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Abstract

This paper introduces a novel representation of volumet-
ric videos for real-time view synthesis of dynamic scenes.
Recent advances in neural scene representations demon-
strate their remarkable capability to model and render com-
plex static scenes, but extending them to represent dynamic
scenes is not straightforward due to their slow rendering
speed or high storage cost. To solve this problem, our key
idea is to represent the radiance field of each frame as a
set of shallow MLP networks whose parameters are stored
in 2D grids, called MLP maps, and dynamically predicted
by a 2D CNN decoder shared by all frames. Represent-
ing 3D scenes with shallow MLPs significantly improves
the rendering speed, while dynamically predicting MLP pa-
rameters with a shared 2D CNN instead of explicitly stor-
ing them leads to low storage cost. Experiments show that
the proposed approach achieves state-of-the-art rendering
quality on the NHR and ZJU-MoCap datasets, while being
efficient for real-time rendering with a speed of 41.7 fps for
512 x 512 images on an RTX 3090 GPU. The code is avail-
able at https://zju3dv.github.io/mlp_maps/.

1. Introduction

Volumetric video captures a dynamic scene in 3D which
allows users to watch from arbitrary viewpoints with im-
mersive experience. It is a cornerstone for the next gener-
ation media and has many important applications such as
video conferencing, sport broadcasting, and remote learn-
ing. The same as 2D video, volumetric video should be ca-
pable of high-quality and real-time rendering as well as be-
ing compressed for efficient storage and transmission. De-
signing a proper representation for volumetric video to sat-
isfy these requirements remains an open problem.

Traditional image-based rendering methods [1,12,25,74]
build free-viewpoint video systems based on dense camera
arrays. They record dynamic scenes with many cameras
and then synthesize novel views by interpolation from in-
put nearby views. For these methods, the underlying scene
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Figure 1. The basic idea of dynamic MLP maps. Instead of
modeling the volumetric video with a big MLP network [26], we
exploit a 2D convolutional neural network to dynamically gener-
ate 2D MLP maps at each video frame, where each pixel storing
the parameter vector of a small MLP network. This enables us
to represent volumetric videos with a set of small MLP networks,
thus significantly improving the rendering speed.

representation is the original multi-view video. While there
have been many multi-view video coding techniques, the
storage and transmission cost is still huge which cannot
satisfy real-time video applications. Another line of work
[11, 13] utilizes RGB-D sensors to reconstruct textured
meshes as the scene representation. With mesh compression
techniques, this representation can be very compact and en-
able streamable volumetric videos, but these methods can
only capture humans and objects in constrained environ-
ments as reconstructing a high-quality renderable mesh for
general dynamic scenes is still a very challenging problem.

Recent advances in neural scene representations [26, 33,

] provide a promising solution for this problem. They
represent 3D scene with neural networks, which can be ef-
fectively learned from multi-view images through differen-
tiable renderers. For instance, Neural Volumes [33] rep-
resents volumetric videos with a set of RGB-density vol-
umes predicted by 3D CNNs. Since the volume prediction
easily consumes large amount of GPU memory, it strug-
gles to model high-resolution 3D scenes. NeRF [37] in-
stead represent 3D scenes with MLP networks regressing
density and color for any 3D point, thereby enabling it to
synthesize high-resolution images. DyNeRF [26] extends
NeRF to model volumetric videos by introducing a tempo-
ral latent code as additional input of the MLP network. A
major issue of NeRF models is that their rendering is gen-
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erally quite slow due to the costly network evaluation. To
increase the rendering speed, some methods [17,61,75] uti-
lize caching techniques to pre-compute a discrete radiance
volume. This strategy typically leads to high storage cost,
which is acceptable for a static scene, but not scalable to
render a volumetric video of dynamic scenes.

In this paper, we propose a novel representation of volu-
metric video, named dynamic MLP maps, for efficient view
synthesis of dynamic scenes. The basic idea is illustrated in
Figure 1. Instead of modeling a volumetric video with a sin-
gle MLP network, we represent each video frame as a set of
small MLP networks whose parameters are predicted by a
per-scene trained 2D CNN decoder with a per-frame latent
code. Specifically, given a multi-view video, we choose a
subset of views and feed them into a CNN encoder to obtain
a latent code for each frame. Then, a 2D CNN decoder re-
gresses from the latent code to 2D maps, where each pixel
in the maps stores a vector of MLP parameters. We call
these 2D maps as MLP maps. To model a 3D scene with
the MLP maps, we project a query point in 3D space onto
the MLP maps and use the corresponding MLP networks to
infer its density and color values.

Representing 3D scenes with many small MLP networks
decreases the cost of network evaluation and increases the
rendering speed. This strategy has been proposed in pre-
vious works [48,49], but their networks need to be stored
for each static scene, which easily consumes a lot of stor-
age to represent a dynamic scene. In contrast to them, we
use shared 2D CNN encoder and decoder to predict MLP
parameters on the fly for each video frame, thereby effec-
tively compressing the storage along the temporal domain.
Another advantage of the proposed representation is that
MLP maps represent 3D scenes with 2D maps, enabling us
to adopt 2D CNNs as the decoder instead of 3D CNNs in
Neural Volumes [33]. This strategy leverages the fast infer-
ence speed of 2D CNNs and further decreases the memory
requirement.

We evaluate our approach on the NHR and ZJU-MoCap
datasets, which present dynamic scenes with complex mo-
tions. Across all datasets, our approach exhibits state-of-
the-art performance in terms of rendering quality and speed,
while taking up low storage. Experiments demonstrate that
our approach is over 100 times faster than DyNeRF [26].

In summary, this work has the following contributions:

* A novel representation of volumetric video named dy-
namic MLP maps, which achieves compact represen-
tation and fast inference.

* A new pipeline for real-time rendering of dynamic
scenes based on dynamic MLP maps.

* State-of-the-art performance in terms of the render-
ing quality, speed, and storage on the NHR and ZJU-
MoCap datasets.

2. Related work

Traditional methods. Early works generally represent
3D scenes with multi-view images [12,25] or explicit sur-
face models [11, 13]. Light field-based methods [12, 18,25]
build up a dense camera array to capture the target scene
and synthesize novel views via light field interpolation tech-
niques. To reduce the number of input camera views,
[1,7,22,28,32,53,62,74] estimate the scene geometry from
input views, then use the geometry to warp input views to
the target view, and finally blend warped images to the tar-
get image. These methods require storing captured RGB
images for latter prediction, which could cause high storage
costs. Surface-based methods [11, 13, 39,40, 76] leverage
RGB-D sensors to reconstruct textured meshes to represent
target scenes. They utilize the depth sensors and multi-view
stereo methods [50, 79] to obtain per-view depth images,
and employ the depth fusion to obtain the scene geome-
try. Although these methods are able to create high-quality
streamable volumetric videos, the need of depth sensors
limits them to work in constrained environments.

Neural scene representations. These methods [37,59,60]
propose to represent 3D scenes with neural networks, which
can be effectively learned from images through differen-
tiable renderers. Some surveys [55,56,69] have summarized
the neural scene representation methods. NeRF [2, 3, 37]
represents continuous volumetric scenes with MLP net-
works and achieves impressive rendering results. To fur-
ther improve the performance, some methods [48,49,54,60]
decompose the scene into a set of spatial cells, each of
which is represented by a NeRF network. Block-NeRF [54]
demonstrates that this strategy enables high-quality render-
ing for large-scale scenes. KiloNeRF [49] represents each
subregion with a smaller NeRF network and thus acceler-
ates the rendering process. Other methods speed up the
rendering via caching techniques [21, 75] or explicit rep-
resentations [10, 30]. Explicit representations are also used
to increase the rendering quality, such as voxels [20,30,73],
point clouds [72], and planes [5,6,15,45]. Previous methods
[5] have used tri-plane representations, where they leverage
tri-plane feature maps to increase the model capacity. Our
model differs from them in that we predict tri-plane MLP
maps instead of feature maps, and we can model the 3D
scene with a single MLP map instead of three maps.
Recent methods [29, 33, 64, 70] investigate the poten-
tial of neural 3D representations in representing volumet-
ric videos. To model high-resolution scenes, [14, 16,31,42,
,46,47,71] extend NeRF to represent dynamic scenes.
[16,26,27,52,68] introduce temporal embedding as an ad-
ditional input of NeRF network to describe dynamic scenes.
They typically adopt deep networks to achieve photorealis-
tic rendering, resulting in slow rendering. Another line of
works [42,43,47,58,77] introduce a deformation field which
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(a) Prediction of dynamic MLP maps

(b) Modeling 3D scene with MLP maps

Figure 2. Illustration of dynamic MLP maps on the YZ plane. To model the volumetric video, a shared auto-encoder network predicts
MLP maps to represent the 3D scene at each video frame. (a) Specifically, for a particular video frame, an encoder network embeds a
subset of input views into a latent vector, which is subsequentially processed by a decoder network to output density and color MLP maps.
(b) For any 3D query point, it is projected onto the 2D plane defined by the MLP map and retrieve the corresponding network parameters
to construct the density and color head. Finally, the resulted MLP network predicts the density and color for this point.

maps points into a canonical space. However, as discussed
in [27,42], deformation is difficult to optimize from images
and thus struggle to represent scenes with large motions.

Some methods [17,33,34,61,65] have explored the task
of fast rendering of dynamic scenes. Wang et al. [61] utilize
a generalized NeRF to build up a PlenOctree [75] for each
video frame and compress these PlenOctrees into a Fourier
PlenOctree with discrete Fourier transform. To achieve
high-quality compression, Fourier transform requires high
dimensions of Fourier coefficients, which increases the stor-
age cost. As shown in [61], Fourier PlenOctree models a
volumetric video of 60 frames with more than 7 GB storage
cost. In contrast, our approach represents dynamic scenes
with 2D CNNss, resulting in a compact scene representation
for real-time rendering.

Hypernetworks. As discussed in Ha ef al. [19], a hy-
pernetwork generates the parameters for another network.
There have been some works attempting to apply hypernet-
works to computer vision tasks, such as semantic perception
[8,57], image generation [23, 24], view synthesis [9, 51],
human modeling [63], and inverse rendering [36]. In neural
field-based methods [51, 63], hypernetworks are generally
utilized to generalize neural representations across a set of
scenes. To encode a set of scenes with a single network,
SRN [51] defines a set of latent vectors and uses an MLP
network to map the latent vector to parameters of an MLP
representing a specific scene. Instead of regressing network
weights with MLP networks, our approach proposes to use
fully convolutional neural network to generates MLP maps,
which efficiently produces a set of networks.

3. Proposed approach

Given a multi-view video captured by synchronized and
calibrated cameras, our goal is to produce a volumetric
video that takes up low disk storage and supports fast ren-
dering. In this paper, we propose a novel representation
called dynamic MLP maps for volumetric videos and de-
velop a pipeline for real-time view synthesis of dynamic
scenes. In this section, we first describe how to model 3D
scenes with MLP maps (Section 3.1). Then, Section 3.2
discusses how to represent volumetric videos with dynamic
MLP maps. Finally, we introduce some strategies to speed
up the rendering process (Section 3.3).

3.1. Modeling 3D scenes with MLP maps

An MLP map is a 2D grid map with each pixel stor-
ing the parameters of an MLP network. To represent 3D
scene with MLP maps, we project any 3D point p to the 2D
planes defined by MLP maps for querying the correspond-
ing MLP parameters. In practice, we align MLP maps with
the axes of the coordinate frame, and point p is orthograph-
ically projected onto a canonical plane. See Figure 2(b)
as an example of MLP maps on the YZ plane. The pro-
jected query point is assigned to a parameter vector through
spatial binning, which is dynamically loaded to the MLP
network. Here we adopt a small NeRF network to predict
the density and color for the query point p, which consists
of one-layer density head and three-layer color head. The
networks encoded by the 2D maps together represent the
whole scene. Since each NeRF only describes a fraction of
the target scene, our model can reach high-quality rendering
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with small MLPs. In contrast to network sets used in pre-
vious methods [48,49,54,60], the proposed MLP maps are
in the format of 2D planes, enabling us to effectively and
efficiently generate MLP parameters with 2D convolutional
networks, which will be described latter.

When predicting the density and color for point p, in-
stead of directly passing the spatial coordinate into the net-
work, we embed the input coordinate to a high-dimensional
feature vector for better performance. Specifically, we de-
fine three multi-level hash tables [38]: hyy, h,, h,.. Each
hash table has a resolution of L xT'x I, where L is the num-
ber of hash table’s levels, T is the table size, and I is the
feature dimension. To embed the input point p, we project
it onto three axis-aligned orthogonal planes, transform pro-
jected points to feature vectors using three multi-level hash
tables, and aggregate the three feature vectors via summa-
tion. The embedding process is formulated as:

Ye(p) = n(x,y, t; hey) + 0z, 2, 6 h2) +1(y, 2, 6 hy2), (1)

where (x,y, z) is the coordinate of point p, ¢ is the video
frame, and 7 is the encoding function, which obtains the
feature vector from the hash table according to the input
point (please refer to [38] for more details). In addition, we
follow EG3D [5] to predict tri-plane feature maps with a
2D CNN and use them to assign a feature vector fyﬁ,(p) to
each 3D point. We add up the hash table feature 73 (p) and
the tri-plane feature ~/,(p) to obtain the final feature vector
vp(P). The density ¢ and color c is predicted via:

(0,¢) = M(’Vp (p),va(d)), (2

where M means the MLP network, and v4(d)) is the en-
coded viewing direction. Figure 2(b) visualizes the MLP
network. In practice, we implement 4 as a positional en-
coding function [37], and the 2D CNN shares parameters
with the one used to dynamic MLP maps, whose detailed
architecture is presented in Section 4.

Orthogonal MLP maps. Experiments demonstrate that
modeling scenes with MLP maps defined on one canonical
plane struggles to give good rendering quality. A reason is
that scene content could be a high-frequency signal func-
tion along an axis, which makes the MLP map difficult to
fit the scene content. In such case, scene content may have
lower frequency along another axes. Inspired by [5, 6,45],
we define three MLP maps on three axis-aligned orthogo-
nal planes. For a query point, we first use the MLP maps to
predict densities and colors {(o;,¢;) |i = 1,2,3} and then
aggregate them via summation. Figure | illustrates the idea
of summing the outputs of orthogonal signal functions. The
experimental results in Section 5.2 show that three MLP
maps defined on orthogonal planes perform better than three
ones defined on the same planes.

3.2. Volumetric videos as dynamic MLP maps

Based on the MLP map, we are able to use a 2D CNN to
represent the volumetric video. Given a multi-view video,
we leverage a 2D CNN to dynamically regress 2D maps
containing a set of MLP parameters for each video frame,
which model the geometry and appearance of 3D scene at
corresponding time step. As illustrated in Figure 2(a), the
network architecture is implemented as an encoder-decoder,
where the encoder regresses latent codes from camera views
and the decoder produces MLP maps based on latent codes.

Specifically, for a particular video frame, we select a sub-
set of camera views and utilize 2D CNN encoder to convert
them into a latent code following Neural Volumes [33]. The
latent code is designed to encode the state of the scene at the
video frame and used for the prediction of MLP maps. An
alternative way to obtain latent codes is pre-defining learn-
able feature vectors for each video frame as in [4, 35, 41].
The advantage of learning with an encoder network is that
it implicitly shares the information across video frames, en-
abling joint reconstruction of video sequences rather than
just per-frame learning.

Given the encoded latent vector, a 2D CNN decoder is
employed to predict MLP maps. Figure 2(a) presents the
schematic architecture of 2D CNN decoder. Denote the la-
tent vector as z € R”. We first use a fully-connected net-
work to map z to a 4096-dimensional feature vector and
reshape the resulting vector as a 4 x 4 feature map with
256 channels. Then, a network with a series of deconvolu-
tional layers upsamples it to a feature map of higher reso-
Iution D x D. Based on the feature map, two subsequent
convolutional networks are used to predict the density and
color MLP maps, respectively. The convolutional network
consists of several convolutional layers. By controlling the
number and stride of convolutional layers, we control the
resolution of the predicted MLP map. Since the density
MLP has fewer parameters than the color MLP, we can pre-
dict a higher resolution for the density MLP map, which
leads to better performance, as demonstrated by experimen-
tal results in Section 5.2.

3.3. Accelerating the rendering

Our approach represents 3D scenes with a set of small
MLP networks. Since these MLP networks are much
smaller than that of DyNeRF [26], our network evaluation
takes less time, enabling our approach to be much faster
than DyNeRF. To further improve the rendering speed, we
introduce two additional strategies.

First, the encoder network can be discarded after train-
ing. We use the trained encoder to compute the latent vector
for each video frame, and store the resulted latent vectors in-
stead of forwarding the encoder network every time, which
save the inference time of the encoder.
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Second, the number of network queries is reduced by
skipping the empty space. To this end, we compute a low-
resolution 3D occupancy volume per video frame, where
each volume voxel stores a binary value indicating whether
the voxel is occupied. The occupancy volume is extracted
from the learned scene representation. We mark a voxel as
occupied when its evaluated density is higher than a thresh-
old. Since the occupancy volume has a low resolution and
is stored in the binary format, the occupancy volumes of a
300-frame video only take up about 8 MB storage. Dur-
ing inference, the network evaluation is only performed on
occupied regions indicated by the occupancy volume. In
practice, we will run the density evaluation before the color
evaluation to further reduce the number of color evalua-
tions. Specifically, we first evaluate the densities of sampled
points within occupied voxels, which are used to calculate
the composition weights as defined in the volume render-
ing [37]. If the weight of a point is higher than a threshold,
we then predict its color value, otherwise we skip this point
during the volume rendering.

The complete rendering pipeline and the corresponding
implementation details are presented in the supplementary
material. The code will be released for the reproducibility.

4. Implementation details

Network architecture. Our approach adopts an encoder
with seven convolutional layers, which takes three 512x512
images as input and converts them into a 256-dimensional
latent vector following [33]. The decoder network consists
of a backbone network and two prediction heads. The back-
bone network has six deconvolutional layers and upsamples
the input 4 x 4 feature map to a 256 x 256 backbone fea-
ture map. We use a convolutional layer to regress from the
backbone feature map to a 96-channel feature map and re-
shape it to three 32-channel planes. The prediction head for
density MLP is implemented as a convolutional layer with a
stride of 1 and outputs a 256 x 256 MLP map, each having
32 parameters (32 x 1). The prediction head for color MLP
applies four convolutional layers with a stride of 2 and one
convolutional layer with a stride of 1 to the input feature
map, resulting in a 16 x 16 MLP map, each having 2624
parameters (32 x 32+ (324 15) x 32+ 32 x 3) with ReLU
internal activation. For each multi-level hash table, we fol-
low [38]toset L =19, T =16and F = 2.

Storage cost. For an input video of 300 frames, the stor-
age cost of latent vectors, MLP maps decoders, multi-level
hash tables and occupancy volumes in our model are 300
KB, 103MB, 131MB and 8MB, respectively. Note that, the
encoder network are not stored thanks to our accelerating
strategies in Section 3.3.

Training. The networks are optimized to minimize the
MSE loss that calculates the difference between rendered

Methods ‘ Baselinel C-NeRF Ours-Single Ours
feature tri-planes  feature volumes feature tri-planes  feature tri-planes
Description + single NSRF + sinele NeRF + hash tables + + hash tables +
= s single NeRF MLP maps
LPIPS ‘ 0.072 0.076 0.065 0.058

Table 1. Analyzing what contributes to the rendering quality.
Metrics are averaged over two scenes from ZJU-MoCap and NHR.

and observed images. The Kullback-Leibler divergence loss
in [33] is also used for training. More details of loss func-
tions can be found in the supplementary material. During
optimization, we set the batch size as eight and train the
model on one RTX 3090 GPU, which takes about 16 hours.
The learning rate is set as 5e~* and 5¢~2 for auto-encoder
network and hashtable respectively and decays exponen-
tially by 0.1 every 400 epochs.

5. Experiments
5.1. Datasets

To evaluate the performance of our approach, we con-
duct experiments of the ZJU-MoCap [46] and NHR [67]
datasets. Both two datasets capture foreground dynamic
scenes within bounded regions using multiple synchronized
cameras, and the recorded scenes exhibit large motions. On
ZJU-MoCap dataset, we uniformly select 11 cameras for
training and use the remaining views for evaluation. All
video sequences have a length of 300 frames. On NHR
dataset, 90 percent of cameras are taken as training views
and the other views are kept for evaluation. We select 100
frames from captured videos to reconstructing volumetric
videos for each scene. The two datasets provide segmen-
tation masks for foreground dynamic scenes. Based on
foreground masks, we produce visual hulls of foreground
scenes and calculate axis-aligned bounding boxes enclosing
scenes, which are used in our approach.

5.2. Ablation studies

We validate our algorithm’s design choices on two
scenes from the ZJU-MoCap and NHR datasets. Tables 1
and 2 present the quantitative results.

What contributes to our rendering quality. Table 1 lists
the results of ablation studies. “Baselinel” consists of tri-
plane feature maps and a single shared MLP for all video
frames. The MLP has the same network as the original
NeRF. “Ours-Single” is the model in Table 2 (5). Table 1
indicates two components important to our rendering qual-
ity: 1) Hash tables (Ours-Single vs. C-NeRF [64]). 2) MLP
maps (Ours vs. Ours-Single). Using MLP maps allows each
MLP to represent a small region, in contrast to the single
NeRF modeling the whole volumetric video.
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Rendering time Storage

‘ LPIPS | ‘ (milliseconds) (MB)
(1) Color map size 1 x 1 0.069 22 489
(2) Color map size 4 x 4 0.065 23 324
(3) Color map size 32 x 32 0.060 27 208
(4) Density map Size 16 x 16 0.064 25 250
(5) Single shared MLP 0.065 90 133
(6) Single shared MLP w/o ESS 0.065 1345 125
(7) XY MLP map 0.072 19 206
(8) w/o orthogonal signal 0.067 24 242
(9) wio ESS | 0058 | 144 | 237
(10) Complete model | 0058 | 24 | 242

Table 2. Ablation studies of our model. Metrics are averaged
over two scenes from the ZJU-MoCap and NHR datasets. We test
the time of rendering a 512 x 512 image on one RTX 3090 GPU.
See Section 5.2 for detailed descriptions.

16 x 16

Figure 3. Qualitative results of models with different color
MLP map resolutions on the ZJU-MoCap dataset.

The resolution of MLP maps. Experimental results in
rows 1, 2, and 4 of Table 2 show that decreasing the resolu-
tion undermines the rendering performance. Note that, the
storage cost increases when the resolution decreases. This
is because that we add more convolutional layers for the
downsampling, as described in Section 4.

Results of row 3 show that increasing the resolution does
not necessarily improves the rendering quality. A plausible
explanation is that the increased resolution make the model
more difficult to train for two factors. First, the higher reso-
lution of MLP map means more parameters to be optimized.
Second, increasing the resolution need to decrease the num-
ber of query points fed into each color MLP during each
training iteration due to memory limit, thereby decreasing
the batch size. Figure 3 shows some visual results.

It is interesting to analyze why the high-resolution den-
sity map is trainable while the color map is not. The rea-
son is that density MLP has 32 parameters, and color MLP
has 2624 parameters, which means that 256 x 256 density
MLP map has similar number of parameters to 28 x 28 color
MLP map. In addition, the scene geometry generally has
lower frequency than the appearance. Therefore, the high-
resolution density MLP maps are easier to train.

The results in rows 1-4 of Table 2 also indicate that the
resolution of MLP maps does not affect the rendering speed
much. This can be attributed to that the number of MLP
evaluations is not related to the map resolution.

Ground truth Single shared MLP Ours

Figure 4. Comparisons between dynamic MLP maps and a
single shared MLP on the NHR dataset.

Ground truth

Single MLP map Three XY MLP maps Ours

Figure 5. Ablation studies on the orthogonal MLP maps. The
results indicate that orthogonal MLP maps improves the quality.

Our model with a shared MLP. Rows 5-6 of Table 2
means that we replace the dynamic MLP maps with a sin-
gle shared MLP for all video frames. This MLP network
is implemented as the original NeRF network [37] except
that the input is the high-dimensional feature vector vy, (p)
in Section 3.2. Our complete model has better rendering
quality and faster rendering speed than the model with a
single shared MLP network. The results of row 6 indicate
that, with the empty space skipping, the rendering speed of
model “Single shared MLP” increases much. But it is still
much slower than our complete model.

The influence of using orthogonal MLP maps. Row “XY
MLP map” in Table 2 means that we represent the scene
with a single dynamic MLP map defined on the XY plane.
The results show the rendering quality degrades much. Row
“w/o orthogonal signal” indicates that we adopts three dy-
namic MLP maps, which are all defined on the XY plane.
The resulting model also shows a bad rendering quality.

Analysis of our rendering time. Row “w/o ESS” in Ta-
ble 2 investigates the effect of the empty space skipping.
The results show that this technique improves the rendering
speed 6 times while only adding 5 MB on the storage cost.
Here we analyze the running time of each model compo-
nent. The inference time of MLP maps decoder and query-
ing multi-level hash tables are about 4ms and 7ms, respec-
tively. Our color and density MLP maps take only 12ms
in total, in comparison with over 80ms taken by a single
shared MLP with empty space skipping.
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Ground truth

Neural Volumes C-NeRF

D-NeRF DyNeRF Ours

Figure 6. Qualitative comparisons on the NHR dataset. Our approach significantly outperforms other methods. The results in the first
rows indicates that we can synthesize detailed texture of basketballs, while the rendering results of other methods are blurry.

5.3. Comparisons with the state-of-the-art methods

Baseline methods. We compare our approach with four
recent methods. (1) Neural Volumes (NV) [33] uses a 3D
deconvolutional network to produce RGB-Alpha volumes
as the volumetric video. (2) C-NeRF [64] is a follow-up
work of Neural Volumes, which adopts a 3D CNN to pro-
duce feature volumes and appends a NeRF-like MLP to pre-
dict radiance fields. (3) D-NeRF [47] decomposes the dy-
namic scene into a static scene in the canonical space and
a deformation field. (4) DyNeRF [26] represents the vol-
umetric video with a NeRF-like MLP, which takes spatial
coordinate and temporal embedding as input and predict the
radiance field at a particular video frame. Since C-NeRF
and DyNeRF do not release the code, we re-implement
them for the comparison. We do not compare with Neu-
ral Body [46] and MVP [34], because their algorithms take
tracked meshes as input, making the comparison unfair.

Tables 3, 4 list the comparison of our method with

Rendering time Storage
‘ PSNR 1 ‘ SSIM ¥ ‘ LPIPS | ‘ (milliseconds) (MB)
NV [33] 30.86 0.941 0.130 73 658
C-NeRF [64] 31.32 0.949 0.102 1969 1019
D-NeRF [47] | 29.25 0.920 0.150 2303 4
DyNeRF [20] | 30.87 0.943 0.118 5195 12
Ours 32.20 0.953 0.080 33 239

Table 3. Quantitative results on the NHR dataset. Metrics are
averaged over all scenes. This dataset includes 512 x 612 images
and 384 x 512 images.

[26,33,47,64] in terms of rendering quality, rendering speed
and storage. We adopt PSNR, SSIM and LPIPS [78] as
metrics to evaluate rendering quality. For all metrics, our
method achieves the best performance among all the meth-
ods. Moreover, our model renders two magnitude faster
than C-NeRF, D-NeRF and DyNeRF while maintaining rea-
sonable storage cost. Although our approach is only twice
as fast as Neural Volumes due to its explicit scene represen-
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Figure 7. Qualitative comparisons in the ZJU-MoCap dataset. Our proposed model can generate sharp details, as shown by the results
of last two rows. In contrast, other methods tend to render smooth images.

Rendering time Storage

‘ PSNR 1 ‘ SSIM 1 ‘ LPIPS | ‘ (milliseconds) + (MB) +

NV [33] 28.12 0.934 0.131 49 658
C-NeRF [64] 29.79 0.959 0.077 1313 1019
D-NeRF [47] | 27.08 0.922 0.139 1534 4
DyNeRF [26] | 29.88 0.959 0.087 3452 12
Ours 30.17 0.963 0.068 24 245

Table 4. Comparison on the ZJU-MoCap dataset. Metrics are
averaged over all scenes. The image resolution is 512 x 512.

tation, our rendering accuracy is significantly better.

Figures 6, 7 show the qualitative results of our method
and baselines. Limited by low volume resolution, Neural
Volumes gives blurry results. D-NeRF has similar prob-
lems as deformation fields are difficult to learn when com-
plex scene motions exist. C-NeRF and DyNeRF tend to
lose details in high frequency regions of the image because
of their single shared MLP model structures. In contrast,
our method generates photorealistic novel view results.

6. Conclusion

We proposed a novel neural representation named dy-
namic MLP maps for volumetric videos. The key idea is
utilizing a shared 2D CNN to predict 2D MLP maps of

each video frame, which store the parameters of MLP net-
works at pixels. To model 3D scene with MLP maps, our
approach regresses the density and color of any 3D point by
projecting it onto the 2D planes defined by MLP maps and
queries the corresponding the MLP networks for the predic-
tion. Experiments demonstrated that our approach achieves
competitive rendering quality and low storage costs, while
being efficient for real-time rendering.

Limitations. 1) Common videos are more than a few min-
utes. However, this work only deals with videos of 100 to
300 frames, which are relatively short, thus limiting the ap-
plications. How to model a long volumetric video remains
an interesting problem. 2) Since we use multi-level hash ta-
bles, the storage cost of our model will increase as the video
length increases. 3) The proposed representaion requires
dense camera views for training, similar to [26,33,64]. Re-
covering free-viewpoint videos from sparse-view videos is
also an open problem.
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