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Abstract

Neural scene representations have achieved great suc-
cess in parameterizing and reconstructing images, but cur-
rent state of the art models are not optimized with the
preservation of physical quantities in mind. While current
architectures can reconstruct color images correctly, they
create artifacts when trying to fit maps of polar quanti-
ties. We propose polarimetric coordinate networks (pCON),
a new model architecture for neural scene representations
aimed at preserving polarimetric information while accu-
rately parameterizing the scene. Our model removes arti-
facts created by current coordinate network architectures
when reconstructing three polarimetric quantities of inter-
est. All code and data can be found at this link: https:
//visual.ee.ucla.edu/pcon.htm.

1. Introduction

Neural scene representations are a popular and useful
tool in many computer vision tasks, but these models are
optimized to preserve visual content, not physical informa-
tion. Current state-of-the-art models create artifacts due to
the presence of a large range of spatial frequencies when re-
constructing polarimetric data. Many tasks in polarimetric
imaging rely on precise measurements, and thus even small
artifacts are a hindrance for downstream tasks that would
like to leverage neural reconstructions of polarization im-
ages. In this work we present pCON, a new architecture for
neural scene representations. pCON leverages images’ sin-
gular value decompositions to effectively allocate network
capacity to learning the more difficult spatial frequencies
at each pixel. Our model reconstructs polarimetric images
without the artifacts introduced by state-of-the-art models.

The polarization of light passing through a scene con-
tains a wealth of information, and while current neural rep-
resentations can represent single images accurately, but they
produce noticeable visual artifacts when trying to represent

*Equal contribution.

multiple polarimetric quantities concurrently.
We propose a new architecture for neural scene repre-

sentations that can effectively reconstruct polarimetric im-
ages without artifacts. Our model reconstructs color images
accurately while also ensuring the quality of three impor-
tant polarimetric quantities, the degree (ρ) and angle (ϕ) of
linear polarization (DoLP and AoLP), and the unpolarized
intensity Iun. This information is generally captured using
images of a scene taken through linear polarizing filters at
four different angles. Instead of learning a representation
of these images, our model operates directly on the DoLP,
AoLP and unpolarized intensity maps. When learning to
fit these images, current coordinate network architectures
produce artifacts in the predicted DoLP and unpolarized in-
tensity maps. To alleviate this issue, we take inspiration
from traditional image compression techniques and fit im-
ages using their singular value decompositions. Images can
be compressed by reconstructing them using only a subset
of their singular values [28]. By utilizing different, non-
overlapping sets of singular values to reconstruct an image,
the original image can be recovered by summing the indi-
vidual reconstructions together. Our model is supervised in
a coarse-to-fine manner, which helps the model to represent
both the low and and high frequency details present in maps
of polarimetric quantities without introducint noise or tiling
artifacts. A demonstration of the efficacy our model can be
seen in Fig. 1 and Table 1. Furthermore, our model is capa-
ble of representing images at varying levels of detail, creat-
ing a tradeoff between performance and model size without
retraining.

1.1. Contributions

To summarize, the contributions of our work include:

• a coordinate network architecture for neural scene rep-
resentations of polarimetric images;

• a training strategy for our network which learns a se-
ries of representations using different sets of singular
values, allowing for a trade-off between performance
and model size without retraining;
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Our model reconstructs the training scene more accurately than other architectures. Our model does not have the noise
pattern present in reconstructions from SIREN [52] or a ReLU MLP with positional encoding [38], nor does it show tiling artifacts as in
ACORN’s [34] prediction.

• results demonstrating that our model reconstructs
maps of polarimetric quantities without the artifacts
created by current state-of-the-art approaches.

2. Related work

2.1. Neural scene representations

The aim of neural scene representations is to param-
eterize a two or three dimensional scene in the weights
of a neural network in order to accomplish some other
task related to the scene. Most papers fall into one of
three categories. Explicit representations model the scene
directly, which allows them to quickly accomplish tasks
such as scene reconstruction [9, 31], novel view synthe-
sis [4, 17, 22, 36, 37, 41, 50, 53, 56] or relighting [60]. How-
ever, since the scene is modelled explicitly, these represen-
tations require more memory than the alternatives.

Implicit representations do not model the scene directly,
but instead use an MLP to map from a coordinate in ei-
ther 2D or 3D space to some desired output value. This
value could be the observed radiance or pixel intensity [11,
16, 38, 44, 46, 54], occupancy of a pixel or voxel [35, 45],
a quantity related to shape [5, 10, 13, 18, 19, 21, 23, 26, 30,
44, 47, 54, 58], or any other quantity of interest. The final
category of neural scene representations is a hybrid of the
first two. The only work that fits directly into this cate-
gory is ACORN [34], which accomplishes state-of-the-art
performance on image and volume fitting by combining a
coordinate network with an explicit grid or voxel represen-

Model Noise Pattern Tiling Artifacts Resizing Artifacts

ACORN [34] Medium High Not Supported

ReLU w/P.E. [38] Medium None Yes

SIREN [52] High None Yes

Proposed Minimal None Minimal

Table 1. Our model shows fewer artifacts than current state-
of-the-art architectures. Since ACORN divides an image into a
discrete grid, in order to query an image at a different resolution
it is necessary to also reform the grid. The grid is created online
during training, so it is not feasible to query a model at a different
resolution without retraining.

tation. Similar to ACORN, other works divide the scene
into local regions and learn each of these regions implic-
itly [10, 26, 49].

To our knowledge, this work is the first to highlight the
artifacts caused by existing neural scene representation ar-
chitectures when fitting polarimetric data. While we are one
of the first works to examine polarization and neural scene
representations in the same context, we would like to ac-
knolwedge that PANDORA [14], a concurrent work, also
utilizes polarization and neural scene representations. How-
ever, they focus on radiance decomposition rather than 2D
reconstruction.

2.2. Polarization vision

Polarization is useful in a variety of computer vision
tasks. It can be used to estimate surface normals [1, 2,
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7, 15, 24, 25, 33, 39, 43] or refine depth maps to represent
incredibly fine details [27]. It can be used in radiometric
calibration [55], dynamic interferometry [32], facial recon-
struction [6] and separation of diffuse and specular reflec-
tion [39, 42]. It also can be used to remove the effects of
scattering media like haze [51, 57, 61] and water [57], to
augment the performance of computer vision tasks in the
presence of transparent objects [12,29,40], or even to assist
in imaging objects in space [20]. Traditionally, polarimet-
ric data is captured by rotating a linear polarizing filter in
front of a camera [3,59], but recent advances in machine vi-
sion have produced cameras that can capture multiple polar
images in a single shot.

Our work uses a neural network to accurately parame-
terize polarimetric information captured from a scene. This
allows for easier storage and transport of polarimetric data
and facilitates its use in other deep learning based tasks.

3. Method

3.1. Polarization physics

Polarized light can be modelled as a sine wave, and can
thus be parameterized by three quantities. The degree of
linear polarization (DoLP) is a quantity between 0 and 1
that represents how much of the total intensity of the wave
is polarized and unpolarized. Completely polarized light
will have a DoLP of 1, and completely unpolarized light
will have a DoLP of 0. The angle of linear polarization
(AoLP) corresponds to the orientation of the plane in which
the wave is oscillating. The AoLP takes values from 0 to
π radians. The final quantity of interest is the unpolarized
intensity, Iun, of the wave, which corresponds to its ampli-
tude. With these three quantities, it is possible to render a
scene as viewed through a linear polarization filter at any
angle using the following equation:

I(ϕpol) = Iun(1 + ρcos(2(ϕ− ϕpol))), (1)

where Iun denotes unpolarized intensity, ρ denotes DoLP,
ϕ denotes AoLP and ϕpol denotes the desired filter angle at
each pixel. This equation allows us to render images under
any number of filter angles by saving only three quantities
per pixel. In this paper we leverage the above equation to
learn a representation for just these quantities, rather than
the four original images.

The DoLP (ρ) and AoLP (ϕ) have uses beyond just ren-
dering images. In the shape from polarization problem,
these quantities are used to calculate the zenith and azimuth
angles, respectively, of per-pixel surface normals. This re-
lationship has been studied in previous work [1, 7]. Specif-
ically, the azimuth angle, θa, of a surface normal can be

calculated from the following relationship:

ϕ =

{
θa,when diffuse reflection dominates
θa − π

2 ,when specular reflection dominates
.

(2)
DoLP, ρ, is related to the zenith angle, θz , in terms of the
refractive index, n, of a surface. When diffuse reflection is
dominant, the relationship can be written as:

ρ =
(n− 1

n )2 sin2(θz)

2+2n2−(n− 1
n )2 sin2(θz)+4 cos(θz)

√
n2−sin2(θz))

. (3)

When specular reflection dominates, the relationship is dif-
ferent:

ρ =
2 sin2(θz) cos(θz)

√
n2 − sin2(θz)

n2 − sin2(θz)− n2 sin2(θz) + 2 sin4(θz)
. (4)

ρ, ϕ and Iun can be calculated directly from a vector
known as the Stokes vector at each pixel. This vector has
four elements. The first three elements deal with the linear
polarization of light, and the final one represents the circu-
lar polarization of the wave. In this paper we will focus on
linear polarization. To measure the Stokes vector of a scene,
at least three images are needed, taken through linear polar-
izing filters at 0, 45 and 90 degrees. Since the camera used
in our setup also captures an image with a filter at 135 de-
grees, we use four images in our calculations of the Stokes
vectors for robustness to noise.

3.2. Learning from coarse to fine

Current coordinate network architectures produce arti-
facts when fitting polarimetric images. SIREN [52] and
similar architectures treat every coordinate equally when
training, and they produce noise patterns in the resulting
images when the spatial frequencies present in the training
data differ widely (eg. the maximum magnitude frequency
differs by an order of magnitude). In the polarimetric im-
ages we obtained, we found the maximum frequency mag-
nitude of some AoLP maps was around 107, while the max-
imum magnitude for the intensity image was only around
106. ACORN [34] does not treat each coordinate in the
same way, but its dynamic tiling strategy looks for regions
of low variance in order to create larger blocks. This is diffi-
cult to do when attempting to fit multiple images containing
varying frequencies. The resulting reconstructions end up
looking blocky, and fine detail is lost in the process. Our
method removes these artifacts by learning image represen-
tations using their singular value decompositions. One idea
to help in reconstructing high frequency details could be to
use an image’s Fourier decomposition. We found that in
practice the SVD works better for our use case. This is due
to the propagation of errors during the forward and inverse
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Figure 2. pCON learns to fit an image by learning a series of reconstructions with different singular values. The model is organized
into a series of nb parallel MLPs (denoted here as gi) with sine activations. A 2D coordinate vector representing a point on an image is
passed through all bands separately (g0 to gn). To supervise the training of each band, we reconstruct the full image maps of each quantity,
and then calculate the MSE between the model prediction, ŷi and their respective ground truth values, yi, at the input coordinate. The final
output is the sum of all the intermediate reconstructions, which yields a set of images similar to the training data.

Fourier transforms. The SVD does not require shifting be-
tween the spatial and frequency domains, which allows er-
rors to propagate less than if we were supervising on Fourier
frequencies. The singular value decomposition of an m×n
matrix A is a set of matrices U ∈ Rm×m, Σ ∈ Rm×n and
V⊤ ∈ Rn×n such that A = UΣV⊤. This matrix product
can be further decomposed:

UΣV⊤ =

r∑
i

σiuiv
⊤
i (5)

=

a1∑
i=0

σiuiv
⊤
i +

a2∑
i=a1

σiuiv
⊤
i + ...+

r∑
i=an

σiuiv
⊤
i

where r is the rank of A, ui is the i-th column of U, vi is
the i-th column of V, and σi is the i-th singular value. In
the case of an image, this means that it is possible to calcu-
late different pieces of the decomposition individually, and
then sum them to obtain the original image. We leverage
this property of the SVD in our model architecture. Us-
ing just the largest singular values to reconstruct an image
yields a result containing only the low frequency details of
the original [28]. As more singular values are used in the re-
construction, higher frequency details are captured. A sin-
gle coordinate may have features in many reconstructions,
and others may have features in only a few. Our network
learns a series of reconstructions in parallel, which effec-
tively allocates more model capacity to coordinates which
have details at numerous frequencies. Since we are not di-
viding the image into a grid like ACORN, our reconstruc-

tions do not suffer from tiling artifacts, and they also do not
exhibit the obvious noise pattern present in reconstructions
from SIREN or ReLU MLPs.

3.3. Network design

Our network design takes inspiration from SIREN [52].
The original SIREN architecture was similar to an ordinary
MLP, except that it used the sine activation function. Our
network is divided into a series of nb fully-connected blocks
which map from a 2D input image coordinate to the AoLP
(ϕ), DoLP (ρ) and unpolarized intensity Iun at that pixel.
We call each of these MLPs a band of the network, and
we will notate them as gi for i ∈ 0, 1, ..., nb − 1. To fit an
image, we first take the singular value decomposition of the
map of each polar quantity:

Φ = UϕΣϕV
⊤
ϕ ,

ρ = UρΣρV
⊤
ρ ,

Iun = UunΣunV
⊤
un.

(6)

Φ, ρ and Iun represent the full image maps of AoLP (ϕ),
DoLP (ρ) and Iun, respectively. The above equations are
obtained by interpreting these maps as matrices and then us-
ing Eq. (5). We now define a series of nb thresholds for Φ,
ρ and Iun as tϕ,i, tρ,i and tun,i, respectively. These thresh-
olds dictate which singular values will be used to supervise
each band of the network. We also define the ground truth
intermediate reconstructions of each quantity using a subset
of singular values as yϕ,i, yρ,i and yun,i. We denote their
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corresponding predictions as ŷϕ,i, ŷρ,i and ŷun,i. We can
use Eq. (5) to decompose each of the SVDs from Eq. (6)
into a set of sums. For example, we can write Φ as follows:

yϕ,i =

tϕ,i∑
j=tϕ,i−1

σϕ,juϕ,jv
⊤
ϕ,j . (7)

The reconstructions for the other quantities can be written
with their respective SVDs and thresholds similar to Eq. (7).

Each band learns a single reconstruction for these quan-
tities at each pixel.

gi(x, y) = ŷi = (ŷϕ,i, ŷρ,i, ŷun,i). (8)

Here, x and y constitute the 2D pixel coordinate vector that
serves as the input to the network. This coordinate is passed
through each band of the network to compute all ŷi, and
then the fully reconstructed image is calculated as

∑
i ŷi.

See Fig. 2 for a visualization of this entire process.

3.4. Loss functions

Our network outputs a set of nb images. For each band,
we compute the MSE between the cumulative sum of all
outputs up to, and including, the current band. We define
multiplicative factors for the three polar quantities as λϕ,
λρ and λun. We also define factors for each band as λb,i The
loss of the network can be calculated as follows, where L is
the loss function and x is the data point for which the loss
is being calculated:

L(x) =
∑
i

λb,i

i∑
j=0

λϕ(ŷϕ,j − yϕ,j)
2 (9)

+ λρ(ŷρ,j − yρ,j)
2 + λun(ŷun,j − yun,j)

2.

3.5. Implementation details

3.5.1 Data

We collected all of our own data using a Flir Blackfly S
RGB polarization camera. From this camera’s images, it
is possible to calculate the desired polarimetric quantites
using the physics discussed in Sec. 3.1. We release two
datasets with this paper. The first contains the six scenes
used to create figures in this paper. The second set con-
tains twenty four additional scenes for use in validating our
approach. The captured scenes represent a diverse set of
polarization effects. The DoLP and AoLP values span the
entire ranges (zero to one for DoLP and zero to pi for AoLP)
of possible values. We capture interesting polarization phe-
nomena such as transparent and reflective surfaces. All re-
leased images have a resolution of 1024× 1024.

3.5.2 Hyperparameters

We built all models in PyTorch [48]. We began all experi-
ments with a learning rate of 1× 10−5, and then multiplied

it by 0.1 at 5000 epochs. Models were trained for a total of
10000 epochs. We also set the unitless frequency parame-
ter ω0 of our sine activations to 90. For our best model, we
used a total of 10 bands, each with 2 hidden layers and a
hidden dimension of 256.

We chose the singular value thresholds of each band
based on the sum of the magnitudes of singular values.
Band one was given roughly 90% of the sum, then the oth-
ers 99%, 99.9%, and so on. Exact values for λbi used in all
presented experiments can be found in the supplement.

For our experiments, we set λϕ = 1.0, λρ = 5.0 and
λun = 5.0.

4. Experiments
In this section, we present comparisons between our

model, SIREN [52], ACORN [34] and an MLP using ReLU
activations and positional encoding, as used in NeRF [38].
We changed the number of parameters and output values
of the baseline architectures, since originally these models
were designed to fit only a single image at a time. We also
changed the frequency parameter ω0 of the SIREN sine acti-
vations to 90 to match the parameter used in our own model.
All our models were trained using the training strategy dis-
cussed in Sec. 3.5.

4.1. Validation of proposed failure case

We hypothesized the reason for the poor performance of
baseline models when fitting polarimetric images was due
to the presence of details at high spatial frequencies in the
captured AoLP maps. To validate this hypothesis, we per-
formed low-pass filtering on AoLP maps of a scene and then
fit a model on the resulting AoLP, DoLP and Iun maps. We
found a clear trend in the reconstruction quality as we fil-
tered out higher percentages of high spatial frequencies. All
models performed better when fewer high frequency details
were present in the target images. This aligns with our idea
that these details create difficult scenes for networks to re-
construct. For the scene in Fig. 3, the AoLP reconstruction
SSIMs with different amounts of frequencies removed from
the GT AoLP maps can be seen in Table 2.

% Highest Frequencies Removed SIREN [52] ACORN [34] ReLU P.E. [38]

0% 0.60 0.51 0.63
75% 0.54 0.80 0.93

80.5% 0.89 0.97 0.98
93.75% 0.95 0.99 0.99

Table 2. All baseline models reconstruct AoLP maps better
when details at higher spatial frequencies are filtered out. This
trend validates our hypothesis that images with high frequency de-
tails are more difficult for a network to reconstruct.

4.2. Comparison with others

We trained both our model and the baselines to pre-
dict AoLP (Φ), DoLP (ρ) and Iun maps directly. Quali-
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GT SIREN [52] ACORN [34] ReLU P.E. [38] Ours

AoLP SSIM/PSNR: 0.60/14.32 SSIM/PSNR: 0.51/15.99 SSIM/PSNR: 0.63/17.18 SSIM/PSNR: 0.77/16.57

DoLP SSIM/PSNR: 0.73/29.83 SSIM/PSNR: 0.80/31.78 SSIM/PSNR: 0.79/32.06 SSIM: 0.82/34.56

Iun SSIM/PSNR: 0.59/26.42 SSIM/PSNR: 0.77/28.43 SSIM/PSNR: 0.71/29.58 SSIM/PSNR: 0.89/34.82

Figure 3. Our model shows higher SSIM and fewer artifacts on predicted Φ, ρ and Iun maps. Baseline models cause noise or tiling
which is clearly visible on the checkerboard pattern on the floor, where all three quantities take large values. The artifacts are present on
objects exhibiting both specular reflections, like the floor, and diffuse reflections, like the wall and doors in the background.
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GT 0◦ SIREN [52] ACORN [34] ReLU P.E. [38] Ours

Figure 4. Our model can more accurately reconstruct RGB images taken through different polarizing filter angles when compared
to SIREN [52], ACORN [34] and a ReLU MLP [38] with positional encoding. The images reconstructed here are the scene as viewed
through a linear polarizer oriented at 0◦

GT 1 band 4 bands Full model

Figure 5. As the number of bands used in the reconstruction
increases, so does the quality of the image. Even with a single
band the reconstruction is visually close to the original.

tative and quantitative results can be found in Fig. 3. Our
model performs yeilds better PSNR and SSIM than all base-
lines and it also does not produce the tiling artifacts or
the noise patterns present in the reconstructions created by
other models.

4.3. Accuracy and model size trade-off

In order to fit an image with a smaller or larger model,
current architectures require a full retraining with a different
number of parameters. The structure of our model allows us
to provide a tradeoff between model size and reconstruction

Model Φ (↑) ρ (↑) Iun (↑) # Params. (↓)
Ours (1 band) 0.12/10.83 0.50/22.87 0.74/26.58 130K
Ours (2 bands) 0.32/14.66 0.64/28.40 0.91/34.74 270K
Ours (3 bands) 0.42/14.42 0.65/28.59 0.92/34.43 400K
Ours (4 bands) 0.51/16.32 0.65/28.71 0.92/34.62 530K
Ours (5 bands) 0.64/17.68 0.67/28.87 0.92/36.74 670K
Ours (Full model) 0.79/18.08 0.76/31.75 0.92/36.00 1.3M
SIREN [52] 0.59/15.96 0.67/28.20 0.70/28.23 660K
ACORN [34] 0.48/17.01 0.73/29.96 0.82/29.85 530K
ReLU [38] w/P.E. 0.64/18.30 0.76/30.99 0.81/32.13 660K

Table 3. As more bands are used, the number of parameters
grows along with the resulting performance (SSIM/PSNR).
The metrics shown here are averages across our whole dataset.

accuracy without retraining. Each band of the model learns
a representation of the image when reconstructed with a dif-
ferent set of singular values. If the downstream task doesn’t
require incredibly high accuracy, and the user would rather
save and transport a smaller set of model weights, they can
just save the weights from the first band of the network and
reconstruct the image with only the singular values from
that band, or vice versa if more accuracy is required. A visu-
alization of reconstruction quality using different numbers
of bands can be seen in Fig. 5. See Table 3 for quantitative
results using different bands of our network. With a simi-
lar number of parameters to the baseline models, it achieves
comparable performance to all baseline architectures. Our
full model outperforms all baselines on predicting AoLP
(Φ) and Iun maps. It is also worth noting that our full model
achieves significant compression over storing raw data. The
combined memory size of the AoLP, DoLP and Iun maps
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GT SIREN [52] ReLU P.E. [38] Ours

Figure 6. Both SIREN [52] and the ReLU MLP [38] with positional encoding show artifacts when queried at a different resolution
than they were trained on. Our model does not. We trained models at a resolution of 1024× 1024 and queried them at a resolution of
512× 512

is 36 megabytes (MB), while the size of our full model is
only 5 MB. Representing images with our model allows
us to scale image size without scaling memory footprint as
quickly. In this work we use small images, but the memory
saved when reconstructing images at the mega or gigapixel
scale would be significant.
4.4. RGB reconstruction

In addition to reconstructing the DoLP (ρ), AoLP (Φ)
and Iun maps with our model, we also present results for re-
constructing the original RGB images captured by the cam-
era. For a specific polarizing filter angle, we can reconstruct
the value of a pixel captured by the camera through that fil-
ter using Eq. (1). Our model removes the artifacts present
in the reconstructions from all baseline comparisons and re-
tains more detail comparatively. See Fig. 4 for a visual-
ization of reconstructions of images taken through a linear
polarizer oriented at 0◦.
4.5. Multiple resolution interpolation

We present results for fitting an image at one resolution
and querying it at a second resolution. In this section we
only compare to SIREN [52] and a ReLU MLP [38], as
the dynamic tiling strategy of ACORN [34] does not allow
us to simply query the representation at a different resolu-
tion. We train both models on the original scene at a reso-
lution of 1024 × 1024 and then query them at a resolution
of 512 × 512. Both baselines show artifacts when queried
at this new resolution, while our model does not have this
issue. In Fig. 6 we visualize these results on Iun maps.

5. Conclusion
In summary, we have presented an attempt at creating

neural representations of polarimetric information without

the artifacts introduced by current models. Compared to
existing methods, our model shows an increase in image re-
construction quality on AoLP, DoLP and Iun maps, in ad-
dition to effectively removing the artifacts we were target-
ing. Having a compact representation of polarimetric im-
ages will facilitate future research in areas where this data
is required.

While our work provides noticeable improvement over
current methods, it is not perfect. To achieve state of
the art performance on reconstructing AoLP maps, we
need quite a few bands in our network, which makes
the number of parameters quite large compared to other
architectures. A valuable next step could be creating a
model that could achieve the same performance as ours
while cutting down on the memory footprint. Furthermore,
we only demonstrated the effectiveness of this approach
on 2D data, since polarization is not well studied in three
dimensions. Validating our approach on 3D data would be
a useful next step, once the field has developed a greater
understanding of the underlying physics. We motivated our
method using polarimetric data, but there are many types
of data in computational imaging [8]. Our method will be
valuable in representing multiple physical quantities of a
scene at once whenever at least one measurement contains
high frequency details or noise, and future research could
extending this work by demonstrating its effectiveness on
other types of data encountered in computational imaging.
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