once we have computed features for every 3D point,
we can perform a variety of 3D scene understanding
queries. Since the CLIP model is trained with natural lan-
guage captions, it captures concepts beyond object class la-
bels, including affordances, materials, attributes, and func-
tions (Fig. 1). For example, computing the similarity of 3D
features with the embedding for “soft” produces the result
shown in the bottom-left image of Fig. 1, which highlights

the couches, beds, and comfy chairs as the best matches.
Since our approach is zero-shot (i.e. no use of labeled

data for the target task), it does not perform as well as fully-
supervised approaches on the limited set of tasks for which
there is sufficient training data in traditional benchmarks
(e.g., 3D semantic segmentation with 20 classes). How-
ever, it does achieve significantly stronger performance on
other tasks. For example, it beats a fully-supervised ap-
proach on indoor 3D semantic segmentation with 40, 80,
or 160 classes. It also performs better than other zero-shot
baselines, and can be used without any retraining on novel
datasets even if they have different label sets. It works for
indoor RGBD scans as well as outdoor driving captures.
Overall, our contributions are summarized as follows:
• We introduce open vocabulary 3D scene understanding

tasks where arbitrary text queries are used for semantic
segmentation, affordance estimation, room type classifi-
cation, 3D object search, and 3D scene exploration.

• We propose OpenScene, a zero-shot method for extract-
ing 3D dense features from an open vocabulary embed-
ding space using multi-view fusion and 3D convolution.

• We demonstrate that the extracted features can be used
for 3D semantic segmentation with performance better
than fully supervised methods for rare classes.

2. Related Work

This paper draws on a large literature of previous work
on 3D scene understanding, multi-modal embedding, and
zero-shot learning.

Closed-set 3D Scene Understanding. There is a long his-
tory of work on 3D scene understanding for vision and
robotics applications. Most prior work focuses on train-
ing models with ground-truth 3D labels [11, 20, 22, 23, 25,
31, 41, 42, 45, 48, 54]. These works have yielded network
architectures and training protocols that have significantly
pushed the boundary of several 3D scene understanding
benchmarks, including 3D object classification [56], 3D ob-
ject detection and localization [4, 6, 15, 49], 3D semantic
and instance segmentation [2, 3, 5, 12, 24, 34, 40], 3D affor-
dance prediction [14, 32, 53], and so on. The most closely
related work to ours of this type is Rozenberszki et al. [46],
since they use the CLIP embedding to pre-train a model
for 3D semantic segmentation. However, they only use
the text embedding for point encoder pretraining, and then
train the point decoder with 3D GT annotations afterwards.
Their focus is on using the CLIP embedding to achieve bet-
ter supervised 3D semantic segmentation, rather than open-
vocabulary queries.

Another line of research performs 3D scene under-
standing experiments with only 2D ground truth supervi-
sions [16, 27, 38, 47, 52, 55]. For example, [16] generates
pseudo 3D annotation by backprojecting and fusing the 2D
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predicted labels, from which they learn the 3D segmenta-
tion task. However, their 2D network is trained with ground
truth 2D labels. A couple of works [36, 47] pretrain the
3D segmentation network using point-pixel pairs via con-
trastive learning between 2D and 3D features. We also
utilize 2D image features as our pseudo-supervision when
training the 3D network and no 2D labels are needed.

All these approaches have mainly been applied with
small predefined labelsets containing common object cat-
egories. They do not work as well when the number of ob-
ject categories increases, as tail classes have few training
examples. In contrast, we are able to segment with arbitrary
labelsets without any re-training, and we show strong abil-
ity of understanding different contents, ranging from rare
object types to even materials or physical properties, which
is impossible for previous methods.

Open-Vocabulary 2D Scene Understanding. The recent
advances of large visual language models [1, 26, 43] have
enabled a remarkable level of robustness in zero-shot 2D
scene understanding tasks, including recognizing long-tail
objects in images. However, the learned embeddings are
often at the image level, thus not applicable for dense pre-
diction tasks requiring pixel-level information. Many recent
efforts [17,18,21,28,30,33,37,44,57,59,60] attempt to cor-
relate the dense image features with the embedding from
large language models. In this way, given an image at test
time, users can define arbitrary text labels to classify, detect,
or segment the image.

More recently, Ha and Song [19] take a step forward
and perform open-vocabulary partial scene understanding
and completion given a single RGB-D frame as input.
This method is limited to small partial scenes and requires
ground truth training data for supervision. In contrast, in
this work, we solely rely on pretrained open-vocabulary 2D
models and perform a series of 3D scene-level understand-
ing tasks, without the need for any ground truth training data
in 2D or 3D. Moreover,in the absence of 2D images, our
method can perform 3D-only open-vocabulary scene under-
standing tasks based on a 3D point network distilled from
an open-vocabulary 2D image model through 3D fusion.

Zero-shot Learning for 3D Point Clouds. While there
have been a number of studies on zero-shot learning for 2D
images, their application to 3D is still recent and scarce. A
handful of works [7–10] attempt to address the 3D point
classification and generation tasks. More recently, [35, 39]
investigated zero-shot learning for semantic segmentation
for 3D point clouds. They train with supervision of 3D
ground truth labels for a predefined set of seen classes and
then evaluate on new unseen classes. However, these meth-
ods are still limited to the closed-set segmentation setting
and still require GT training data for the majority of the 3D
dataset. Our method does not require any labeled 3D data
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Figure 3. Method Overview. Given a 3D model (mesh or point
cloud) and a set of posed images, we train a 3D network E3D to
produce dense features for 3D points f 3D with a distillation loss L
to multi-view fused features f 2D for projected pixels. We ensem-
ble f 2D and f 3D based on cosine similarities to CLIP embeddings
for an arbitrary set of queries to form f 2D3D. During inference, we
can use the similarity scores between per-point features and given
CLIP features to perform open-vocabulary 3D scene understand-
ing tasks.

for training, and it handles a broad range of queries sup-
ported by a large language model.

3. Method

An overview of our approach is illustrated in Fig. 3.
We first compute per-pixel features for every image using
a model pre-trained for open-vocabulary 2D semantic seg-
mentation. We then aggregate the pixel features from mul-
tiple views onto every 3D point to form a per-point fused
feature vector Sec. 3.1. We next distill a 3D network to re-
produce the fused features using only the 3D point cloud as
input Sec. 3.2. Next, we ensemble the fused 2D features and
distilled 3D features into a single per-point feature Sec. 3.3
and use it to answer open-vocabulary queries Sec. 3.4.

3.1. Image Feature Fusion

The first step in our approach is to extract dense per-
pixel embeddings for each RGB image from a 2D visual-
language segmentation model, and then back-project them
onto the 3D surface points of a scene.

Image Feature Extraction. Given RGB images with a res-
olution of H × W , we can simply compute the per-pixel
embeddings from the (frozen) segmentation model E2D, de-
noted as Ii ∈ RH×W×C , where C is the feature dimen-
sion, and i is the index spanning the total number of im-
ages. For E2D, we experiment with two pretrained image
segmentation models OpenSeg [17] and LSeg [30].

2D-3D Pairing. Given a 3D surface point p ∈ R3 in the
point clouds P ∈ RM×3 of a scene with M points, we cal-
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culate its corresponding pixel u = (u, v) when the intrinsic
matrix Ii and world-to-camera extrinsic matrix Ei of that
frame i are provided. We only consider the pinhole camera
model in this paper so the projection can be represented as
ũ = Ii ·Ei ·p̃, where ũ and p̃ are the homogeneous coordi-
nates of u and p, respectively. Note that for indoor datasets
like ScanNet and Matterport3D where the depth images are
provided, we also conduct occlusion tests to guarantee the
pixel u are only paired with a visible surface point p.

Fusing Per-Pixel Features. With the 2D-3D pairing, the
corresponding 2D features in frame i for point p can be
written as fi = Ii(u) ∈ RC . Now, assume a total num-
ber of K views can be associated with point p, we can
then fuse such 2D pixel embeddings to obtain a single
feature vector for this point f 2D = ϕ(f1, · · · , fK), where
ϕ : RK×C 7→ RC is an average pooling operator for multi-
view features. An ablation study on different fusion strate-
gies are discussed in supplemental. After repeating the fu-
sion process for each point, we can build a feature point
cloud F2D = {f 2D

1 , · · · , f 2D
M } ∈ RM×C .

3.2. 3D Distillation

The feature cloud F2D can be directly used for language-
driven 3D scene understanding when images are present.
Nevertheless, such fused features could lead to noisy seg-
mentation due to potentially inconsistent 2D predictions.
Moreover, some tasks only provide 3D point clouds or
meshes. Therefore, we can distill such 2D visual-language
knowledge into a 3D point network that only takes 3D point
positions as input.

Specifically, given an input point cloud P, we seek to
learn an encoder that outputs per-point embeddings:

F3D = E3D(P), E3D : RM×3 7→ RM×C (1)
where F3D = {f 3D

1 , · · · , f 3D
M }. To enforce the output of the

network F3D to be consistent with the fused features F2D,
we use a cosine similarity loss:

L = 1− cos(F2D,F3D) (2)
We use MinkowskiNet18A [11] as our 3D backbone E3D,
and change the dimension of outputs to C.

Since the open-vocabulary image embeddings from [17,
30] are co-embedded with CLIP features, the output of our
distilled 3D model naturally lives in the same embedding
space as CLIP. Therefore, even without any 2D observa-
tions, such text-3D co-embeddings F3D allow 3D scene-
level understanding given arbitrary text prompts. We show
such results in the ablation study in Sec. 4.2.

3.3. 2D-3D Feature Ensemble

Although one can already perform open-vocabulary
queries with the 2D fused features F2D or 3D distilled fea-
tures F3D, here we introduce a 2D-3D ensemble method to
obtain a hybrid feature to yield better performance.

The inspiration comes from the observation that 2D
fused features specialize in predicting small objects (e.g. a
mug on the table) or ones with ambiguous geometry (e.g.,
a painting on the wall), while 3D features yield good pre-
dictions for objects with distinctive shapes (e.g. walls and
floors). We aim to combine the best of both.

Our ensemble method leverages a set of text prompts, ei-
ther provided at inference or offline (e.g. predefined classes
from public benchmarks like ScanNet, or arbitrary classes
defined by users). We first compute the embeddings for all
the text prompts using the CLIP [43] text encoder E text, de-
noted as T = {t1, · · · , tN} ∈ RN×C , where N is the num-
ber of text prompts and C the feature dimension. Next, for
each 3D point, we obtain its 2D fused and 3D distilled em-
beddings f 2D and f 3D (dropping the subscript for simplic-
ity). We can now correlate text features with these two sets
of features via cosine similarity, respectively:

s2D
n = cos(f 2D, tn), s3D

n = cos(f 3D, tn) (3)
Once having the similarity scores wrt. every text prompt tn,
we can use the max value s2D = maxn(s

2D
n ) and s3D =

maxn(s
3D
n ) among all N prompts as the ensemble scores

for both features. Our final 2D-3D ensemble feature f 2D3D

is simply the feature with the highest ensemble score.

3.4. Inference

With any per-point feature described in the previous sub-
sections (f 2D, f 3D, or f 2D3D) and CLIP features from an arbi-
trary set of text prompts, we can estimate their similarities
by simply calculating the cosine similarity score between
them. We use this similarity score for all of our scene under-
standing tasks. For example, for the zero-shot 3D seman-
tic segmentation using 2D-3D ensemble features, the final
segmentation for each 3D point is computed point-wise by
argmax n{cos(f 2D3D, tn)}.

4. Experiments

We ran a series of experiments to test how well the
proposed methods work for a variety of 3D scene under-
standing tasks. We start by evaluating on traditional closed-
set 3D semantic segmentation benchmarks (in order to be
able to compare to previous work), and later demonstrate
the more novel and exciting open-vocabulary applications
in the next section.

Datasets. To test our method in a variety of settings,
we evaluate on three popular public benchmarks: Scan-
Net [12, 46], Matterport3D [5], and nuScenes Lidarseg [4].
These three datasets span a broad gamut of situations – the
first two provide RGBD images and 3D meshes of indoor
scenes, and the last provides Lidar scans of outdoor scenes.
We use all three datasets to compare to alternative methods.
Moreover, Matterport3D is a complex dataset with highly
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mIoU mAcc
Bookshelf Desk Sofa Toilet Mean Bookshelf Desk Sofa Toilet Mean

3DGenZ [39] 6.3 3.3 13.1 8.1 7.7 13.4 5.9 49.6 26.3 23.8
MSeg Voting 47.8 40.3 56.5 68.8 53.4 50.1 67.7 69.8 81.0 67.2
Ours - LSeg 67.1 46.4 60.2 77.5 62.8 85.5 69.5 79.0 90.0 81.0
Ours - OpenSeg 64.1 27.4 49.6 63.7 51.2 73.7 73.4 92.5 95.3 83.7

Table 1. Comparison on Zero-shot 3D Semantic Segmentation. We show quantitative comparison between our method and the most
recent zero-shot 3D segmentation approach [39] and a multi-view fusion baseline utilizing MSeg [29]. Following [39], we take 4 classes
(bookself, desk, sofa, toilet) out of 20 classes from ScanNet validation set for evaluation. Unlike [39], which requires training on 16 seen
classes, our approach does not train with any 2D or 3D ground labels on any classes. Still, both of our variants show significantly better
performance in both mIoU and mAcc.

detailed scenes, and thus provides the opportunity to stress
open-vocabulary queries.

4.1. Comparisons

Comparison on zero-shot 3D semantic segmentation.
We first compare our approach to the most closely related
work on zero-shot 3D semantic segmentation: MSeg [29]
Voting and 3DGenz [39]. MSeg Voting predicts a semantic
segmentation for each posed image using MSeg [29] with
mapping to the corresponding label sets. For each 3D point,
we perform majority voting of the logits from multi-view
images. 3DGenZ [39] divides the 20 classes of the Scan-
Net dataset into 16 seen and 4 unseen classes, and trains a
network utilizing the ground truth supervision on the seen
classes to generate features for both sets.

Following the experimental setup in [39], we report the
mIoU and mAcc values on their 4 unseen classes in Table 1.
Our results on those classes is significantly better than [39]
(7.7% vs 62.8% mIoU), even though 3DGenz [39] utilizes
ground truth data for 16 seen classes and ours does not. We
also outperform MSeg Voting. In this case, the difference
is mainly because our method (regress CLIP features and
then classify) naturally models the similarities and differ-
ences between classes, where as the MSeg Voting approach
(classify and then vote) treats every class as equally distinct
from all other classes (a couch and a love seat are just as
different as a couch and an airplane in their model).

Comparison on 3D semantic segmentation benchmarks.
In Table 2 we compare our approach with both fully-
supervised and zero-shot methods on all classes of the
nuScenes [4] validation set, ScanNet [12] validation set,
and Matterport3D [5] test set. Again, we outperform the
zero-shot baseline (MSeg Voting) on both mIoU and mAcc
metrics all three datasets. Although we have noticeable
gap to the state-of-the-art fully-supervised approaches, our
zero-shot method is surprisingly competitive with fully-
supervised approaches from a few years ago [13, 25, 50].
Among all 3 datasets our approach has the smallest gap
(only -11.6 mIoU and -8.0 mAcc) to the SOTA fully-
supervised approach on Matterport3D. We conjecture the
reason is that Matterport3D is more diverse, which makes

nuScenes [4] ScanNet [12] Matterport [5]

mIoU mAcc mIoU mAcc mIoU mAcc
Fully-supervised methods
TangentConv [50] - - 40.9 - - 46.8
TextureNet [25] - - 54.8 - - 63.0
ScanComplete [13] - - 56.6 - - 44.9
DCM-Net [48] - - 65.8 - - 66.2
Mix3D [41] - - 73.6 - - -
VMNet [23] - - 73.2 - - 67.2
LidarMultiNet [58] 82.0 - - - - -
MinkowskiNet [11] 78.0 83.7 69.0 77.5 54.2 64.6
Zero-shot methods
MSeg [29] Voting 31.0 36.9 45.6 54.4 33.4 39.0
Ours - LSeg 36.7 42.7 54.2 66.6 43.4 53.5
Ours - OpenSeg 42.1 61.8 47.5 70.7 42.6 59.2

Table 2. Comparisons on Indoor and Outdoor Benchmarks.
We compare our method with both zero-shot and fully-supervised
baselines for semantic segmentation of one outdoor dataset
(nuScenes) and two indoor datasets (ScanNet and Matterport).
Note that our zero-shot method performs worse than SOTA ap-
proaches trained on this data, but comparable to supervised ap-
proaches from a few years ago, and better than the previous
SOTA zero-shot approach. Except for [11], the numbers for fully-
supervised methods (in gray) are taken from previous papers.

the fully-supervised training harder.
Visual comparisons of semantic segmentations are

shown in Fig. 4. They show that some of the predictions
marked wrong in our results are actually either incorrect or
ambiguous ground truth annotations. For example, in the
first row in Fig. 4, we successfully segment the picture on
the wall, while the GT misses it. And in the nuScenes re-
sults, the truck composed of a trailer and the truck head is
segmented correctly, but the annotation is not fine-grained
enough to separate the parts.

Impact of increasing the number of object classes. Be-
sides the standard benchmarks with only a small set of
classes, we also show comparisons as the number of ob-
ject classes increases. We evaluate on the most frequent K
classes1 of Matterport3D, where K = 21, 40, 80, 160. For
the baseline, we train a separate MinkowskiNet for each K.

1K = 21 was from original Matterport3D benchmark. For K =
40, 80, 160 we use most frequent K classes of the NYU label set provided
with the benchmark.
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Figure 4. Qualitative comparisons. Images of 3D semantic segmentation results on public indoor and outdoor benchmarks.

K = 21 K = 40 K = 80 K = 160

Fully-supervision [11] 64.5 50.8 33.4 18.4
Ours 59.2 50.9 34.6 23.1

(a) Results on different number of classes in mAcc
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(b) Window evaluation on groups of 20 classes
Table 3. Impact of Increasing the Number of Object Classes.
Here we show (a) mAcc on Matterport3D [5] with different num-
bers of classes K, and (b) mAcc within a window of 20 classes
ranked by decreasing numbers of examples in training set, i.e. the
right-most bars represent average of the 20 classes with fewest ex-
amples (e.g., only 5 instances). Even though the fully-supervised
approach [11] is trained on each labelset separately, while our
model is fixed for all label sets, we can handle the less-common /
long-tail classes much better.

However, for ours we use the same model for all K, since it
is class agnostic.

As shown in Table 3 (a), when trained on only 21
classes, the fully-supervised method performs much bet-
ter due to the rich 3D labels in the most common classes
(wall, floor, chair, etc.). However, with the increase of the
number of classes, our zero-shot approach overtakes the
fully-supervised approach, especially when K gets large.
The reason is demonstrated in Table 3 (b), where we show

ScanNet [12] Matterport3D [5]
mIoU mAcc mIoU mAcc

Ours
LSeg

2D Fusion 50.0 62.7 32.3 40.0
3D Distill 52.9 63.2 41.9 51.2
2D-3D Ens. 54.2 66.6 43.4 53.5

Ours
OpenSeg

2D Fusion 41.4 63.6 32.4 45.0
3D Distill 46.0 66.3 41.3 55.1
2D-3D Ens. 47.5 70.7 42.6 59.2

Table 4. Ablation Study. Comparison of semantic segmentation
performance of different 3D features computed by our method.

the mean accuracy for groups of 20 classes ranked by fre-
quency. Fully-supervised suffers severely in segmenting tail
classes because there are only a few instances available in
the training dataset. In contrast, we are more robust to such
rare objects since we do not rely upon any 3D labeled data.

4.2. Ablation Studies & Analysis

Does it matter which 2D features are used? We tested our
method with features extracted from both OpenSeg [17] and
LSeg [30]. In most experiments, we found the accuracy and
generalizability of OpenSeg features to be better than LSeg
(Table 1, Table 2, and Table 4), so we use OpenSeg for all
experiments unless explicitly stated otherwise.

Is our 2D-3D ensemble method effective? In Table 4, we
ablate the performance for predicting features on 3D points
including only image feature fusion (Sec. 3.1), only running
the distilled MinkowskiNet (Sec. 3.2), and our full 2D-3D
ensemble model (Sec. 3.3). As can be seen, on all scenarios
(different datasets, metrics, and 2D features), our proposed
2D-3D ensemble model performs the best. This suggests
that leveraging patterns in both 2D and 3D domains makes
the ensemble features more robust and descriptive.
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K = 21 K = 40 K = 80 K = 160

2D Features 28.56% 29.96% 31.58% 32.46%
3D Features 71.44% 70.04% 68.42% 67.54%

Table 5. Behavior of Ensemble Model. Each entry indicates the
percentage of points for which the Ensemble Model selects 2D or
3D features for semantic segmentation on Matterport3D for differ-
ent numbers of classes K in the labelset.

What features does our 2D-3D ensemble method use
most? Here we study how our ensemble model selects
among the 2D and 3D features, and investigate how it
changes with increasing numbers of classes in the label set.
As shown in Table 5, we find that the majority of predictions
(∼ 70%) select the 3D features, corroborating the value of
our 3D distillation model. However, the percentage of pre-
dictions coming from 2D features increases with the num-
ber of classes, suggesting that the 2D features are more im-
portant for long-tailed classes, which tend to be smaller in
both size and number of training examples.

5. Applications
This section investigates new 3D scene understanding

applications enabled by our approach. Since the feature
vectors estimated for every 3D point are co-embedded with
text and images, it becomes possible to extract information
about a scene using arbitrary text and image queries. The
following are just a few example applications.2

Open-vocabulary 3D object search. We first investigate
whether it is possible to query a 3D scene database to find
examples based on their names – e.g., “find a teddy bear in
the Matterport3D test set.” To do so, we ask a user to en-
ter an arbitrary text string as a query, encode the CLIP em-
bedding vector for the query, and then compute the cosine-
similarity of that query vector with the features of every 3D
point in the Matteport3D test set (containing 18 buildings
with 406 indoor and outdoor regions) to discover the best
matches. In our implementation, we return at most one
match per region (i.e., room, as defined in the dataset) to
ensure diversity of the retrieval results.

Fig. 5 shows a few example top-1 results. Most other
specific text queries yield nearly perfect results. To evaluate
that observation quantitatively, we chose a sampling of 10
raw categories from the ground truth set of Matterport3D,
retrieved the best matching 3D points from the test set, and
then visually verified the correctness of the top matches.
For each query, Table 6 reports the numbers of instances
in the test set (# Test) along with the number of instances
found with 100% precision before the first mistake in the
ranked list. The results are very encouraging. In all of these
queries, only two ground truth instances were missed (two
telephones). On the other hand, 26 instances were found

2Please note that all of these applications are zero-shot – i.e., none of
them leverage any labeled data from any 3D scene understanding dataset.

"Teddy Bear"

"Globe"

"Toy Giraffe"

"Yellow Egg-Shaped Vase"

Figure 5. Open-vocabulary 3D Search. These images show the
3D point within a database of 3D house models that best matches
a text query. The inset image shows a zoomed view of the match.

Class # # # # #
Name All Test Found Missed New

Fire Extinguisher 25 3 3 0 0
Telephone 21 4 15 2 13
Exit Sign 15 5* 8 0 3
Piano 15 1 2 0 1
Ball 15 1* 4 0 3
Hat 15 1* 1 0 0
Bulletin Board 6 0 1 0 1
Globe 5 2 5 0 3
Teddy Bear 2 0 1 0 1
Toy Giraffe 1 1 1 0 0
Yellow Egg-Shaped Vase 1 0 1 0 1

Table 6. Open-vocabulary 3D Search Results. Each row depicts
a search of the Matterport3D test set for a class given as a text
query. The columns list the # of instances in the ground truth for
the whole dataset (# All), the # in the test set (# Test, counting
clusters of nearby objects as one when marked with a ’*’), the #
of top matches found with 100% precision (# Found), the # of GT
instances missed amongst those top matches (# Missed), and the #
newly discovered that were not in the GT (# New).

among these top matches that were not correctly labeled in
the ground truth, including 13 telephones. Overall, these
results suggest that our open-vocabulary retrieval applica-
tion identifies these relatively rare classes at least as well
as the manually labeling process did. See the supplemental
material for the full set of results.

Image-based 3D object detection. We next investigate
whether it is possible to query a 3D scene database to re-
trieve examples based on similarities to a given input im-
age – e.g., “find points in a Matterport3D building that
match this image.” Given a set of query images, we encode
them with CLIP image encoder, compute cosine-similarities
to 2D-3D ensemble features for 3D points, and then thresh-
old to produce a 3D object detection and mask, see Fig. 7.
Note that the pool table and dining table are identified cor-
rectly, even though both are types of “tables.”

Open-vocabulary 3D scene understanding and explo-
ration. Finally, we investigate whether it is possible to

821



M
at
er
ia
ls

Pr
op

ert
ie
s

A
ct
iv
iti
es

Fireplace

Oven

Piano

Painting

Oven

Sink

Sink

Window

Doll
Doll

Doll

Painting

Cupboard

Sink

Tub

Painting

OvenFire
Extinguisher

Sink

Tub

"Comfy" "Wet" "Hot" "Fragile" "Artistic"

"Fabric" "Wood" "Metal"  Porcelain" "Glass"

  "Sleep" "Wash" "Cook" "Dine" "Play"

Figure 6. Open-vocabulary 3D Scene Exploration. Examples of discovering properties, surface materials, and activity sites within a
scene using open-vocabulary queries. For each example, the query text is listed below (e.g., “Comfy”), and the 3D points are colored based
on their cosine similarity to the clip embedding for the query text – yellow is highest, green is middle, blue is low, and uncolored is lowest.

Our SegmentationInput 3D Geometry

Image Queries

Figure 7. Image-based 3D Object Detection. A 3D scene (bot-
tom left) can be queried with images from Internet (top) to find
matching 3D points (bottom right). The colors of the image query
outlines indicate the corresponding matches in the 3D point cloud.
All 3 images are under Creative Commons licenses.

query a 3D scene to understand properties that extend be-
yond category labels. Since the CLIP embedding space is
trained with a massive corpus of text, it can represent far
more than category labels – it can encode physical proper-
ties, surface materials, human affordances, potential func-
tions, room types, and so on. We hypothesize that we can
use the co-embedding our 3D points with the CLIP features
to discover these types of information about a scene.

Fig. 6 shows some example results for querying about
physical properties, surface materials, and potential sites of
activities. From these examples, we find that the OpenScene
is indeed able to relate words to relevant areas of the scene
– e.g., the beds, couches, and stuffed chairs match “Comfy,”
the oven and fireplace match “Hot,” and the piano keyboard
matches “Play.” This diversity of 3D scene understanding
would be difficult to achieve with fully supervised methods

without massive 3D labeling efforts. In the authors’ opin-
ion, this is the most interesting result of the paper.

6. Limitations and Future Work
This paper introduces a task-agnostic method to co-

embed 3D points in a feature space with text and im-
age pixels and demonstrates its utility for zero-shot, open-
vocabulary 3D scene understanding. It achieves state-of-
the-art for zero-shot 3D semantic segmentation on standard
benchmarks, outperforms supervised approaches in 3D se-
mantic segmentation with many class labels, and enables
new open-vocabulary applications where arbitrary text and
image queries can be used to query 3D scenes, all without
using any labeled 3D data. These results suggest a new di-
rection for 3D scene understanding, where foundation mod-
els trained from massive multi-modal datasets guide 3D
scene understanding systems rather than training them only
with small labeled 3D datasets.

There are several limitations of our work and still much
to do to realize the full potential of the proposed approach.
First, the inference algorithm could probably take better ad-
vantage of pixel features when images are present at test
time using earlier fusion (we tried this with limited success).
Second, the experiments could be expanded to investigate
the limits of open-vocabulary 3D scene understanding on a
wider variety of tasks. We evaluated extensively on closed-
set 3D semantic segmentation, but provide only qualitative
results for other tasks since 3D benchmarks with ground
truth are scarce. In future work, it will be interesting to de-
sign experiments to quantify the success of open vocabulary
queries for tasks where ground truth is not available.
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