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Abstract

We consider the challenging task of training models for
image-to-video deblurring, which aims to recover a se-
quence of sharp images corresponding to a given blurry
image input. A critical issue disturbing the training of
an image-to-video model is the ambiguity of the frame or-
dering since both the forward and backward sequences
are plausible solutions. This paper proposes an effective
self-supervised ordering scheme that allows training high-
quality image-to-video deblurring models. Unlike previous
methods that rely on order-invariant losses, we assign an
explicit order for each video sequence, thus avoiding the
order-ambiguity issue. Specifically, we map each video se-
quence to a vector in a latent high-dimensional space so
that there exists a hyperplane such that for every video se-
quence, the vectors extracted from it and its reversed se-
quence are on different sides of the hyperplane. The side
of the vectors will be used to define the order of the corre-
sponding sequence. Last but not least, we propose a real-
image dataset for the image-to-video deblurring problem
that covers a variety of popular domains, including face,
hand, and street. Extensive experimental results confirm
the effectiveness of our method. Code and data are avail-
able at https://github.com/VinAIResearch/
HyperCUT.git

1. Introduction

Motion blur artifacts occur when the camera’s shutter
speed is slower than the object’s motion. This can be stud-
ied by considering the image capturing process, in which
the camera shutter is opened to allow light to pass to the
camera sensor. This process can be formulated as:
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Figure 1. We tackle the order ambiguity issue by forcing the frame
sequence to follow a pre-defined order. To find such an order, we
map the frame sequences into a high dimensional space so that
they are separable. The side (left or right of the hyperplane) is
used to define the order of the frame sequence.

where y is the resulting image, x(t) is the signal captured by
the sensor at time t, g is the camera response function, and
τ is the camera exposure time. For simplicity, we omit the
camera response function in the notation. The image y can
also be approximated by averaging N+1 uniform samples
of the signal x, denoted as xk with k = 0, N . For long
exposure duration or rapid movement, these samples can be
notably different, causing motion blur artifacts.

Image deblurring seeks to remove the blur artifacts to im-
prove the quality of the captured image. This task has many
practical applications, and it has been extensively studied in
the computer vision literature. However, existing methods
often formulate the deblurring task as an image-to-image
mapping problem, where only one sharp image is sought
for a given blurry input image, even though a blurry image
corresponds to a sequence of sharp images. The image-to-
image approach can improve the aesthetic look of a blurry
image, but it is insufficient for many applications, espe-
cially the applications that require recovering the motion of
objects, e.g., for iris or finger tracking. In this paper, we
tackle the another important task of image-to-video deblur-
ring, which we will refer to as blur2vid.
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Image-to-video deblurring, however, is a non trivial task
that requires learning a set of deblurring mapping functions
{fk} so that fk(y) ≈ xk. A naive approach is to minimize
the squared difference between the predicted sharp image
and the ground truth target, i.e.,

fk = argmin
f

Ex,y||f(y)− xk||22. (2)

However, this approach suffers from the order-ambiguity is-
sue [5]. Considering Eq. (1), the same blurry image y is
formed regardless of the order of the corresponding sam-
pled sharp frames. For example, both {x0, ..., xN} and the
reversed sequence are valid solutions. Thus, xk, xN−k, and
possibly other xh’s are valid ‘ground truth’ target for fk(y).
Thus, optimizing Eq. (2) will lead to a solution where fk is
mapped to the average of xk and xN−k. This issue has also
been observed in the work of [13] for future video frame
prediction. This also explains why most existing deblurring
methods cannot be directly used to recover any frame other
than the middle one. To tackle this issue, Jin et al. [5] intro-
duced the order-invariant loss, Eq. (3), which computed the
total loss on frames at symmetric indexes (i.e., k and N−k).
However, this loss does not fully resolve the issue of having
multiple solutions, as will be demonstrated in Sec. 2.2.

This paper proposes a new scheme to solve the order am-
biguity issue. Unlike the order-invariant loss [5] or motion
guidance [30], we solve this problem directly by explicitly
assigning which frame sequence is backward or forward.
In other words, each sequence is assigned an order label
0 or 1 so that its label is opposite to the label of its re-
verse. Then the ambiguity issue can be tackled by forcing
the model to learn to generate videos with the order label
“0”. We introduce HyperCUT as illustrated in Fig. 1 to
find such an order. Specifically, we find a mapping H that
maps all frame sequences into a high-dimensional space so
that all pairs of vectors representing two temporal symmet-
ric sequences are separable by a hyperplane. We dub this
hyperplane HyperCUT. Each frame sequence’s order label
is defined as the side of its corresponding vector w.r.t. the
hyperplane. We find the mapping H by representing it as
a neural network and training it in an unsupervised manner
using a contrastive loss.

Previously, there existed no real blur2vid dataset, so an-
other contribution of this paper is the introduction of a new
dataset called Real blur2vid (RB2V). RB2V was captured
by a beam splitter system, similar to [18, 29, 31]. It con-
sists of three subsets for three categories: street, face, and
hand. We will use the last two to demonstrate the potential
applications of the blur2vid task in motion tracking.

In short, our contributions are summarized as follow:

• We introduce HyperCUT which is used to solve the
order ambiguity issue for the task of extracting a sharp
video sequence from a blurry image.

• We build a new dataset for the task, covering three cat-
egories: street, face, and hand. This is the first real and
large-scale dataset for image-to-video deblurring.

• We demonstrate two potential real-world applications
of image-to-video deblurring.

2. Related Work
2.1. Image deblurring

Image deblurring is a classical task in low-level com-
puter vision. In the past, the blur kernel was assumed to be
linear and uniform, and the blur model can be formulated
as: y = x ∗ k + η, where k is the blur kernel, x is the
sharp image, ∗ denotes convolution operator, η is the white
noise, and y is the corresponding blurry one. The main ap-
proach was to find a good prior for either the sharp images
[1, 7, 8, 15, 24] or the blur kernel [12] space. However, the
complexity of the optimization involved in these methods,
along with their reliance on linear and uniform assumptions,
renders them unsuitable for generalizing to real-world blur
scenarios.

Thanks to the advance of deep neural networks in the
past few years, the community has witnessed a significant
leap in the deblurring field. Deep learning-based models do
not make any explicit assumption on the blur operator nor
on the sharp image space. Instead, they can learn to de-
blur using large-scale datasets. Zamir et al. [26] proposed a
multi-stage architecture, where contextual information was
learned in the earlier stages. In contrast, the whole input
image was processed without any downsample operator to
extract fine spatial details in the last stage. Tao et al. [20]
employed a multi-scale recurrent network that deblurred the
input image in a multi-scale and recurrent manner. Kupyn
et al. [9, 10] introduced generative adversarial networks [3]
for the deblurring task to make the deblurred image more re-
alistic. However, the performance of deep deblurring mod-
els degrades significantly when the blur operator does not
appear in the training set [22].

2.2. Recovery of multiple sharp frames

Jin et al. [5] were the first to introduce a model that
took a blurry input y and produced multiple sharp frames
x0, . . . , x6. They trained seven networks f0, . . . , f6, each
corresponded to a sharp frame output. Their method was
also the first to point out the order-ambiguity issue: finding
a set of sharp frames given a single blurry input is an ill-
posed problem since the generation of y is independent of
the order of the sharp frames. [5] addressed this by intro-
ducing the order-invariant loss:

LOI =

2∑
k=0

(|∥fk(y)− f6−k(y)∥ − ∥xk − x6−k∥|

+ |∥fk(y) + f6−k(y)∥ − ∥xk + x6−k∥|) . (3)
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Figure 2. Toy example. Row (a) depicts the formation of a blurry
image y from a sharp sequence. We consider the task of recovering
border frames (x0, xN ) from y. The ground-truth label is provided
in the first column of Row (b). Due to the order-ambiguity issue,
normal regression networks often return the blurry result as in the
second column of Row (b). Order-invariant loss [5] accepts both
the correct solution and three other ones in Row (c). Our proposed
method only returns the correct solution (red-box).

However, this loss does not fully address the issue as
illustrated in Fig. 2. Row (a) shows the formation of the
blurry image y from a sequence of sharp images. Consider
the sub-task of recovering the end frames (x0, xN ) from the
blurry one. The ground truth solution for this task is shown
in the first column of Row (b). Due to the order-ambiguity
issue, normal regression networks often return the blurry
solution as in the second column of Row (b), in which each
predicted frame is an average of the ground-truth pair. By
applying the order-invariant loss [5], one can get sharp pre-
diction outcomes. However, besides the correct frame pair,
it also accepts three other solutions in Row (c). The first
solution is just different from the ground truth by the frame
order, while the other two are obviously wrong.

Purohit et al. [17] proposed a recurrent architecture that
could be extended to generate any number of sharp frames
without increasing the number of parameters. They trained
a pair of recurrent video encoder and decoder to reconstruct
a set of N continuous sharp frames. The encoder was then
replaced by a blurred image encoder to form a network that
could generate N sharp frames from a single blurry im-
age. All these methods rely on the order-invariant loss [5]
to avoid the order-ambiguity issue. However, this loss does
not fully address the issue. The models proposed by [16, 23]
do not suffer from order ambiguity, but they need additional
data from an event camera.

Recently, Zhong et al. [30] proposed a different approach
to solving the order ambiguity issue. Instead of focusing on
the training loss, they converted the ill-posed blur2vid task
into a nearly deterministic one-to-one mapping problem by
using motion guidance as an additional input. This motion
guidance input was generated from the blurry image by a
conditional Variation Autoencoder such that it was unique

for each solution. However, the model largely depended on
the quality of the motion guidance and consequently failed
when the human-annotated data was not available or the es-
timated optical flow was inaccurate. In addition, the motion
guidance was built upon handcrafted heuristics and might
not hold for every case, especially for complicated motion.

2.3. Real blur datasets

To train deep deblurring models, many large-scale sharp-
blur pair datasets have been proposed. Tao et al. [20] in-
troduced the GOPRO dataset, which consists of more than
1000 pairs of sharp images captured by a high-speed GO-
PRO 4 Hero Black and their corresponding synthetic blurry
images. They generated blurry images by mimicking the
blur generation process as described in Eq. (1). Nah et
al. [14] proposed the REDS dataset with a similar syn-
thesis method, but with more pairs, higher quality, and a
different camera response function choice. [19] proposed
a human-aware deblurring dataset that focused on human
movements. Tran et al. [22] used a blur encoder to transfer
blur operator from existing datasets to another sharp frame
set. Zhong et al. [30] proposed B-Aist++ dataset, which
was synthesized from dancing videos [11] to simulate com-
plex human body movements.

Since deep deblurring models are highly overfitted to the
blur operator used in the training dataset [22], real-image
deblurring datasets are critical. Therefore, many have been
introduced over the past few years [18, 29, 31]. These
datasets were captured by a system that consists of high and
low shutter speed cameras. Two cameras were placed on
two sides of a beam splitter to capture the same scene. Ex-
isting datasets used for image/video deblurring are not suffi-
cient to train blur2vid models. Jin et al. [5] built a synthetic
dataset by using seven consecutive frames and their average
as ground-truth and input, respectively. To the best of our
knowledge, there was no real-image deblurring dataset for
the blur2vid task.

3. Methodology
This section describes the proposed method. We assume

there is training data of the form {(yi, xi
0, . . . , x

i
N )}Mi=1,

where M is the number of training samples, and each train-
ing sample consists of a blurry image yi and N + 1 sharp
images. Our goal is to train neural networks that can recover
all the sharp images from the blurry one.

3.1. HyperCUT order
One approach for the blur2vid task is to pose it as mul-

tiple image-to-image deblurring tasks and train a separate
network for each task. It means that for each target frame
index k ∈ [0..N ], we train a network fk to predict xi

k from
yi by optimizing:
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Figure 3. The overall architecture of our framework. (a) Given a frame sequence, we optimize the function H by forcing the sides of the
vectors representing it and its reverse to be different, according to a fixed hyperplane h. (b) Having H, we can use it as a regularization to
make the deblurring network only predict frame sequences of the same side of h, thus solving the order-ambiguity issue.

Lrec =
1

M

M∑
i=1

∥fk(yi)− xi
k∥. (4)

Unfortunately, this naive approach fails to produce a
sharp output. Empirically, we observe that this approach
tends to output an image that is close to (xk+xN−k)

2 . Con-
ceptually, it is known that the output of fk will converge to
the average of all sampled targets used for training, which
include both xk and xN−k due to the order-ambiguity issue.

Let h be a fixed hyperplane in a high-dimensional space.
We want to find a mapping H : R2×H×W×C → Rd such
that H

(
[xi

k, x
i
N−k]

)
and H

(
[xi

N−k, x
i
k]
)

are on different
sides of h. In other words:〈

H
(
[xi

k, x
i
N−k]

)
, h
〉 〈

H
(
[xi

N−k, x
i
k]
)
, h
〉
< 0, (5)

To find the mapping H, we represent it by a neural network
as shown in Fig. 3. The objective function is to minimize
the left hand side of Eq. (5):

Lh =
1

M

M∑
i=1

softplus(
〈
H
(
[xi

k, x
i
N−k]

)
, h
〉

×
〈
H
(
[xi

N−k, x
i
k]
)
, h
〉
), (6)

where softplus(t) = log(1 + ex) is used to give less
penalty for correct prediction (when the forward and back-
ward sequences are on different sides of h).

In this work, we use a standard residual network [4] with
a fully connected layer so that the output is a vector of
length n, where n is a hyperparameter of the network. We
sample a random hyperplane h in this n-dimensional space
and fix it during training.

3.2. Addressing order-ambiguity with HyperCUT

The function H can be combined with other losses and
used as a regularization to solve the order ambiguity issue

Beam 
splitter

low-speed 
camera

high-speed 
camera

Figure 4. Beam splitter camera system: interior (top-view) and
exterior (side-view).

as shown in Fig. 3b. Specifically, we force the vector cor-
responding to the output of the deblurring network to lie on
only one side of the hyperplane. This can be done by adding
to the training loss the following HyperCUT regularization:

Rhyp(f) =
1

M

M∑
i=1

⌊N/2⌋∑
k=0

〈
H
(
fk(y

i), fN−k(y
i)
)
, h
〉

(7)

where H is the pretrained network described in Sec. 3.1 and
it is frozen during the training of deblurring networks. This
regularization enforces all synthesized pairs to stay on the
“negative side” of the hyper-plane h. It can be combined
with other losses. The final loss for model training will be:

L(f) = 1

M

M∑
i=1

LD(f(yi)) + αRhyp(f), (8)

where LD can be any blur2vid loss, such as regular L2 loss
[30] or order-invariant loss [5], and α is the weight of the
HyperCUT regularization. This loss is differential w.r.t. f
and can be optimized using any gradient-based optimizer.

4. Real blur2vid (RB2V) Dataset
Due to the difficulty of collecting paired blurry and sharp

video sequences, previous deblurring works utilized syn-
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Figure 5. Comparing blur2vid datasets. Sample images from the
proposed RB2V dataset are on the right, which are real images as
opposed to synthetic ones of existing datasets on the left.

Data subset #data samples

Train Test

RB2V-Street 9000 2053
RB2V-Face 8000 2157
RB2V-Hand 12000 4722

Table 1. Statistics of our in-the-wild blur2vid dataset.

thetic datasets [14, 20]. Although these datasets are formed
by mimicking the camera process (Eq. (1)), there is a sig-
nificant gap between synthetic and real blur [22]. Recently,
beam splitter deblurring datasets [18, 29] have been pro-
posed and brought remarkable advances in image deblur-
ring. However, such kinds of datasets are not available for
the blur2vid task. This poses the need for the collection of
a new dataset for this task. This section describes our data
collection procedure.

4.1. Data collection

Following recent works [18, 29, 31], we built a beam-
splitter camera system for collecting real data. This sys-
tem had two GoPro Hero-8 cameras and a beam splitter as
shown in Fig. 4. One camera captured videos at 25fps, and
the second camera captured at 100fps.

We used this beam splitter system to collect three cat-
egories of data: street, hand, and face, which will be re-
ferred to as RB2V-Street, RB2V-Hand and RB2V-Face re-
spectively. For the RB2V-Street dataset, we captured vari-
ous scenes with different and non-uniform moving objects,
creating a diverse dataset with many blur types and intensi-
ties. As for RB2V-Face and RB2V-Hand, we captured data
for 25 objects in an laboratory environment with a green
screen, which was then be replaced with a random static
background. For each face or hand object, we captured it
with different distances and movements. We divided the
datasets into disjoint training and testing sets. Tab. 1 re-
ports the statistics of this dataset, and Fig. 5 provides some
data samples in the last three columns.

4.2. Data processing

Spatial alignment. Although we tried our best to position
the cameras to capture exactly the same scene, there might
still be some misalignment between the captured images.
To correct for the misalignment, we calibrated the cameras
and performed homography mapping.

Temporal upsampling. The low-speed camera was four
times slower than the high-speed one, so each blurry frame
corresponded to four sharp ones. Since the previous works
typically used seven, we temporally upsampled the frame
sequence captured by the 100fps camera by a factor of
two. After this interpolation step, each blurry frame cor-
responded to seven sharp frames, including four original
frames and three interpolated ones. We used [2] as the in-
terpolation module.

Color correction and temporal alignment. Let Cx,y(z)
denote the color correction algorithm that applies the cor-
rection matrix calculated from a reference pair {x, y} to an
image z. Details of this algorithm are given in the sup-
plementary materials. Also denote yfakei as the synthetic
blurry frame generated from the consecutive sharp frames
{x[i], x[i + 1], ..., x[i + 6]} by temporally upsampling this
set to a higher frame rate as in [14] and average all of them.
We interpolated two extra frames in between for each con-
secutive frames, so the number of frames in the upsampled
sequence was 19; this helped the synthetic blurry image be
more realistic. To find the sharp sequence that corresponded
to y, denoted as X = x0, x1, ..., x6, we needed to find a
color correction map C∗ and a position p so that

X = {C∗(x[p]), C∗(x[p+ 1]), ..., C∗(x[p+ 6])} (9)

To find C∗ and p, we found the seven consecutive sharp
frames such that the “fake” blurry image generated by them
after color correction was the closest to the real blurry one.
If the camera response function g was linear, we have:

y ≈
∑N

i=0 C
∗(x[i])

N + 1
= C∗

(∑N
i=0(x[i])

N + 1

)
= C∗

(
yfakei

)
.

From the above equation, if we apply C∗ to yfakei , yfakei

will become y. This observation suggests that C∗ can be
approximated by Cyfake

i ,y .
In summary, the position p was found by optimizing:

p = argmin
i

PSNR
(
Cyfake

i ,y

(
yfakei

)
, y
)
. (10)

The sharp-image sequence X was taken as the set
{Cyfake

p ,y({x[p]), Cyfake
p ,y({x[p+ 1]), ..., Cyfake

p ,y({x[p+
6])}. More details are given in the supplementary materials.
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Model 1st 2nd 3rd 4th 5th 6th 7th

[5]

R
E

D
S

20.65 22.63 24.20 23.50 24.20 22.63 20.65
[5] + HyperCUT 22.87 24.88 26.29 25.10 26.29 24.88 22.86

[17] 22.78 24.47 26.14 31.50 26.12 24.49 22.83
[17] + HyperCUT 26.75 28.30 29.42 29.97 29.41 28.30 26.76

[17]

R
B

2V 26.99 27.99 29.45 32.08 29.55 28.06 27.04
[17] + HyperCUT 28.29 29.20 30.43 32.08 30.53 29.22 28.25

Table 2. pPSNR scores (dB) between predicted frames and the ground-truth ones on the synthetic blur2vid REDS dataset and our proposed
real blur2vid dataset (we get the average result in all categories including hand, face and street).

R
E

D
S

 (S
yn

.)
R

B
2V

-S
tre

et
 (R

ea
l) 

 

R
B

2V
-F

ac
e 

(R
ea

l)
R

B
2V

-H
an

d 
(R

ea
l)

Purohit et al.
Purohit et al. 
+ HyperCUT GT GTPurohit et al.Blur

Purohit et al. 
+ HyperCUTBlur

Figure 6. Qualitative results for the first frame prediction on different blur2vid datasets: REDS, RB2V-Street, RB2V-Face, and RB2V-
Hand. From left to right on each dataset: blurry input, the result of [17], our prediction result applying HyperCUT, and the ground truth.
Each result includes a color image and an error heatmap.

5. Experiments

We compare the proposed ordering scheme applying to
the publicly available blur2vid model proposed by [5, 17]
on both the existing and the proposed RB2V datasets. In
addition, to study the contribution of our proposed mapping,
we examine HyperCUT on [30] with the same settings on
the B-Aist++ dataset [11, 27].

5.1. Dataset preparation

Synthetic datasets. We used the 120fps set of the REDS
dataset [14] to synthesize the training and the testing set
(the first row of Fig. 5). Specifically, for every four con-
secutive frames in the set, we interpolated one intermedi-
ate frame between each consecutive pair using CDFI model
[21], form a sequence of seven frames, and generated the
corresponding blurry image. This allowed us to compare
our method with the model proposed by [5], which fixed
the number of frames per sequence to seven. In addition,

we synthesized another testing set using Vimeo90K [25].
Compared to REDS, this dataset had many more scenes but
provided only three frames per data point. Hence, it was
suitable for the ablation studies, which required only ground
truth on two border frames, but unsuitable for other eval-
uations. From the three original frames, we interpolated
two frames in the middle of each consecutive pair, form-
ing a 7-frame sequence and generating the corresponding
blurry image by the same procedure. As for the B-Aist++
dataset, we used the augmentation and setting proposed in
the original paper that croped the main character using a
given bounding box to compare the results from our method
and their model.

RB2V dataset. We also evaluated the models on our pro-
posed real blur2vid dataset RB2V on all the three cate-
gories. For each category, we re-trained our model and the
baselines and tested on the testing set of the same category.
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5.2. Implementation details

All the models used in the experiments were trained
using the Adam optimizer [6]. Training our model took
roughly one day for 100 epochs on a single Nvidia A100
GPU. For fair comparison, we re-trained the baseline model
on both synthetic and our real datasets.

5.3. Order Accuracy of HyperCUT

We trained our HyperCUT model in both synthetic and
real datasets to regularize the corresponding blur2video
task. In all experiments, we used output vectors of length
n = 128. For evaluation, we proposed new metrics that
overcame the limitations of existing ones in analyzing the
effectiveness of our scheme:

• hit: is the ratio of frame pairs (xk, xN−k) that satisfy:

⟨H ([xk, xN−k]) , h⟩ ⟨H ([xN−k, xk]) , h⟩ < 0

• con: measures the consistency of frame pairs in each
sequence in the HyperCUT space. It computes the ratio that
the pairs (x1, x7), (x2, x6), and (x3, x5) are in the same side
of the hyperplane h.

As can be seen in Tab. 3, our proposed self-supervised
model can extract the ordering information effectively in
all mentioned datasets. The trained models achieve almost
perfect scores in all metrics. We use t-SNE to visualize rep-
resentation vectors in Fig. 7. It can be observed that the
mapped vectors are perfectly split into two clusters in both
REDS and RV2B-Street datasets.
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Figure 7. The t-SNE visualization of HyperCUT ordering map-
ping on (a) RV2B-Street (Real) and (b) REDS (Synthetic) datasets.
We use −1 and 1 to represent each side of hyperplane.

Dataset hit con@2 con@3
REDS 95.7 96.5 94.4
B-Aist++ 97.5 95.6 91.2
RB2V-Face 94.4 96.7 92.1
RB2V-Hand 98.6 97.0 96.7
RB2V-Street 98.7 98.3 96.8

Table 3. The experiments of HyperCUT on five datasets
with hit (%) and con (%) rates. We denote con@X as the
consistency rate of HyperCUT ordering for two frame pairs
(xi, xN−i), (xj , xN−j) (when X = 2) and for 3 frame pairs
(xi, xN−i), (xj , xN−j), (xk, xN−k) (when X = 3) in the same
side of the hyperplane.

5.4. HyperCUT Regularization

Synthetic datasets. We studied the HyperCUT regular-
ization with the methods proposed by [5, 17] and [30] on
the REDS and B-Aist++ datasets, using a default weight
α = 0.2.

With the REDS dataset, we re-trained the models pro-
posed in [5] and [17] with their original loss functions and
with our proposed HyperCUT add-on. For evaluation, since
LOI accepts any frame ordering, we define a paired-based
PSNR, denoted as pPSNR, that computes the maximum av-
erage of PSNR scores between the regressed and ground-
truth symmetric frame pair in forward and backward or-
der. Specifically, given the output (x′

0, x
′
1, ..., x

′
N ) and the

ground-truth (x0, x1, ..., xN ), pPSNR can be computed as:

pPSNRk(x, x
′) = max(PSNR(x′

k, xk),

PSNR(x′
k, xN−k)) (11)

Quantitative results are given in Tab. 2, where we use pP-
SNR scores to measure the performance of the models. Our
HyperCUT-based models provide stable performance on all
frames and consistently outperform the compared models
on all six border frames with 1-4 point gaps in pPSNR
scores. Since the backbone used in [5] is weak and out-
dated, from now on, we will focus on the models with the
more recent and stronger backbone of [17]. We notice that
the performance gap caused by HyperCUT regularization
increases when moving to the boundary frames x0 and x7.
The compared model, however, performs better at the cen-
ter frame with an exceptionally high pPSNR. This model
performs poorly on border frames, meaning that its loss
concentrates on improving the quality of the middle frame.
Our model, on the other hand, has a balance in improving
all frames together. While our pPSNR score on the middle
frame is not as high, we can easily improve it by deploy-
ing an extra, normal image deblurring network. The border
frames, on the other hand, can only be learned effectively
with our proposed HyperCUT regularization. An example
is shown in the top left of Fig. 6. The result produced by
our model is sharper and closer to the ground truth.

In addition, with the benchmark proposed by Zhong et
al. [30] on the B-Aist++ dataset, we re-train the model with
the same setting as the original model for a fair comparison,
evaluating by average pPSNR, pSSIM, and pLPIPS[28]
metrics, in which pSSIM and pLPIPS are defined similar
to pPSNR. We denote these metrics as pPSNR, pSSIM, and
pLPIPS, respectively. As can be seen in Tab. 4, the result
with HyperCUT regularization dominates the one reported
from the paper as well as the reproduced version. The score
difference between the two versions of the original method
also reveals the instability of the motion guidance module.

RB2V dataset. We also ran evaluation on our proposed
RB2V dataset. We trained the models using the training set
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Method [30] (from paper) [30] (reproduced) [30] + HyperCUT

P1 19.97 / 0.860 / 0.089 20.58 / 0.890 / 0.068 22.16 / 0.901 / 0.102
P3 22.44 / 0.890 / 0.068 21.21 / 0.899 / 0.063 23.31 / 0.915 / 0.062
P5 23.49 / 0.911 / 0.060 22.48 / 0.903 / 0.061 23.81 / 0.920 / 0.060

Table 4. Quantitative evaluation of the blurry image decomposition. pPSNR ↑ , pSSIM ↑, and pLPIPS ↓ are used as evaluation metrics.
For Zhihang et al. [30], we predict multiple motion guidance from the guidance predictor network. P# denotes we evaluate # number of
plausible decomposition results for each input, and choose the best. The results of Zhihang et al. [30] with the HyperCUT regularization
represent the best performance calculated using either the forward or reverse outputs, following the original paper.

Deblur method Face Hand

Purohit et al. [17] 5.75 11.67
Purohit et al. [17] + HyperCUT 4.87 9.2

Table 5. Quantitative results for face and hand trajectory recovery
from a single blurry image.

of each category and then test on the corresponding test set.
The quantitative and qualitative results are given in Tab. 2
and the bottom left of Fig. 6, respectively. Again, our model
shows better accuracy and reconstruction quality than [17].

Applications of blur2vid for faces and hands. We tested
the models on domain-specific datasets and measured the
ability of recovering face and hand trajectories from a sin-
gle blurry image. Given a blurry face image, we first run a
blur2vid model to obtain a sequence of sharp images, each
of which would subsequently be fed into a facial landmark
detection algorithm to detect 68 facial landmarks. To mea-
sure the quality of a recovered face trajectory, we calcu-
lated the Mean Squared Error (MSE) between the 68 facial
landmarks detected on the recovered sharp image and the
68 facial landmarks detected on the ground truth sharp im-
age. Similarly for hands, we detected the tip of the index
finger in each recovered sharp image using the hand detec-
tion algorithm [27], and calculated its distance to the index
finger detected on the ground truth sharp image. Quantita-
tive results of face and hand trajectory recovery are given in
Tab. 5. Compared to the baseline, the proposed model with
HyperCUT regularization was more accurate, with reason-
ably small error for practical applications.

5.5. Ablation Studies

Regularization weight for HyperCUT. We ablated the
weight parameter α to have a deeper understanding of its
effect on the final performance. We experimented with dif-
ferent values for α from 0 to 0.3 with Purohit et al. [17]
backbone on the RB2V-Street dataset, and computed the
mean pPSNR score, denoted as pPSNR. The results are
reported in Tab. 6. As can be seen, when α was increased,
the pPSNR score gradually increased and peaked at α=0.2,
confirming the positive contribution of the HyperCUT loss.
When α>0.2, the ordering information started to outweigh
the order-invariant loss, decreasing the score. Hence, we se-

lected α = 0.2 as the default setting for other experiments.
α 0 0.1 0.15 0.2 0.25 0.3

pPSNR (dB) 25.73 25.8 26.33 26.95 26.9 25.75
Table 6. The pPSNR (dB) of seven generated sharp frames on the
RB2V-Street dataset when changing α.

Dimension of the hyperplane. We experimented with dif-
ferent settings for the number of dimensions of the hyper-
plane, and Tab. 7 shows the hit and consistency ratios of
HyperCUT on the RB2V-Street and RB2V-Hand datasets.
As can be seen, with n ≥ 16, the accuracy of the order
assigning is consistent with a small variance. In most of
our experiments, we used n = 128 due to its best overall
performance in terms of hits and cons ratios.

n
RB2V-Street RB2V-Hand

hit con@2 con@3 hit con@2 con@3
1 95.5 97.7 94.5 95.0 96.3 92.5
16 98.4 98.2 96.1 96.8 96.6 92.8
64 99.1 98.4 96.4 97.4 96.0 93.5

128 98.7 98.5 96.8 98.6 97.0 96.7
256 97.5 97.7 95.2 96.9 96.8 93.3

Table 7. Ablation study for n, the dimension of the HyperCUT
hyperplane.

6. Conclusions
In this paper, we have proposed a method for the

blur2vid task, effectively addressing the order-ambiguity
issue with an innovative regularization called HyperCUT.
The regularization assigns an order label to each potential
solution and enforces the blur2vid model to generate only
that specific solution, thereby enhancing its performance.
The proposed regularization can be implemented with any
existing blur2vid model for substantial improvements. Fur-
thermore, we contributed a novel dataset for the develop-
ment and evaluation of the image-to-video deblurring task.
This dataset comprises real images from three distinct do-
mains, namely street, face, and hand.

In this work, we focus on standard motion blur in nor-
mal capturing conditions with short exposure time, resulting
in simple and consistent direction and velocity. Future re-
search on adapting HyperCUT for handling complex move-
ments and long exposure blur would be an interesting av-
enue for exploration.
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