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Abstract

This paper presents an investigation into long-tail
video recognition. We demonstrate that, unlike naturally-
collected video datasets and existing long-tail image bench-
marks, current video benchmarks fall short on multiple
long-tailed properties. Most critically, they lack few-shot
classes in their tails. In response, we propose new video
benchmarks that better assess long-tail recognition, by sam-
pling subsets from two datasets: SSv2 and VideoLT.

We then propose a method, Long-Tail Mixed Recon-
struction (LMR), which reduces overfitting to instances
from few-shot classes by reconstructing them as weighted
combinations of samples from head classes. LMR then
employs label mixing to learn robust decision bound-
aries. It achieves state-of-the-art average class accu-
racy on EPIC-KITCHENS and the proposed SSv2-LT and
VideoLT-LT. Benchmarks and code at: github.com/
tobyperrett/lmr

1. Introduction
Advances in deep learning have been driven by increas-

ing quantities of data to train larger and more sophisti-
cated models. Landmark recognition datasets such as Ima-
geNet [17] and Kinetics [10], amongst others, have fulfilled
this need for data by first defining a taxonomy, and then
scraping or crowd-sourcing until a sufficient number of ex-
amples are obtained for each class. They typically aim for
balanced, or nearly balanced, class distributions. However,
in practice, collecting enough examples for every object or
action, including rare ones, remains challenging. Naturally
occurring data is known to come from long-tail distribu-
tions, where it is often not possible to obtain a sufficient
number of samples from classes in the tail.

In order to encourage methods to train effectively on
long-tail data, image-recognition benchmarks include mul-
tiple naturally-collected1 [24] as well as curated long-tail
datasets [6, 9, 15, 37, 64]. In contrast, long-tail video recog-
nition has been a less explored field. In Fig. 1, we com-
pare image and video benchmarks, showcasing that none

1We use the term ‘naturally’ to focus on the data collection. It does not
imply footage of nature. We hope this footnote prevents any confusion.
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Figure 1. Long-tail image recognition datasets (top) [9, 37] aimed
to curate similar distributions to the naturally-collected iNatu-
ralist [24]. For video datasets (bottom), the naturally-collected
EPIC-KITCHENS-100 [16] demonstrates a similar distribution of
head/tail/few-shot classes to long-tail image datasets. In compari-
son, curated video datasets do not include any few-shot classes [1,
21, 71]. We propose two versions of existing datasets which do –
SSv2-LT and VideoLT-LT. Head/tail/few-shot definitions in Fig. 2.
Numeric comparison in Tab. 1.

of the curated video datasets to date contain any few-shot
classes [1, 21, 71]. This is a critical oversight, as seminal
research has highlighted that long-tail methods must “learn
accurate few-shot models for classes in the tail of the class
distribution” [64] and “deal with imbalanced classification,
few-shot learning” [37]. In this paper, we follow the ap-
proach from [37] and re-sample videos to introduce long-
tail versions of two video datasets.

We evaluate current long-tail recognition methods on
our re-sampled long-tail video datasets and the naturally-
collected EPIC-KITCHENS-100 dataset [16]. Unsurpris-
ingly, when confronted with few-shot classes, current meth-
ods perform poorly due to a lack of sample diversity in the
few-shot classes. We thus propose a new method that fo-
cuses on improving the performance on few-shot classes.
Long-Tail Mixed Reconstruction (LMR) reconstructs few-
shot samples as weighted combinations of head samples
within the batch. A residual connection, weighted by the
class size, is used to combine instances with their recon-
structions. We use pairwise label mixing on these recon-
structed samples to help learn robust class decision bound-
aries. Our key contributions are as follows:

• We compare image and video long-tail datasets, by pro-
viding a consistent definition of properties for long-tail

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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class distributions.
• We curate new long-tail video benchmarks (-LT) which

better test long-tail recognition performance.
• We propose a method, LMR, which increases the di-

versity in few-shot classes. It achieves highest average
class accuracy across 3 benchmarks: naturally-collected
EPIC-KITCHENS-100 and the two proposed curated
benchmarks SSv2-LT and VideoLT-LT.

Sec. 2 reviews works which investigate long-tail char-
acteristics, leading to the introduction of a set of properties
and the comparison of existing long-tail benchmarks. Sec. 3
introduces new benchmarks and demonstrates experimen-
tally the value of these long-tail properties. Sec. 4 sum-
marises prior long-tail and few-shot video recognition ap-
proaches. Sec. 5 introduces LMR, our method for long-tail
video recognition. Comparative analysis is given in Sec. 6.
Finally, ablations on LMR are performed in Sec. 7.

2. Properties of Long-Tail Benchmarks
Established benchmarks for long-tail image recogni-

tion [37] have shaped the progress of long-tail methods.
These followed earlier efforts that investigated the desired
data distribution characteristics for long-tail benchmarks.
In [6], experiments were performed with class counts that
decay linearly or decay with a step-function. They noted
that a larger imbalance between majority (now known as
‘head’) and minority (i.e. ‘tail’) classes increases difficulty
and that a longer tail negatively affects classifier perfor-
mance for both linear and step class count decays. Inter-
estingly, imbalance was shown to affect higher complexity
tasks (e.g. CIFAR) significantly more than lower complex-
ity tasks (e.g. MNIST). Step and exponential class count
decays were also investigated in [9], with similar conclu-
sions. In [15], multiple long-tail versions of CIFAR [29]
were curated by changing the minimum class size. Distri-
bution characteristics were not explored numerically, but a
drop in performance was reported as the number of samples
per class decreased.

Despite the richness of these early findings, imbalance
(i.e. the ratio between the largest and smallest class sizes)
has become the primary metric for characterising long-tail
benchmarks. However, imbalance ignores other critical
characteristics such as the number of few-shot classes. To
reflect this, we define three properties which together al-
low a more informed comparison of long-tail benchmarks.
These are visualised in Fig. 2:

• Head Length (H%): The percentage of classes that for-
mulates the majority of samples in the dataset. When
classes are ranked by their size in the training set, these
are the largest classes that together contribute x% of the
training samples. While different values can be used for
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Figure 2. Visualisation of long-tail distribution properties: head
length (H%), few-shot length (F%) and imbalance (I). Previous
works have relied solely on imbalance, or used the terms “head”,
“mid” and “tail” to describe different parts of the distribution with
arbitrarily chosen sizes. In this paper, we use consistent properties
to compare long-tail benchmarks across images and videos.

x, we follow prior work that used 50% of the data to rep-
resent head classes [4, 52]. We consider the head length
as the ratio of head classes to all classes.

• Few-Shot Length (F%): The percentage of few-shot
classes in the dataset, where a few shot class contains
≤ x training samples. Prior works use values between
5 and 50 for x [2, 8, 41, 46, 48, 58, 59, 61, 69, 75]. We
follow long-tail image works and use 20 as the threshold
for few-shot classes [37, 72].

• Imbalance (I): Previously used in [15], imbalance is the
ratio between the size of the largest and smallest classes.
Note that this metric alone does not provide a measure
of how long-tailed a dataset is.

These three properties are distribution agnostic, i.e. they
can describe the properties of any benchmark whether the
data is naturally-collected, or when it is sampled, no matter
what distribution function is used. Using these three prop-
erties (H%, F%, I), we now quantitatively compare long-tail
datasets across images and videos.

2.1. Long-Tail Image Datasets

The definitive example of a naturally-collected long-tail
image recognition dataset is iNaturalist 2018 [24]. It is con-
structed from image and label contributions of plants and
animals in the wild. As some species are rare, it would be
very difficult to acquire more examples of these few-shot
classes. As shown in Tab. 1, the iNaturalist image dataset
has a head length of 7% (i.e. the 7% largest classes con-
tribute 50% of the data), a few-shot length of 40% (i.e. 40%
of the classes have 20 or fewer training examples) and an
imbalance of 500. Thus, for methods to perform well on
naturally-collected data, they must be good at learning a
large number of few-shot classes.

Methods also evaluate on curated long-tail versions of
large-scale datasets to avoid over-specialisation on iNatu-
ralist. The widely used ImageNet-LT [37], Places-LT [37]
and CIFAR-LT [15] re-sample from the original datasets
and have comparable properties to the naturally-collected
iNaturalist, making them suitable for evaluating methods
that target long-tail recognition. As shown in Tab. 1, these
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Proposed Properties Class size Num Balanced
Source Dataset Year H% F% I Max Min classes test Content

Natural iNaturalist [24] 2018 7 40 500 1000 2 8142 ✓ Photos of species
Resampled ImageNet-LT [37] 2019 16 14 256 1280 5 1000 ✓ Image recognition
Resampled Places-LT [37] 2019 8 19 996 4980 5 365 ✓ Photos of scenesIm

ag
es

Resampled Cifar-LT-100 [15] 2019 15 30 100 500 5 100 ✓ Image recognition
Natural EPIC-KITCHENS-100 Verbs [16] 2020 3 19 14848 14848 1 97 ✗ Egocentric actions
Collected Youtube-8M [1] 2016 2 0 6409 788288 123 3862 ✗ Youtube
Collected Something-Something V2 [21] 2017 26 0 79 3234 41 174 ✗ Temporal reasoning
Collected VideoLT [71] 2021 23 0 43 1912 44 1004 ✗ Youtube (fine-grained)
Resampled SSv2-LT (proposed) 2022 9 32 500 2500 5 174 ✓ Temporal reasoning

V
id

eo
s

Resampled VideoLT-LT (proposed) 2022 12 38 110 550 5 772 ✓ Youtube (fine-grained)

Table 1. Comparison of datasets against long-tail properties: Head Length (H%), Few-Shot Length (F%) and Imbalance (I). Red highlighted
rows contain naturally-collected datasets. The bottom two rows (blue) contain our proposed VideoLT-LT and SSv2-LT, which are curated
to better match naturally-collected data than other video benchmarks.

have few-shot lengths of 14%, 19% and 30% respectively
and head lengths of ≤ 16%.

2.2. Long-Tail Video Datasets

By analogy, one naturally-collected large-scale and long-
tail video dataset is EPIC-KITCHENS-100 [16]. Collection
was unscripted recording of several days of kitchen activ-
ities. The number of samples of an action class roughly
correlates to the how frequently the action occurs in daily
activities. Table 1 shows EPIC-KITCHENS-100 has a head
length of 3% and a few-shot length of 19%.

There have been two attempts at curating video datasets
to specifically test long-tail methods, Youtube8M [1] and
VideoLT [71]. While these are appreciated efforts, they are
far from ideal as long-tail benchmarks. Table 1 shows nei-
ther of these contain any few-shot classes (F% = 0), and
VideoLT has a significantly smaller imbalance of 43 com-
pared to 100 − 996 for long-tail image datasets. We build
on this effort to propose long-tail benchmarks that satisfy
all the desired properties.

3. Proposed Long-Tail Video Benchmarks

Having identified weaknesses in current benchmarks
used for long-tail video recognition, we first propose to use
EPIC-KITCHENS-100 as it is naturally-collected and satis-
fies the long-tail properties (as defined in Sec. 2). We also
propose to resample public video datasets, so their proper-
ties are in line with curated long-tail image datasets.

SSv2 [21] is chosen as it is widely considered to be
a good test of temporal understanding and has previ-
ously been re-purposed for evaluating few-shot works [8,
77]. Similarly, VideoLT [71] targets fine-grained classes.
We call these curated versions SSv2-LT and VideoLT-LT,
and resample these following the recipe used in [37] for
ImageNet-LT and Places-LT (sampling from a Pareto dis-
tribution with α = 6). Table 1 demonstrates these cu-
rated versions match the desired properties as visualised in
Fig. 1. For additional details including sampled number of

instances per class, see the supplementary material.
Before proceeding to the method, ablations are first per-

formed at a dataset level, where different curated versions of
SSv2-LT are compared to demonstrate the impact on long-
tail properties and the effect of few-shot classes. Full im-
plementation details of models and metrics will be given in
Sec. 6, but for these ablations it suffices to say that Motion-
former [39] is trained with cross-entropy, reporting average
class accuracy over the test set, as well as over few-shot, tail
and head classes.

3.1. Importance of Long-Tail Properties

In Sec. 2, we noted that prior works use Imbalance (I)
to identify a dataset as being long-tailed [15, 50]. We quan-
titatively showcase that imbalance alone is insufficient by
constructing four variants of SSv2-LT (A, B, C, D), with a
fixed training set size = 50.4k and a fixed imbalance I = 500.
We vary the head length H% and the few-shot length F% as
shown in Fig. 3. Variant C (which uses an identical decay
to ImageNet-LT and Places-LT [37]), highlighted in blue, is
the version used throughout this paper and proposed as the
long-tail benchmark SSv2-LT.

As H% decreases and F% increases (A → D), there are
significant drops in few-shot, tail and overall accuracy (up
to 9%), whereas head performance improves. This is indica-
tive of the distribution becoming more long-tailed. Because
this behaviour occurs with fixed I, it can be concluded that
H% and F% are indeed necessary for comparison of long-
tail distributions.

3.2. Effect of Few-Shot Classes

To showcase the importance of few shot classes, i.e.
classes with ≤ 20 samples in training, we increment
all classes in SSv2-LT with a fixed number of additional
samples +x. We evaluate the performance over few-
shot/tail/head classes2 as we add {10, 20, 30, 40, 50} sam-
ples per class. Fig. 4 shows that the accuracy on few-shot

2We maintain the set of classes in few-Shot/tail/head for direct compar-
ison, i.e. even if the class has > 20 samples after the addition.
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Figure 3. We compare four variants of SSv2-LT (A, B, C, D) with
different H% and F% properties, while fixing I = 500, and the
training dataset size = 50.4k. Top: percentage of head, tail and
few-shot classes in each variant. Bottom: average class accuracy
over the long-tail distribution. Variant C, highlighted in blue, is
the proposed version used throughout the rest of this paper.

Figure 4. Effect of adding +x samples per class on SSv2-LT. Av-
erage class accuracy is reported overall and for head, tail and few-
shot classes. Per-case improvement reported next to arrow.

classes significantly increases when adding a small number
of samples per class. The effect is smaller for tail classes
and marginal for head. The maximum improvement of few-
shot classes occurs around +20 samples/class, when no few-
shot classes remain in training.

To address this challenge, it is thus important to have
a sufficient number of few-shot classes in long-tail bench-
marks. Recall that naturally-collected datasets contain sig-
nificant few-shot length (40% for iNaturalist and 19% for
EPIC-KITCHENS-100).

4. Related Methods

Having justified our proposed benchmarks and before in-
troducing our method, we first review long-tail and few-shot
video recognition methods.

4.1. Long-Tail Methods

There are two main approaches to tackle long-tail recog-
nition: re-weighting and re-balancing.
Re-weighting approaches impose a higher penalty when
misclassifying samples from tail classes. This can be done
by directly adjusting logits [32, 40, 47, 57, 66] or weight-
ing the loss by class size [15, 53] or individual sample dif-

ficulty [18, 25, 31, 35, 43, 50]. Alternative approaches in-
clude label smoothing [73] and enforcing separation be-
tween class embeddings [27,34,49]. Re-weighting can also
be achieved by enabling more experts to specialise on tail
classes and combining predictions [7, 13, 30, 62, 72, 76].
Re-balancing approaches instead adjust the frequency at
which examples from different classes are used in training,
without adjusting the loss function. This can be achieved
using a class-equalising feature bank [38] or more com-
monly by equal sampling from each class [22] or by in-
stance difficulty [51, 67]. It has become standard practice
to first train the representation with instance-balanced sam-
pling [55] followed by class-balanced sampling [3, 26, 70].

Augmentations are known to introduce diversity into tail
samples [33]. They combine the sample with a nearby
class prototype [11], or create feature clouds to expand
tail classes [36]. Further augmentation approaches include
combining class-specific and class-generic features [12],
using a separate classifier to identify head samples that
can be adjusted and re-labeled as tail classes [28], or past-
ing tail foreground objects onto backgrounds from head
classes [42]. Contrastive learning has also been used to im-
prove representations [14, 74]. For video, Framestack [71]
proposes temporally mixing up samples, frame-wise, based
on average-precision during training.

Our proposed method, LMR, belongs to the re-balancing
category. It is related to approaches for augmentation but
differs in that it uses samples from multiple other classes,
weighting the reconstruction by the class count and jointly
reconstructing all samples in the batch.

4.2. Few-Shot Video Recognition

Despite the infancy of the long-tail video recognition
field, the related field of few-shot video recognition has
been more widely studied [5, 8, 20, 45, 56, 63, 65, 69, 75,
77, 78]. Instead of learning a long-tailed class distribution,
few-shot methods learn to distinguish between a limited
number of balanced few-shot classes (e.g. 5-way 5-shot).
Few-shot video methods rely on attention between frames
of the query video and all samples in the support set of each
class [45,63,65,78]. This requires the support set to be held
in memory, which makes few-shot methods unsuitable for
direct application to long-tail learning. Further, due to their
design around balanced benchmarks, these methods cannot
handle imbalance.

Our method takes inspiration from few-shot works in de-
signing an approach for long-tail video recognition. In par-
ticular, image [19] and video [45] few-shot methods use a
reconstruction technique to measure the similarity between
a query and a class. A similar technique is used in [44] as in-
put to a text captioning module. Each video is reconstructed
from similar videos in the batch, using a cross-modal em-
bedding space. In contrast to these works, we apply recon-
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struction across classes using multiple head samples to ben-
efit those in the tail or those which are few shot. We also
make use of a residual connection to maintain knowledge
of the sample itself. We detail our method next.

5. Method
When performing class-balanced sampling, instances

from the tail are oversampled. This is particularly prob-
lematic for few-shot classes, where insufficient sample di-
versity results in overfitting. We propose Long-Tail Mixed
Reconstruction (LMR), which aims to recover this diver-
sity by computing a linear combination of the sample itself
and weighted combinations of similar samples in the batch,
weighted by the class size and followed by pairwise label
mixing. In contrast to standard augmentation techniques,
reconstructions are more representative of examples likely
to be seen at test time, since they make use of visually sim-
ilar samples from within the training set.

We first describe how classes are treated differently
based on their count. We then proceed to describe our re-
construction and pairwise label mixing.

5.1. Long-Tailed Class Contribution

We consider the long-tailed class distribution of samples
in the training set, and take Cy as the count of the class with
label y. We define a contribution function c(y), per class,
which we use later for reconstructing instances. We first
calculate C̃y as the weight of class y:

C̃y =
1

log (Cyd+ ϵ)
, (1)

where d controls the decay, and ϵ is a constant which en-
sures a positive denominator. These class weights can then
be used to calculate the contribution function (low for head
classes, high for tail):

c(y) =
C̃y −min(C̃y)

max(C̃y)−min(C̃y)
l . (2)

Here, 0 ≤ l ≤ 1 is a hyperparameter controlling the
contribution for the lowest class count. Note that these class
contributions are established for the classes based on the
training set, and not changed during training.

5.2. Long-Tail Mixed Reconstruction

Setup. Recognition methods combine a feature encoder
f(·) and a classifier g(·). Data is fed to the model for
training in the form of batches, where a batch X contains
B videos X = {xi : i = 1...B} with associated labels
Y = {yi : i = 1...B}. Given the class contribution func-
tion from Eq. 2, we look up c(Y ) for the samples in the
batch, given their class labels.

To start, features for the batch are computed in the for-
ward pass as Z = f(X). We propose a mixed reconstructor

Original

Reconstruction

(a) The few-shot sample (green) is
reconstructed as a weighted sum of
other samples in the batch. Few-
shot samples are prevented from
contributing to the reconstructions
through a mask (top left).

(b) Reconstructions (dotted
outline) increase diversity for
few-shot classes, expanding class
boundaries. Robust boundaries
are learned by pairwise mixing of
reconstructions (double outline).

Figure 5. LMR overview: reconstruction (a) and label-mixing (b).

mr(·, ·), which acts on features Z and labels Y , and returns
a new reconstructed representation with an updated label for
every video in the batch.
Sample reconstruction. We calculate cosine similarity s
between all features within the batch, Sij = s (Zi, Zj).
Note that here, i denotes the feature to be reconstructed,
and j denotes the feature being used for the reconstruc-
tion. We then calculate an exclusion mask E, avoiding self-
weighting, i.e. samples should not contribute to their own
reconstructions, and samples from few-shot classes are also
avoided as these are already oversampled. The exclusion
mask E is visualised in Fig. 5a, and calculated as:

Eij =

{
0 if (i = j) or (Cyi

≤ ω)

1 otherwise
(3)

where ω = 20 is the few-shot threshold. Next, we ap-
ply a softmax operation over non-masked elements per row
(i.e. one softmax per i), which calculates reconstruction
weights W :

Wij =
exp(Sij)Eij∑B

k=1 exp(Sik)Eik

. (4)

We use a residual connection weighted by the class con-
tribution – the smaller the class, the more the weighted fea-
tures WZ contribute to the reconstruction of samples from
that class. Specifically:

R = c(Y )WZ + (1− c(Y ))Z , (5)

where c(Y ) (Eq. 2) are the contribution functions of the
class labels in the batch and R are the reconstructed fea-
tures. For few shot classes, the reconstruction is mostly
formed from the weighted combination of other similar
samples in the batch. Note that these reconstructions have
the same class labels Y as the features Z they replace.
Pairwise label mixing. Once the reconstructions R are ob-
tained, we take a step further by performing stochastic pair-
wise mixing (Fig. 5b). We use a mixing mask M such that:
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Mij =


αi if (i = j)

1− αi if (j = βi)

0 otherwise
(6)

where α is a B-dimensional set of mixing weights, one for
each sample. Following standard mixing, αi = 1 with prob-
ability 0.5, and randomly 0 ≤ αi ≤ 1 otherwise. β is a B
dimensional sample selector, that selects a different sample
from the batch. 1 ≤ βi ≤ B, βi ̸= i and βi ∈ N.

We apply the mixing mask M to our reconstructions R
and their labels Y such that

mr(Z, Y ) = (MR,MY ) . (7)

We then pass these reconstructed and mixed features with
the corresponding mixed labels to the classifier g to train.

5.3. Training and Inference

As customary [26], the classifier g, acting on the back-
bone f , is first pre-trained with instance-based sampling and
cross-entropy. Afterwards, g is reset. LMR is then trained
with class-balanced sampling and cross-entropy on g. This
is backpropagated through the mixed reconstructor mr and
feature extractor f . At inference, mr is discarded, as a suit-
able feature extractor f and classifier g have been learned
for long-tail recognition. Each test sample/video is pro-
cessed independently, i.e. there is no reconstruction, and
labels and class counts are not used.

6. Experiments
We first perform comparative analysis on EPIC-

KITCHENS-100, SSv2-LT and VideoLT-LT.
Metrics. The primary metric for long-tail video recognition
is average class accuracy (Avg C/A), as it provides a fair
evaluation when the test set is unbalanced. When the test
set is balanced, as in the case of SSv2-LT and VideoLT-LT,
Avg C/A and overall accuracy (Acc) are identical metrics.
EPIC-KITCHENS-100 has an unbalanced test set so overall
accuracy is also provided for reference. We also report av-
erage class accuracy for few-shot (marked “few” in tables),
tail and head classes, as defined by the properties in Sec. 2.
Baselines. We compare against the following methods, also
identified in [71] as suitable for long-tail video recognition:

• CE: Standard cross entropy trained with instance-
balanced sampling.

• EQL: As in CE, but using an Equalization Loss [54],
which reduces the penalty for misclassifying a head class
as a tail class. This baseline is currently used by video
transformer works to address class imbalance [65].

• cRT: Classifier Retraining [26]. This is now the stan-
dard practice of instance-balanced sampling, followed by
a classifier reset and class-balanced sampling.

• Mixup [68]: Pairs of samples and their labels are mixed.
• Framestack [71]: Mixes up video frames based on a run-

ning total of class average precision.

Implementation Details. For all experiments on EPIC-
KITCHENS-100 and SSv2-LT, we use Motionformer [39],
a spatio-temporal transformer with attention guided by
trajectories which achieves strong results on EPIC-
KITCHENS-100 and SSv2. We use the default configura-
tion of 16 frame input and 224×224 resolution with 16×16
patches. We train on 8×V100 GPUs, with a distributed
batch of 56 samples. To enable processing on multiple
GPUs, we maintain a feature bank of previous iterations per
GPU. Other details (architecture, optimisation etc.) follow
the default code of Motionformer and are noted in the sup-
plementary material. For all methods apart from CE and
EQL, we follow the cRT disentanglement approach [26].
We first train end-to-end using instance-balanced sampling
with a cross-entropy loss. We then reset the classifier and
switch to class-balanced sampling for a full training run.

For VideoLT-LT experiments, we use the codebase pro-
vided with the original dataset and accompanying method
Framestack [71] to be directly comparable to prior works.
It uses pre-extracted ResNet-50 [23] frame features with a
non-linear classifier and score aggregation. We use the de-
fault batch size of 128 samples trained on 1×P100 GPU.

For LMR, the few-shot threshold is ω = 20. Decay
and scaling parameters for the contribution function are
d = 0.25 and l = 0.6 for SSv2-LT and VideoLT-LT, and
d = 0.15 and l = 1.0 for EPIC-KITCHENS-100 as it has a
smaller minimum class size.
Results. Table 2 shows the results for EPIC-KITCHENS-
100, SSv2-LT and VideoLT-LT. LMR performs best on all
datasets for average class accuracy. Note that prior re-
sults were reported on datasets that did not contain any
few shot classes (see Sec 2.1). By evaluating on EPIC-
KITCHENS-100, and proposing benchmarks with few-shot
classes, we can expose the limitations of these methods pre-
viously deemed competitive for long-tail video recognition.
LMR also obtains the best results on few-shot classes (high-
lighted in green) on all datasets. For tail classes, LMR per-
forms comparably or outperforms prior baselines. For head
classes, LMR performs comparably to long-tail baselines
on EPIC-KITCHENS-100 and SSv2-LT, but takes a bigger
hit on VideoLT-LT. We do not change any of the hyperpa-
rameters across datasets for fairer comparison, but consider
results can be further improved if optimised per dataset.

Figure 6 shows class improvements of LMR compared
to CE on EPIC-KITCHENS-100. Significant improvements
are seen on smaller classes (few-shot and end of tail). Some
head classes drop in performance, particularly the largest.
Similar trends were found on SSv2-LT and VideoLT-LT.

Figure 7 shows selected examples from all datasets. CE
tends to predict few-shot classes as visually similar head
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EPIC-KITCHENS-100 SSv2-LT VideoLT-LT
Method Few Tail Head Avg C/A Acc Few Tail Head Avg C/A = Acc Few Tail Head Avg C/A = Acc

CE 0.0 12.3 55.2 21.2 63.5 2.0 38.9 75.2 29.7 17.4 51.1 75.9 41.0
EQL [54] 0.0 12.4 55.0 21.1 63.3 3.1 39.0 75.2 30.1 17.4 51.0 75.4 40.9
cRT [26] 21.4 35.0 51.1 36.9 50.1 14.9 45.6 58.6 36.5 30.5 56.9 64.0 47.5
Mixup [68] 25.8 33.8 51.7 36.8 51.7 17.4 46.6 57.1 37.8 15.8 48.9 72.5 38.9
Framestack [71] 23.0 33.6 52.1 36.5 52.5 15.5 46.1 61.9 37.2 18.2 51.8 74.5 41.5
LMR 35.7 36.8 51.1 39.7 51.3 17.9 46.5 61.0 38.3 34.8 56.8 62.1 48.9

Table 2. Long-tail results on EPIC-KITCHENS-100 Verbs Val set [16], SSv2-LT and VideoLT-LT. Note that average class accuracy (Avg
C/A) is the same as overall accuracy (Acc) for balanced test sets (SSv2-LT and VideoLT-LT). EPIC-KITCHENS-100 has an unbalanced
test set, so overall accuracy, which favours over-prediction of head classes, is provided for reference. LMR obtains the highest average
class accuracy on all datasets, as well as the highest average class accuracy over few-shot classes.

Head Tail Few-shot

-0.2

0.4

0.0

0.2

0.6

0.8

1.0

Figure 6. Improvements of LMR over CE on EPIC-KITCHENS-100. Classes are ordered by size and marked as head/tail/few-shot.

classes. For example, on EPIC-KITCHENS-100, CE mis-
classifies the few-shot “carry” as the head class “put” due
to visual similarity of holding the cup. Consistently, LMR
predicts the few-shot class correctly. A failure case is shown
for SSv2-LT, where LMR predicts the head class “throwing
something” as the tail class “throwing something in the air
and letting it fall.”

7. Ablations
We perform all ablations on EPIC-KITCHENS-100 and

SSv2-LT using the Motionformer backbone.
LMR Ablation. Table 3 ablates the design choices of
LMR against the full version (first row). First, class con-
tributions are replaced by a constant (0.5 in A and 1 in B).
When reconstructions are used solely, without the residual
connection (B), performance decreases dramatically. Us-
ing label mixing without reconstructions is shown in (C) as
well as reconstructions without label mixing (D). Interest-
ingly, label mixing has a bigger impact on performance for
SSv2-LT than EPIC-KITCHENS-100.
Contribution parameters. Reconstructions are combined
with original representations according to the contribution
function c(Y) in Eq. 5, which maps class count to a con-
tribution between 0 and 1. It is parameterised by the decay
d and the contribution l for the lowest class count. First,
d is fixed at 0.25 and l is varied between 0.0 and 1.0. Re-
sults are shown in Tab. 4, where 0.6 performs best on the
few-shot classes and overall. Next, l is fixed at 0.6 and d is
varied, with results shown in Tab. 5. In both cases, results
have a region of stability, with the best combination being
l = 0.6 and d = 0.25.
Number of Samples Used for Reconstruction. We assess

Figure 7. Qualitative examples from all benchmarks comparing
CE, cRT and the proposed LMR. Blue, pink and green indicate
whether the prediction is from a head, tail or few-shot class.

the impact of the number of samples in the batch used in the
reconstruction process (B). Table 6 shows how varying the
number of samples affects overall performance on SSv2-LT.
Best performance is reported at our default of 56 samples.

Threshold for Masked Classes in Reconstruction. The
threshold ω, used for masking in Eq. 3, is by default set
to 20, which is the threshold for few-shot classes. The
masking is used to prevent few-shot samples contributing to
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EPIC-KITCHENS-100 SSv2-LT
Method Variant Few Tail Head Avg C/A Few Tail Head Avg C/A

LMR 35.7 36.8 51.1 39.7 17.9 46.5 61.0 38.3
(A) Constant contribution [replace Eq. 2 with c(y) = 0.5] 34.1 37.1 49.3 39.3 16.8 44.9 61.9 37.1
(B) No original representation in reconstruction [replace Eq. 2 with c(y) = 1] 4.5 2.5 5.0 3.4 4.8 7.4 18.1 6.0
(C) No reconstruction [replace Eq. 5 with R = Z] 20.2 36.7 52.0 38.1 16.7 46.4 59.4 37.6
(D) No pairwise label mixing [replace Eq. 7 with mr(Z, Y ) = (R, Y )] 24.6 33.9 53.2 37.1 18.0 45.9 59.0 37.9

Table 3. Ablating LMR on EPIC-KITCHENS-100 and SSv2-LT.
l Few Tail Head Acc

0.0 16.7 46.4 59.4 37.6
0.2 16.9 46.3 59.0 37.7
0.4 16.9 46.0 58.6 37.6
0.6 17.9 46.5 61.0 38.3
0.8 17.6 46.5 61.9 38.2
1.0 16.2 46.7 60.5 37.7

Table 4. Effect of changing
l, the contribution applied to
the lowest class count on SSv2-
LT. A higher l means recon-
structions contribute more to
the representations.

d Few Tail Head Acc

0.11 17.7 46.1 60.0 38.0
0.25 17.9 46.5 61.0 38.3
0.5 13.7 47.5 60.0 37.5
1.0 12.4 48.0 59.5 37.4

Table 5. Effect of changing d,
the decay of the class count con-
tribution, on SSv2-LT. A lower
d means the contributions of
reconstructions decay faster as
class counts increase.

B Few Tail Head Acc

14 17.1 46.7 60.0 38.0
56 17.9 46.5 61.0 38.3

224 17.6 46.2 60.0 38.0
896 17.6 46.0 59.0 37.9

Table 6. Effect of varying the
number of samples (B) used for
reconstruction on SSv2-LT.

ω Few Tail Head Acc

0 18.0 45.9 59.5 37.9
20 17.9 46.5 61.0 38.3
50 17.6 46.2 59.5 37.9

500 17.5 46.2 59.0 37.9

Table 7. Effect of changing ω
on SSv2-LT, which is the mini-
mum class size threshold for the
reconstruction mask.

the reconstruction of other samples. Table 7 shows the ef-
fect of varying ω. Best performance is obtained at ω = 20.
Visualising LMR . Fig. 8 shows t-SNE [60] projections
of representations without LMR (i.e. cRT) and with. cRT
pushes the few shot classes (green) to the periphery. LMR
results in larger, i.e. more diverse, few-shot clusters towards
the centre of the projection. This indicates a higher proxim-
ity to head and tail classes which creates robust class bound-
aries and better generality to unseen test samples.

8. Conclusion

In this paper, we defined a set of properties, enabling
quantitative comparison of long-tail distributions. We
showcased that curated long-tail image datasets are com-
parable to naturally-collected ones, while previously pro-
posed video datasets fall short. Based on these findings, we
proposed new benchmarks, SSv2-LT and VideoLT-LT, and
suggested their use, alongside EPIC-KITCHENS-100, for
evaluating long-tail video recognition.

We proposed LMR, a method for long-tail video recogni-
tion, which reconstructs few-shot samples as weighted com-
binations of other samples in the batch. A residual connec-
tion, weighted by the class size, combines instances with

Few-shotTailHead

(a) EPIC-KITCHENS-100 cRT. (b) EPIC-KITCHENS-100 LMR.

(c) SSv2-LT cRT. (d) SSv2-LT LMR.

Figure 8. Effect of LMR on EPIC-KITCHENS-100 (top) and
SSv2-LT (bottom) t-SNE projections. Without reconstruction
(left), samples from few-shot classes (green) are pushed to the
edge, and tightly clustered. With LMR (right), the few-shot clus-
ters are larger and closer to the centre, i.e. in closer proximity to
head (blue) and tail (pink) classes. This gives more robust bound-
aries as they are bordering more classes.

their reconstructions, followed by pairwise label mixing.
LMR reduces overfitting to instances from few-shot classes,
and outperforms prior methods on the three benchmarks.

We hope our proposed benchmarks and method will
provide a foundation for long-tail video recognition, and
encourage further contributions applicable to naturally-
collected data.
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