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Figure 1. Our proposed hand model is able to generalise and accurately reconstruct the 3D hand shape and appearance from a single
in-the-wild image. High frequency details are visible in our reconstructions such as wrinkles, veins, nail polish etc.

Abstract

Over the last few years, with the advent of virtual and
augmented reality, an enormous amount of research has
been focused on modeling, tracking and reconstructing hu-
man hands. Given their power to express human behavior,
hands have been a very important, but challenging compo-
nent of the human body. Currently, most of the state-of-
the-art reconstruction and pose estimation methods rely on
the low polygon MANO model. Apart from its low polygon
count, MANO model was trained with only 31 adult sub-
jects, which not only limits its expressive power but also
imposes unnecessary shape reconstruction constraints on
pose estimation methods. Moreover, hand appearance re-
mains almost unexplored and neglected from the majority
of hand reconstruction methods. In this work, we propose
“Handy”, a large-scale model of the human hand, mod-
eling both shape and appearance composed of over 1200
subjects which we make publicly available for the benefit
of the research community. In contrast to current models,
our proposed hand model was trained on a dataset with
large diversity in age, gender, and ethnicity, which tackles
the limitations of MANO and accurately reconstructs out-
of-distribution samples. In order to create a high quality

texture model, we trained a powerful GAN, which preserves
high frequency details and is able to generate high resolu-
tion hand textures. To showcase the capabilities of the pro-
posed model, we built a synthetic dataset of textured hands
and trained a hand pose estimation network to reconstruct
both the shape and appearance from single images. As it is
demonstrated in an extensive series of quantitative as well
as qualitative experiments, our model proves to be robust
against the state-of-the-art and realistically captures the 3D
hand shape and pose along with a high frequency detailed
texture even in adverse “in-the-wild” conditions.

1. Introduction
Humans express their emotions mainly using their fa-

cial expressions and hands. Hand movements and poses are
strong indicators of body language and can convey mean-
ingful messages which can be key factors in human be-
havioral analysis. For this, hands have been widely stud-
ied in regard to their biometric applications [11, 40]. 3D
hand models lead the technological developments of cru-
cial tasks for virtual reality such as human hand tracking
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[19, 36, 42, 51] and pose estimation [18, 55]. Specifically,
hand pose estimation algorithms utilize these models in or-
der to reconstruct a subject’s hand from a monocular depth
or RGB image. However, most of the current state-of-the-
art methods on 3D hand reconstruction and pose estima-
tion rely on low polygon models, with minimum diversity
in terms of age, gender, and ethnicity and without any hand
texture appearance [39].

In particular, MANO [39] is considered the most popu-
lar hand model, which pioneered the construction of a para-
metric human hand model. Apart from its low polygon res-
olution (778 vertices), it is only composed of 31 subjects,
which limits the accuracy of high fidelity 3D reconstruc-
tion methods. A statistical model with such a low number
of samples will always constrain the reconstruction of hand
shapes of diverse age and ethnicity groups. In the same
context, despite the efforts of implementing strong pose
priors to accurately constrain parametric models on valid
hand poses [31], reconstruction methods are still dependent
on a limited shape model. Importantly, current parametric
models are constructed only by adults’ hand shapes in the
age range of 20-60 years old, disregarding the shape vari-
ations out of this age range. We experimentally show that
children’s hands significantly differ in terms of shape from
adults’ hands, which makes current shape models prone to
reconstruction errors.

Additional to the shape component, a major limitation of
current hand models is the absence of a high resolution tex-
ture model. Despite the necessity in virtual and augmented
reality for a personalized appearance reconstruction, there
are only a few studies that attempted to model hand tex-
ture along with shape and pose. In particular, current meth-
ods on hand texture reconstruction from monocular images
are constrained on limited demographic variations and low
resolution textures that are ill-suited for real-world applica-
tions [8–10, 37, 47]. Recently, HTML [37] proposed the
largest available parametric texture model of the human
hand composed of 51 subjects. Given that the texture com-
ponent is based on Principal Component Analysis (PCA)
of low resolution texture UV maps, the generated textures
tend to be blurry, lacking the high frequency details of the
hand. Low resolution textures not only limit the fidelity
of RGB reconstructions but also the generations of realistic
synthetic data. Currently, state-of-the-art hand-object de-
tection methods [3, 16, 49] train their models on synthetic
datasets with low resolution textures such as HTML or ver-
tex colors, which subsequently constrain the quality of the
resulting reconstructions.

In this study, we propose “Handy”, the first large-scale
parametric shape and texture hand model composed of over
1200 subjects. Given these high resolution textured scans
with large demographic, gender, and age variations, we built
a high resolution hand model that overcomes the shape lim-

itations of previous state-of-the-art models. To the best of
our knowledge, this is the first hand model that captures
subjects with ages from 1 to 81 years old. The scans come
with high resolution textures which enable the creation of
a highly detailed texture model. In contrast to HTML [37],
we built a high resolution texture model by using a style-
based GAN which allows modeling high frequency details
of the human hand (e.g., wrinkles, veins, nail polish). Under
a series of experiments we show that the proposed paramet-
ric model overcomes the limitations of previous methods
and we present the first, to the best of our knowledge, high
fidelity texture reconstruction method from single “in-the-
wild” images.

In particular, besides the success of 3D hand reconstruc-
tion from monocular depth and RGB images, there are cur-
rently only a few methods that are able to reconstruct the
pose along with the shape and texture components. Exist-
ing 3D hand datasets only contain hand annotations in terms
of pose and global rotation and they usually neglect hand
shape variations by modeling only a mean hand shape. Ad-
ditionally, the lack of ground-truth high resolution texture
maps limits current hand reconstruction methods to prop-
erly predict the appearance of a given hand. To enable tex-
ture modeling, we follow the trend of synthetic data gen-
eration, and we have built a large-scale dataset containing
annotations in terms of pose, shape, and texture informa-
tion. To summarize, the contributions of our work are the
following:

• We make publicly available a large-scale shape and ap-
pearance model of the human hand for the benefit of
the research community, built by over 1200 3D hands
scans with a large diversity in age, gender, and ethnic-
ity.

• We create a synthetic dataset for monocular 3D hand
reconstruction given our high fidelity hand model and
make it publicly available. As shown in the experi-
mental section, our synthetic dataset aid off-the-shelf
reconstruction methods to improve results.

• We present a high fidelity appearance reconstruction
method from monocular images which is able to recon-
struct high frequency details such as wrinkles, veins,
nail polish, etc.

2. Related work
Parametric Hand Models. Over the years, several hand

models have been proposed in the literature to approximate
hand articulations. Initially, Oikonomidis et al. [33] at-
tempted to model hand shape as a collection of geometric
primitives such as elliptic cylinders, ellipsoids, spheres, and
cones. Following [33], various approaches were proposed
to model hand joints using anisotropic Gaussians [44], a
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collection of spherical meshes [46], or a union of convex
bodies [28]. Schmidt et al. [41] proposed the first implicit
representation of the articulated hand using the popular
Signed Distance Function. Khamis et al. [23] proposed the
first linear blend skinning (LBS) model constructed from 50
subject scans. The authors modeled hand poses and shape
variations using a low dimensional PCA. To tackle the vol-
ume loss and restrict unrealistic poses of the LBS, Romero
et al. [39] learned pose dependent corrective blend shapes
from the scans of 31 subjects and proposed the MANO
parametric model. Li et al. [26] proposed the NIMBLE
to model the interior of the hand, i.e. bones and muscles.
Recently, HTML [37] attempted to create a parametric ap-
pearance model of the human hand by collecting hand tex-
tures from 50 subjects. However, given the limited amount
of data, the authors train a PCA model on the UV space
resulting in low resolution textures. To address the afore-
mentioned limitations, the present work proposes the first
large-scale model of both hand shape and appearance of the
human hand, composed of over 1200 scans.

Hand pose estimation. 3D hand pose estimation has
been a long studied field, originally tackled by deform-
ing a hand model to volumetric [17] and depth images
[15,32,43,45]. Initially, 3D pose estimation was considered
as a fitting problem where a 3D parametric model was used
to fit 2D keypoints [34,35]. De La Groce et al. [9] pioneered
hand pose tracking from single RGB images by solving an
optimization problem. The advent of deep learning methods
has shifted the research interest to sparse joint keypoints
prediction from RGB images using Convolutional Neural
Networks (CNNs) [18, 30, 34, 54]. Most of such methods
attempt to directly predict dense 3D hand positions by re-
gressing the MANO model [39] parameters [2,3,53], which
constrain them to the shape and pose space of MANO. Sev-
eral methods deviated from MANO’s parameter space, by
directly regressing 3D vertex positions using graph neural
networks [13, 24, 25]. Hasson et al. [16] proposed a CNN-
based method that regresses MANO and AtlasNet param-
eters to reconstruct 3D hand poses together with various
object shapes. Recently, a handful of methods attempted
to reconstruct objects along with hands by using implicit
[22, 50], parametric [4, 49] or a combination of both repre-
sentations [7].

Synthetic datasets for hand pose estimation. Syn-
thetic datasets have been proven very effective, boosting
training performance and overcoming data limitations in
many applications, ranging from face reconstruction [48]
to pedestrian detection [12]. Numerous amount of hand
pose methods have been trained using synthetic data gen-
erated under different hand poses and illumination environ-
ments [3,5,13,49,54]. Hasson et al. [16] rendered synthetic
data using the SMLP model [27] under various hand poses
from the GraspIt dataset [29]. Apart from the hands, the

authors used objects from ShapeNet to generate a dataset
of hand-object interactions. However, all of the aforemen-
tioned studies are limited to only a few texture variations
[54] or low resolution hand textures [3, 16, 47, 49], creating
a domain gap between synthetic and real-world images. To
alleviate such domain gap, we propose a new dataset of both
hands and objects, similar to [16], using high resolution tex-
tures of hands, making a step towards a photorealistic syn-
thetic hand dataset.

3. Handy: Shape and Appearance Model
In this Section, we introduce our large-scale hand model

“Handy”. We begin by introducing the 3D dataset we
collected with which we built our high fidelity shape and
texture model. Then, we describe how we brought into
dense correspondence the entire hand dataset and created
our large-scale shape model. Finally, we explain how we
trained a style-based appearance model which preserves all
the high frequency details of the human hand.

3.1. Large-scale 3D hand dataset

As mentioned in Section 1, we collected a large dataset
comprising of textured 3D hand scans. Our hand data were
captured during a special exhibition at the Science Museum,
London. The capturing apparatus utilized for this task was a
3dMD 4 camera structured light stereo system, which pro-
duces high quality dense meshes. The raw scans have a
resolution of approximately 30,000 vertices. We captured a
total of 1208 distinct subjects with available metadata about
them, including their gender (53% male, 47% female), age
(1−81 years old), height (80−210 cm), and ethnicity (82%
White, 9% Asian, 7% Mixed and 2% black), as shown in
Figure 2.

Figure 2. Distribution of demographic characteristics of the
scanned subjects. The collected hand dataset covers a large va-
riety of ages, heights, and ethnicities.

Most notably, our collected hand scans exhibit a large di-
versity in terms of age, ethnicity, and height, which provide
a step towards a universal hand model. Compared to previ-
ous methods [37, 39], the scans collected include over 360
children aged less than 12 years old and 100 elderly subjects
aged over 60 years old. In order to capture different pose
variations, each subject was instructed to perform a range
of hand movements according to a specific protocol each
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day for a period of 101 days. Some example images can be
seen in Figure 7. Since our dataset contains personal data
from human subjects, we have ensured that the collection of
such data has been carefully conducted in accordance with
the ethics guidelines.

3.2. Shape model construction

In order to create a statistical shape model of the human
hand, we begin by rigidly aligning a set of 3D scans with a
common template mesh. We utilize two different resolution
templates in terms of polygon count for our method. As
a low polygon resolution template, we utilize the MANO
template with 778 vertices, which can be directly adapted
to SMPL model [27]. For high quality hand modeling, we
utilize a high resolution hand template in terms of polygons,
comprising of 8407 vertices. In order to bring the raw scans
into dense correspondence, we render them from multiple
views and use MediaPipe framework [51] to detect 2D joint
locations. We lift the 2D joint locations to 3D by utilizing
a linear triangulation and then detect the fingertips by using
the projection of the finger skeleton to the tips of the surface.
Subsequently, we use the lifted 3D landmarks to fit/align
the pose of our template to the 3D scan surface. Finally, in
order to acquire the final hand dense registrations, we apply
the Non-rigid Iterative Closest Point algorithm (NICP) [1]
between our hand template mesh and the 3D raw scans.

After having all the 3D raw hand scans into dense corre-
spondence with our high resolution template, we normalize
them to a canonical open-palm pose in order to avoid cap-
turing any unnecessary deformations into our final shape
model. We construct a deformable hand shape model de-
scribed as a linear basis of shapes. In particular, using PCA,
we build a hand model with N vertices that is described
by an orthonormal basis after keeping the first nc principal
components U ∈ R3N×nc and their associated λ eigenval-
ues. New hand instances can then be generated by regress-
ing the shape parameters β = [β0, β1, ..., βnc ] ∈ Rnc as:

Bs(β) = T+

nc∑
i=0

Uiβi ∈ R3N (1)

where T ∈ R3N refers to the mean hand shape. Variations
of the first 5 shape components are illustrated in Figure 3.

Finally, the articulated hand model can be defined as:

M(β,θ) = W (Tp(β,θ), J(β),θ,W) (2)

Tp(β,θ) = Bs(β) +Bp(θ) (3)

where W (·) corresponds to a linear blend skinning func-
tion (LBS) that is applied to the articulated hand mesh with
posed shape Tp, W , J define the blend weights and kine-
matic tree of joint locations, respectively, and β,θ, are the

Figure 3. Mean shape T and the first five principal components,
each visualized as additions and subtractions of 3 standard devia-
tions (±3σ) away from the mean shape.

shape and pose parameters, respectively. To tackle the joint
collapse of typical LBS function, we follow MANO [39]
and use the learned pose corrective blendshapes that pro-
duce more realistic posed hands:

Bp(θ) =

9K∑
i=0

(Ri(θ)−Ri(θ
∗))Pi (4)

where Pi are the pose blend shapes, K is the number of
joints of the hand model, Ri(θ) is a function that maps pose
parameters θ to the rotation matrix of joint i and θ∗ refers
to the canonical pose.

3.3. High resolution appearance model

As also shown in HTML [37], in order to train a texture
model, the hand scans need to be brought into correspon-
dence. To achieve this optimally, we asked a graphics artist
to design a UV hand template and used it as a reference tem-
plate to unwrap the scans. However, the hand scans were ac-
quired using constrained light conditions with baked shad-
ows. As a result, before carrying out any training procedure,
we followed a pre-processing step on the UV textures to
remove the shading and illumination. In particular, we ap-
plied PCA to the UV textures and identified the components
that mostly describe the shading factors. We then subtracted
those components from each texture UV map to remove
their unnecessary shading. Finally, we followed an image
processing step that mapped hand textures to more natu-
ral colors, which entailed increasing the brightness, gamma
correction, and slightly adjusting the hue value.

For the training process, rather than modeling the ap-
pearance space in a low frequency PCA domain as other
methods do [37], we utilized a powerful GAN architec-
ture [20] to model the hand textures. Given the limited
number of collected data, we used a smaller learning rate of
0.001. We also found that a regularization weight γ of 50
further assisted in the FID score as well as the visual qual-
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ity of the final results. In Figure 4, we showcase some ran-
dom generations of our proposed high fidelity appearance
model. Utilizing such GAN architecture, we are capable of
preserving the high frequency skin details whilst avoiding
any smoothness created by a PCA model. Qualitative re-
sults of our texture reconstruction in Figure 8 can validate
this premise.

Figure 4. Generated high quality texture UV maps from our GAN
appearance model.

4. Experiments
4.1. Intrinsic Evaluation of Proposed Hand Model

In this Section, we evaluate the proposed hand shape
model and compare it with the MANO model [39] that is
commonly used in the literature. We follow the common
practice and compare the two shape models in terms of com-
pactness, generalization and specificity. The two models
were tested on the test split of MANO dataset. We also
report a variation of the proposed model that utilizes the
MANO template as described in Section 3.2. Note that only
the first 10 out of 31 principal components of MANO are
publicly available.

Compactness. In Figure 5 (left) we report the compact-
ness of the two models. Compactness describes the percent-
age of the variance of the training dataset explained by the
model given a number of the retained principal components.
Figure 5 (left) illustrates that the proposed model better ex-
plains the dataset variations, breaking the threshold of 90%
variance from the 5th component compared to the MANO
model that reaches 90% variance at the 9th component.

Generalization demonstrates the ability of the model to
generate new hand instances that were not present in the
training set. We measure the generalization error as the
mean per-vertex distance of each mesh on the MANO test
set and its corresponding model re-projection. Figure 5
(middle) reveals that the proposed model achieves better
out-of-distribution generalization and lower standard devi-
ation compared to MANO model which fails to generate

Age <8 Age <12
MANO [39] 0.78 0.77
Proposed w/ MANO (nc = 10) 0.48 0.44
Proposed w/ MANO (nc = 30) 0.28 0.25
Proposed (nc = 10) 0.44 0.42
Proposed (nc = 30) 0.24 0.21

Table 1. Per vertex reconstruction error on 20 children’s hands
in mm. We also report the performance of the proposed model
with the MANO template (w/MANO) and use a different number
of components (nc) for a fair comparison. Bold denotes the best
performance.

novel hand shapes.
Specificity. Finally, we report the specificity error, which

measures the realism of the generated hand shapes and their
similarity to the training samples. In particular, we gener-
ated 1,000 hand shapes and measured their per-vertex dis-
tance from the closest sample on the ground-truth datasets.
For a fair comparison, the samples used to train each model
serve as ground-truth shapes. Figure 5 (right) shows that
the proposed method exhibits better specificity error com-
pared to the MANO model by approximately 2.5mm. Note
that the slight deviation between the Proposed and the Pro-
posed w/MANO models is caused by the high resolution
(8704 vertices) of the proposed hand template which leads
to more detailed shapes compared to the MANO template
(778 vertices).

4.2. Reconstruction of children’s hands

A major limitation of current state-of-the-art hand mod-
els is that they were trained using limited data from specific
age groups that do not reflect real hand variations. In partic-
ular, we examined the reconstruction error of 20 children’s
hands below the age of 12 that were not present in the train-
ing set. Table 1 highlights the reconstruction capabilities of
the proposed hand model that was built with 1208 subjects
with diverse age groups compared to the commonly used
MANO model, which is composed of only 31 adult hands.
Figure 6 shows the color-coded per vertex error which val-
idates the superiority of the proposed model in children’s
hands reconstructions. As expected, MANO model fails
to properly reconstruct the main anatomical difference be-
tween adults’ and children’s hands, which mostly lies on the
back of the hand.

4.3. 3D Reconstruction from single images

Following the pathway of many hand pose estimation
methods, we create a synthetic dataset to train our hand
reconstruction model. In particular, we generated 30,000
texture images from the GAN model to curate a synthetic
dataset with textured hands. To increase the realism of the
synthetic data, similar to [16], we render hands that interact
with objects of the ShapeNet dataset and we complete the
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Figure 5. Evaluation of compactness, generalization and specificity against MANO model.

Figure 6. Color coded reconstruction error of children’s hands.

Figure 7. Hand shape and appearance reconstructions from single
images under controlled conditions.

hand shape with bodies from SMPL model. In contrast to
the Obman dataset [16], we use high resolution hand tex-
tures that bridge the domain gap between synthetic and “in-
the-wild” hand images. We use several illuminations, light-

ing, and camera configurations to create diverse synthetic
renderings. In order to leverage the proposed Handy model,
we modified an off-the-self method [3,14,16], by substitut-
ing the MANO parametric model with Handy. Such method
includes a ResNet50 image encoder, pre-trained on Ima-
geNet and two branches that regress the pose and shape la-
tent codes of our parametric model. Unlike previous meth-
ods, in order to also reconstruct the texture, we add two
extra branches that regress the latent space w of the texture
model and the camera configuration (s, t). We train our net-
work using a set of loss functions that enable accurate hand
pose, shape, and appearance estimation. In particular, sim-
ilar to [3, 16, 55], we enforce shape and pose estimation by
applying a loss on both the latent shape and pose parameters
and the generated 3D vertex positions:

Lβ = ∥β − β̂∥2, Lθ = ∥θ − θ̂∥2
L3D =

∑
i

∥vi − v̂i∥2 (5)

where β,θ,v denote the predicted shape, pose and vertex
positions and β̂, θ̂, v̂ their corresponding ground-truth val-
ues.

To precisely generate hand textures, we use a combina-
tion of loss functions. Given that the synthetic data were
rendered using known ground-truth UV maps, we can di-
rectly enforce the model to produce textures that match the
ground-truth UV maps with a UV loss:

Luv = ∥UV G − UV 0∥1 (6)

where UV G corresponds to the generated UV texture and
UV O to the ground-truth texture.

Additionally, we employ a differentiable renderer us-
ing an orthographic camera with trainable parameters that
projects the generated 3D hand on the input image plane.
To obtain accurate camera parameters and model the details
of the appearance, we employ a pixel loss between the ren-
dered image and the input image:

Lpix = ∥IR − I0∥1 (7)
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Figure 8. Hand shape and appearance reconstructions from single “in-the-wild” images. From left to right, we: i) depict the “in-the-wild”
image, ii) our Handy-Shape reconstruction, iii) our Handy-GAN result, iv) our Handy-PCA model, and v) the HTML [37] texture on top
of our shape mesh (Handy-Shape).

with IR, I0 the original and the rendered images, respec-
tively.

Finally, to constrain the generated hand textures, we ap-
ply a perceptual loss [52] that imposes the texture model to
produce realistic textures that match the input image:

Llpips = F(IR, I0) (8)

The exact network architecture is differed in the supplemen-
tary material.

Although synthetic data can be sufficient to train a hand
pose and appearance estimation network, they usually con-
strain the texture regressor to latent codes that lie within the
distribution of our textures, failing to reconstruct more chal-
lenging textures. In order to boost high fidelity appearance
reconstruction, we collect a set of “in-the-wild” images and
predict Handy pose, shape and texture parameters using the
pre-trained regression network. Then, similar to [21], we
only further optimize the texture parameters w to gener-
ate high resolution textures that match the appearance of
the “in-the-wild” images. The optimization function is con-
structed with Eq. 7, 8, along with a L2 regularization on
w to make sure it does not greatly deviate from the initial
estimation. Once we acquire the improved w′, we fine-tune
the regression network on the “in-the-wild” dataset.

To quantitatively assess the texture reconstruction of the
proposed method, we feed the network with images from
the scanning device used in the data. As ground-truth UV
textures we use the corresponding UV maps of each subject
acquired after the registration step. As can be seen in Table
2, the proposed model outperforms the HTML model by a
significant margin, in terms of L1 and LPIPS losses. The

Method L1 (×10−2) LPIPS [52]
HTML 2.14 0.092
Handy-PCA 1.44 0.065
Handy-GAN 0.47 0.010

Table 2. Quantitative comparison between the texture reconstruc-
tion models.

superiority of the proposed method can be also validated in
Figure 7. To properly compare the texture reconstruction of
each method, all three methods share the same shape and
pose extracted from our regression network. The proposed
method can reconstruct high frequency details of the input
image such as wrinkles, rings, tattoos, and nail polish. In
contrast, PCA-based methods produce smooth results that
lack high frequency details and even fail to properly recon-
struct the skin color (Figure 7, row 2).

Additionally, we qualitatively compared the proposed
method with HTML in an unconstrained setting using “in-
the-wild” images. In Figure 8, we compare the three meth-
ods using challenging figures with different skin colors,
shape structures, and light conditions. Similar to the pre-
vious experiment, all three methods share the same shape
and pose. As can be easily seen, Handy-GAN can recon-
struct high frequency details such as wrinkles and precise
hand colors, even with hands that are out of the trained dis-
tribution. It is important to also note that Handy-GAN can
also reconstruct textures from hands with vitiligo disorder
that have severe color discontinuities.

Finally, to quantitatively evaluate shape and pose recon-
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Figure 9. Shape and pose reconstructions from the FreiHand [55] and the proposed synthetic dataset.

Method MPVPE ↓ MPJPE ↓ F@5 mm ↑ F@15 mm ↑
Hasson et al. [16] 13.2 - 0.436 0.908
Boukhayma et al. [3] 13. - 0.435 0.898
MANO CNN [55] 10.8 0.529 0.935
MANO FIT [55] 13.7 - 0.439 0.892
HTML [37] 11.1 11.0 0.508 0.930
S2Hand [6] 11.8 11.9 0.48 0.920
Ren et al. [38] 8.1 8.0 0.649 0.966
Proposed w/Obman 9.9 9.7 0.572 0.922
Proposed w/Synthetic 8.8 8.7 0.612 0.952
Proposed 7.8 7.8 0.654 0.971

Table 3. Quantitative comparison on the FreiHand dataset [55]

struction under “in-the-wild” conditions, we tested the per-
formance of our model on the popular benchmark dataset
FreiHand. Table 3 shows that the proposed method outper-
forms current state-of-the-art model-based methods utiliz-
ing MANO as their backbone. It is also important to note
that, as expected, the proposed method trained on the pro-
posed synthetic dataset (Proposed w/Synthetic), achieves
better hand reconstructions compared to our method trained
with the Obman dataset [16] (Proposed w/Obman). Such
a finding validates our assumptions that the proposed syn-
thetic dataset bridges the domain gap between synthetic and
“in-the-wild” images. Qualitative results of our hand recon-
struction are shown in Figure 9.

4.4. Reconstruction from Point Clouds

We also evaluated the proposed parametric model on
shape and pose reconstruction from point clouds. In partic-
ular, we compared the proposed model with the state-of-the-
art implicit hand model LISA [8] on the registered MANO
dataset [39]. We follow [8] and sample 100K points on the
surface of the MANO scans and measure the vertex-to-point
distance (in mm) from the reconstruction to the scan (R2S)

point cloud and the other way around (S2R). Table 4 shows
that the proposed model achieves a lower reconstruction er-
ror with only 30 shape components, outperforming LISA
and MANO models. Additionally, the proposed model us-
ing the MANO template and only 10 components outper-
forms the original MANO model by a large margin.

R2S [mm] S2R [mm]
MANO [39] 2.90 1.52
LISA-im [8] 1.96 1.13
LISA [8] 0.64 0.58
Proposed w/MANO (nc = 10) 0.21 0.29
Proposed w/MANO (nc = 30) 0.12 0.21
Proposed (nc = 10) 0.16 0.25
Proposed (nc = 30) 0.11 0.19

Table 4. Reconstruction error on point clouds sampled from the
MANO dataset [39].

5. Conclusion
In this paper, we propose Handy, the first large-scale

shape and appearance hand model that is composed of
over 1200 subjects. Given the large demographic diversity
of the subjects, the proposed model has more expressive
power and overcomes the limitations of previous paramet-
ric models to reconstruct the shape of children’s hands.
Additionally, we train a style-based GAN to generate UV
textures with high frequency details that traditional PCA
methods fail to model. Under a series of experiments, we
showcase the expressive power of Handy to reconstruct
challenging hand shapes and appearances.
Acknowledgements: S. Zafeiriou and part of
the research was funded by the EPSRC Fellow-
ship DEFORM: Large Scale Shape Analysis of
Deformable Models of Humans (EP/S010203/1).
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