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Abstract

Continual Learning (CL) aims to sequentially train mod-
els on streams of incoming data that vary in distribution
by preserving previous knowledge while adapting to new
data. Current CL literature focuses on restricted access to
previously seen data, while imposing no constraints on the
computational budget for training. This is unreasonable
for applications in-the-wild, where systems are primarily
constrained by computational and time budgets, not stor-
age. We revisit this problem with a large-scale benchmark
and analyze the performance of traditional CL approaches
in a compute-constrained setting, where effective memory
samples used in training can be implicitly restricted as a
consequence of limited computation. We conduct experi-
ments evaluating various CL sampling strategies, distillation
losses, and partial fine-tuning on two large-scale datasets,
namely ImageNet2K and Continual Google Landmarks V2
in data incremental, class incremental, and time incremen-
tal settings. Through extensive experiments amounting to a
total of over 1500 GPU-hours, we find that, under compute-
constrained setting, traditional CL approaches, with no ex-
ception, fail to outperform a simple minimal baseline that
samples uniformly from memory. Our conclusions are con-
sistent in a different number of stream time steps, e.g., 20
to 200, and under several computational budgets. This
suggests that most existing CL methods are particularly
too computationally expensive for realistic budgeted de-
ployment. Code for this project is available at: https:
//github.com/drimpossible/BudgetCL.

1. Introduction
Deep learning has excelled in various computer vision

tasks [8,21,25,43] by performing hundreds of shuffled passes
through well-curated offline static labeled datasets. However,
modern real-world systems, e.g., Instagram, TikTok, and
Flickr, experience high throughput of a constantly changing
stream of data, which poses a challenge for deep learning
to cope with such a setting. Continual learning (CL) aims
to go beyond static datasets and develop learning strategies
that can adapt and learn from streams where data is pre-

*authors contributed equally; order decided by a coin flip.

Figure 1. Main Findings. Under per time step computationally
budgeted continual learning, classical continual learning methods,
e.g., sampling strategies, distillation losses, and fully connected
(FC) layer correction based methods such as calibration, struggle
to cope with such a setting. Most proposed continual algorithms
are particularly useful only when large computation is available,
where, otherwise, minimalistic algorithms (ERM) are superior.

sented incrementally over time, often referred to as time
steps. However, the current CL literature overlooks a key
necessity for practical real deployment of such algorithms.
In particular, most prior art is focused on offline continual
learning [22, 23, 41] where, despite limited access to previ-
ous stream data, training algorithms do not have restrictions
on the computational training budget per time step.

High-throughput streams, e.g., Instagram, where every
stream sample at every time step needs to be classified for,
say, misinformation or hate speech, are time-sensitive in
which long training times before deployment are simply not
an option. Otherwise, new stream data will accumulate until
training is completed, causing server delays and worsening
user experience.

Moreover, limiting the computational budget is necessary
towards reducing the overall cost. This is because computa-
tional costs are higher compared to any storage associated
costs. For example, on Google Cloud Standard Storage
(2¢ per GB per month), it costs no more than 6¢ to store
the entire CLEAR benchmark [26], a recent large-scale CL
dataset. On the contrary, one run of a CL algorithm on
CLEAR performing ∼ 300K iterations costs around 100$
on an A100 Google instance (3$ per hour for 1 GPU). There-
fore, it is prudent to have computationally budgeted methods
where the memory size, as a consequence, is implicitly re-
stricted. This is because, under a computational budget, it
is no longer possible to revisit all previous data even if they
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were all stored in memory (given their low memory costs).
This raises the question: “Do existing continual learning

algorithms perform well under per step restricted compu-
tation?” To address this question, we exhaustively study
continual learning systems, analyzing the effect of the pri-
mary directions of progress proposed in the literature in the
setting where algorithms are permitted fixed computational
budget per stream time step. We evaluate and benchmark
at scale various classical CL sampling strategies (Uniform,
Class-Balanced [37], Recency-Biased [26], FIFO [11, 14],
Max Loss, Uncertainity Loss [6], and KMeans [14]), CL dis-
tillation strategies (BCE [41], MSE [9], CrossEntropy [49],
and Cosine [22]) and FC layer corrections (ACE [10, 31, 54],
BiC [49], CosFC [22], and WA [56]) that are common
in the literature. Evaluation is carried on two large-scale
datasets, amounting to a total of 1500 GPU-hours, namely
ImageNet [17] and Continual Google Landmarks V2 [36]
(CGLM) under various stream settings, namely, data incre-
mental, class incremental, and time incremental settings. We
compare against Naive; a simple baseline that, utilizing all
the per step computational budget, trains while sampling
from previous memory samples.
Conclusions. We summarize our empirical conclusions in
three folds. (1) None of the proposed CL algorithms, see
Table 1 for considered methods, can outperform our sim-
ple baseline when computation is restricted. (2) The gap
between existing CL algorithms and our baseline becomes
larger with harsher compute restrictions. (3) We find that
training a minimal subset of the model can close the perfor-
mance gap compared to our baseline in our setting, but only
when supported by strong pretrained models.

Surprisingly, we find that these observations hold even
when the number of time steps is increased to 200, a large
increase compared to current benchmarks, while normalizing
the effective total computation accordingly. This suggests
that existing CL literature is particularly suited for settings
where memory is limited, and less practical in scenarios
having limited computational budgets.

2. Continual Learning with Limited Compute
2.1. Problem Formulation

We start by first defining our proposed setting of compu-
tationally budgeted continual learning. Let S be a stream
revealing data sequentially over time steps. At each time
step t ∈ {1, 2, . . . ,∞}, the stream S reveals nt image-
label pairs {(xt

i, y
t
i)}

nt
i=1 ∼ Dj from distribution Dj where

j ∈ {1, . . . , t}. In this setting, we seek to learn a function
fθt : X → Yt parameterized by θt that maps images x ∈ X
to class labels y ∈ Yt, where Yt =

⋃t
i=1 Yi, which aims

to correctly classify samples from any of the previous dis-
tributions Dj≤t. In general, there are no constraints on the
incoming distribution Dj , e.g., the distribution might change
after every time step or it may stay unchanged for all time
steps. The size of the revealed stream data nt can generally

change per step, e.g., the rate at which users upload data
to a server. The unique aspect about our setting is that at
every time step t, a computational budget Ct is available for
the CL method to update the parameters from θt−1 to θt
in light of the new revealed data. Due to the inexpensive
costs associated with memory storage, in our setting, we
assume that CL methods in our setting can have full access
to all previous samples Tt = ∪t

r=1{(xr
i , y

r
i )}

nr
i=1.1 However,

as will be discussed later, while all samples can be stored,
they cannot all be used for training due to the constrained
computation imposing an implicit memory restriction.

2.2. Key Differences with Prior Art
(1) Tasks: In most prior work, CL is simplified to the

problem of learning a set of non-overlapping tasks, i.e., dis-
tributions, with known boundaries between them [13, 29, 41].
In particular, the data of a given distribution Dj is given all
at once for the model to train. This is as opposed to our
setup, where there is no knowledge about the distribution
boundaries, since they are often gradually changing and not
known a priori. As such, continual learning methods cannot
train only just before the distribution changes.

(2) Computational Budget: A key feature of our work is
that, per time step, CL methods are given a fixed compu-
tational budget Ct to train on {(xt

i, y
t
i)}

nt
i=1. For ease, we

assume throughout that Ct = C ∀t, and that nt = n∀t. Al-
though C can be represented in terms of wall clock training
time, for a given fθ and stream S , and comparability between
GPUs, we state C in terms of the number of training iterations
instead. This avoids hardware dependency or suboptimal
implementations when comparing methods. This is unlike
prior work, which do not put hard constraints on compute per
step [9, 22, 41] giving rise to degenerate but well-performing
algorithms such as GDumb [37]. Concurrent works [19, 36]
restrict the computational budget, however they focus on
fast adaptation whereas we focus on alleviating catastrophic
forgetting.

(3) Memory Constraints: Prior work focuses on a fixed,
small memory buffer for learning and thereof proposing var-
ious memory update strategies to select samples from the
stream. We assume that all the samples seen so far can be
stored at little cost. However, given the restricted imposed
computation C, CL methods cannot revisit or learn from all
stored samples. For example, as shown in Figure 2, consider
performing continual learning on ImageNet2K, composed
of 1.2M samples from ImageNet1K and 1.2M samples from
ImageNet21K forming 2K classes, which will be detailed
later, over 20 time steps, where the stream reveals sequen-
tially n = 60K images per step. Then, under a computation
budget of 8000 iterations, the model cannot revisit more than
50% of all seen data at any given time step, i.e. 600K sam-
ples. Our proposed setting is closer to realistic scenarios that
cope with high-throughput streams, where computational

1We discuss in the Appendix the privacy arguments often used towards
restricting the memory.
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Dir. Reference Applicability Components
(our setup) Distillation MemUpdate MemRetrieve FC Correction Others

Naive ✓ - Random Random - -

D
is

til
la

tio
n

iCARL [41] ✓ BCE Herding Random - NCM
LUCIR [22] ✓ Cosine Herding MargRank CosFC NCM
PODNet [18] ✓ POD Herding Random LSC Imprint,NCM
DER [9] ✓ MSE Reservoir Random - -
CO2L [12] × IRD Random Random Asym.SupCon -
SCR [32] ✓ - Reservoir Random SupCon NCM

Sa
m

pl
in

g

TinyER [14] ✓ - FIFO,KMeans,Reservoir - - -
GSS [5] × - GSS Random - -
MIR [3] × - Reservoir MIR - -
GDumb [37] ✓ - Balanced Random - MemOnly
Mnemonics [28] × - Mnemonics - - BalFineTune
OCS [53] × - OCS Random - -
InfoRS [45] × MSE InfoRS Random - -
RMM [27] × - RMM - - -
ASER [44] × - SV ASV - -
RM [6] ✓ - Uncertainty Random - AutoDA
CLIB [24] × - Max Loss Random - MemOnly,AdaLR

FC
L

ay
er

BiC [49] × CrossEnt Random Random BiC -
WA [56] × CrossEnt Random Random WA -
SS-IL [2] × TKD Random Balanced SS -
CoPE [16] ✓ - Balanced Random PPPLoss -
ACE [10] ✓ - Reservoir Random ACE -

Table 1. Primary Directions of Progress in CL. Analysis of recent replay-based systems, with bold highlighting the primary contribution.
We observe that there are three primary directions of improvement. “App.” denotes the applicability to our setting based on whether they are
scalable to large datasets and applicable beyond the class-incremental stream.

bottlenecks impose implicit constraints on learning from past
samples that can be too many to be revisited during training.

2.3. Constructing the Stream
We explore three stream settings in our proposed benchmark,
which we now describe in detail.

(1) Data Incremental Stream: In this setting, there is no
restriction on the incoming distribution Dj over time that
has not been well-explored in prior works. We randomly
shuffle all data and then reveal it sequentially over steps,
which could lead to a varying distribution Dj over steps in
which there are no clear distribution boundaries.

(2) Time Incremental Stream: In this setting, the stream
data is ordered by the upload timestamp to a server, reflecting
a natural distribution change Dj across the stream as it would
in real scenarios. There is a recent shift toward studying
this ordering as apparent in recent CL benchmarks, e.g.,
CLEAR [26], Yearbook [51] and FMoW [51], Continual
YFCC100M [11] and Continual Google Landmarks V2 [36].

(3) Class Incremental Stream: For completeness, we con-
sider this classical setting in the CL literature. Each of the
distributions Dj represents images belonging to a set of
classes different from the classes of images in any other dis-
tribution Di ̸=j . We benchmark these three settings using a
large-scale dataset that will be detailed in the Experiments.

3. Dissecting Continual Learning Systems
Continual learning methods typically propose a system

of multiple components that jointly help improve learning
performance. For example, LUCIR [22] is composed of a
cosine linear layer, a cosine distillation loss function, and a
hard-negative mining memory-based selector. In this section,
we analyze continual learning systems and dissect them into
their underlying components. This helps to analyze and
isolate the role of different components under our budgeted
computation setting and helps us to understand the most

relevant components. In Table 1, we present the breakdown
of novel contributions that have been the focus of recent
progress in CL. The columns indicate the major directions
of change in the CL literature. Overall, there have been three
major components on which advances have focused, namely
distillation, sampling, and FC layer correction. These three
components are considered additions to a naive baseline that
simply performs uniform sampling from memory. We refer
to this baseline as Naive in Table 1.

(1) Distillation: One popular approach towards preserv-
ing model performance on previous distributions has been
through distillation. It enables student models, i.e., current
time step model, to learn from a teacher model, i.e., one that
has been training for many time steps, through the logits pro-
viding a rich signal. In this paper, we consider four widely
adopted distillation losses, namely, Binary CrossEntropy
(BCE) [41], CrossEntropy [28, 49, 56], Cosine Similarity
(Cosine) [22], and Mean Square Error (MSE) [9, 45] Loss.

(2) Sampling: Rehearsing samples from previous distribu-
tions is another popular approach in CL. However, sampling
strategies have been used for two objectives. Particularly
when access to previous samples is restricted to a small
memory, they are used to select which samples from the
stream will update the memory (MemUpdate) or to decide
on which memory samples are retrieved for rehearsal (Mem-
Retrieve). In our unconstrained memory setup, simply sam-
pling uniformly over the joint data of past and current time
step data (as in Naive) exposes a particular shortcoming.
When training for a large number of time steps, uniform
sampling reduces the probability of selecting samples from
the current time step. For that, we consider various sampling
strategies, e.g., recency sampling [26] that biases toward
sampling current time step data, and FIFO [11, 14] that ex-
clusively samples from the current step. We do not consider
Reservoir, since it approximates uniform sampling in our
setup with no memory restrictions. In addition to bench-
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marking the sampling strategies mentioned above, we also
consider approaches that evaluate the contribution of each
memory sample to learning [46]. For example, Herding [41],
K-Means [14], OCS [53], InfoRS [45], RM [6], and GSS [5]
aim to maximize diversity among samples selected for train-
ing with different metrics. MIR [3], ASER [44], and CLIB
[24] rank the samples according to their informativeness
and select the top-k. Lastly, balanced sampling [15, 16, 37]
select samples such that an equal distribution of classes is
selected for training. In our experiments, we only consider
previous sampling strategies that are applicable to our setup
and compare them against Naive.

(3) FC Layer Correction: It has been hypothesized that
the large difference in the magnitudes of the weights asso-
ciated with different classes in the last fully connected (FC)
layer is among the key reasons behind catastrophic forget-
ting [49]. There has been a family of different methods
addressing this problem.

These include methods that improve the design of FC
layers, such as CosFC [22], LSC [18], and PPP [16], by mak-
ing the predictions independent of their magnitude. Other
approaches such as SS-IL [2] and ACE [10, 31, 54] mask out
unaffected classes to reduce their interference during train-
ing. In addition, calibrating the FC layer in post-training,
e.g., BiC [49], WA [56], and IL2M [7] is widely used. Note
that the calibration techniques are only applicable to the
class-incremental setup. We benchmark existing methods
applicable to our setting against the Naive approach that does
not implement any FC layer correction.

(4) Model Expansion Methods: Several works attempt
to adapt the model architecture according to the data. This
is done by only training part of the model [1, 4, 33, 34, 38]
or by directly expanding the model when data is presented
[40, 42, 47, 50, 52, 55]. However, most of the previous tech-
niques in this area do not apply to our setup. Most of this
line of work [33, 34, 40] assumes a task-incremental setting,
where at every time step, new samples are known to what
set of classes they belong, i.e., the distribution boundaries
are known, even at test time. To overcome these limitations,
newer methods [1, 39] use a bilevel prediction structure, pre-
dicting the task at one level and the label within the task at
the second level. They are restricted to the class-incremental
setting as they assume each task corresponds to a set of non-
overlapping classes. We seek to understand the limitation of
partial retraining in a network; hence, instead, we compare
Naive against a setting where only the FC layer is being
trained, thus minimally training the network per time step.
In addition, we examine the role of pretraining which has
recently become a widely popular direction for exploration
in continual learning [48].

4. Experiments
We first start by detailing the experimental setup, datasets,

computational budget C, and evaluation metrics for our large-
scale benchmark. We then present the main results evaluating

Figure 2. Effective Training Epochs Per Time Step. Our default
setting sets a total training budget over all 20 time steps of 8000
and 2000 iterations for ImageNet2K and CGLM ,respectively, with
a per iteration batch size of B = 1500. Effectively, this reflects
to training on 25-50% of the stored data, except in the first few
time steps on CGLM. Note that for ImageNet2K, we assume that
ImageNet1K of 1.2M samples is available in memory.

various CL components, followed by extensive analysis.

4.1. Experimental Setup and Details
Model. We use a standard ResNet50 following prior

work on continual learning [11]. The model is ImageNet1K
pre-trained used as a backbone throughout all experiments.

Datasets. We conduct experiments using two large-scale
datasets, namely ImageNet2K and Continual Google Land-
marks V2 (CGLM). We construct ImageNet2K by augment-
ing ImageNet1K with 1.2M images from ImageNet21K [17],
thus, adding 1K new non-overlapping classes with Ima-
geNet1K amounting to a total of 2K classes.

(1) Data Incremental ImageNet2K: The stream is con-
structed by randomly shuffling the set of images from the
1K classes of ImageNet21K, by doing so, there is no knowl-
edge of the distribution boundaries. The model continually
learns on this set of images, while ImageNet1K is available
in memory. CL methods are expected to learn both the new
classes from the stream while maintaining the performance
on ImageNet1K. We refer to this setting as DI-ImageNet2K.

(2) Class Incremental ImageNet2K: Similar to the above
defined DI-ImageNet2K, ImageNet1K is available in mem-
ory and the 1K classes of ImageNet21K are presented se-
quentially by the stream but in a class incremental setting.
We refer to this setting as CI-ImageNet2K.

(3) Time Incremental Google Landmarks V2 (CGLM):
In this setting, the stream consists of data from the CGLM
dataset ordered according to the timestamps of the images
mimicking a natural distribution shift. Note that ImageNet1K
is not considered as part of the evaluation. We refer to this
setting simply as CGLM.

Throughout, unless stated otherwise, the stream reveals
data incrementally over 20 time steps. This amounts to a
per step stream size of n = 60K for the CI-ImageNet2K
and DI-ImageNet2K settings, and n = 29K for the CGLM
setting. More details on the construction of datasets is given
in the Appendix along with the sample orders.

Computational Budget. We set the computational bud-
get C to 400 training iterations per time step (8000 =
20 time steps × 400) for ImageNet2K, i.e., DI-ImageNet2K
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Figure 3. DI-ImageNet2K (400 Iterations). ERM-Naive, a non-continual learning algorithm, is compared against inexpensive sampling
strategies (first four plots) with 400 training iterations and the costly KMeans (fifth plot) with 200 iterations. All CL methods perform
similarly but worse than ERM-Naive. This is the case for FIFO that suffers from forgetting the KMeans due to its expensive nature.
ImageNet2K experiments performance can be decomposed into (i) accuracy on classes seen during pre-training on ImageNet1K and (ii)
accuracy on newly seen classes in ImageNet2K, allowing analysis of forgetting old classes and learning newly introduced classes.

Figure 4. CI-ImageNet2K (400 Iterations). Similarly, ERM-Naive is compared on CI-ImageNet2K. Both FIFO, which suffers from
forgetting, and KMeans due to its expensive nature, struggle to compete against simpler inexpensive methods as Class-Balanced. However,
overall, all other methods perform very similarly with no clear advantage. ImageNet2K experiments performance can be decomposed into (i)
accuracy on classes seen during pre-training on ImageNet1K and (ii) accuracy on newly seen classes in ImageNet2K, allowing analysis of
forgetting old classes and learning newly introduced classes.

Figure 5. CGLM (100 Iterations). All inexpensive methods perform overall similarly with the exception for KMeans due to its expensive
nature. This highlights that simplicity is key under a budgeted continual learning setting. CGLM is not an extension of ImageNet1K and
involves a different task: landmark classification. Hence, we measure only the stream accuracy resulting in two lines instead of six.

and CI-ImageNet2K, and set C to 100 training iterations for
CGLM. In each iteration, a batch of images is used to update
the model in training where we set the training batch size B
to 1500. The choice of C is made such that it corresponds
to training on at most 25− 50% of all observed data at any
given step. For example, as highlighted in Figure 2 for Im-
ageNet2K, time step t = 5. corresponds to training only
on about 40% of the complete observed data at this step,
i.e., 400×1500/1.2M+5×60K ≈ 0.4 of an epoch where 1.2M
denotes the ImageNet1K samples. Furthermore, we set C
to 100 iterations for CGLM, since the dataset contains 1/4 of
the total data in ImageNet2K. Note that after 20 time steps
on CGLM, the data that would have been seen is 20× 29K
images, as opposed to 1.2M + 20 × 60K images for Ima-
geNet2K experiments.

Metrics. We report the accuracy (Acc) on a separate

test set after training at each time step. This test set simply
comprises the joint test set for all classes seen up to the cur-
rent time step. Moreover, for ImageNet2K, we decompose
the test accuracy into the accuracy on ImageNet1K (Ima-
geNet1K Acc), which measures forgetting, and the accuracy
on the stream (Stream Acc), which measures adaptation. For
GCLM, we only report stream accuracy.

Training Details. We use SGD as an optimizer with a linear
learning rate schedule and a weight decay of 0. We follow
standard augmentation techniques. All experiments were
run on the same A100 GPU. For a fair comparison, we fix
the order of the samples revealed by the stream S in all
experiments on a given dataset and comparisons.

We summarize all the settings with all the benchmark param-
eters in the first part of Table 2.
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Figure 6. Distillation in Data and Class Incremental Settings.
Naive, which does not employ any distillation loss, outperforms all
distillation methods (MSE, and Cosine) across all three settings.

4.2. Budgeted Continual Learning
In this section, we investigate the effectiveness of the

three main directions studied in the CL literature, namely
sampling strategies, distillation, and FC layer correction.
1. Do Sampling Strategies Matter? We evaluate seven
sampling strategies that govern the construction of the train-
ing batch from memory. These strategies are grouped into
two categories based on their computational cost. Inexpen-
sive sampling methods include Uniform, Class-Balanced,
Recency-Biased and FIFO sampling. On the other hand,
costly sampling strategies include KMeans, Max Loss, and
Uncertainty loss sampling.

To normalize for the effective C due to the overhead of
associated extra forward passes to decide on the sampling,
costly sampling strategies are allowed C/2 training iterations,
where the exact calculation is left for the Appendix. That is
to say, costly sampling strategies perform 200 training itera-
tions for ImageNet2K and 50 training iterations for CGLM
as the rest of the budget is for the extra forward passes. We
report the performance of the five sampling strategies con-
sisting of the inexpensive and the best performing costly
sampling strategy (KMeans), presented in shades of blue,
in Figures 3, 4, and 5 for DI-ImageNet2K, CI-ImageNet2K,
and CGLM, respectively. Other methods are listed in the
Appendix due to lack of space. We compare against a non-
continual learning oracle that performs classical empirical
risk minimization at every step on Tt = ∪t

r=1{(xr
i , y

r
i )}

nr
i=1

with a computational budget of C × t, which we refer to as
ERM-Naive; this is as opposed to the previously mentioned
continual learning methods that have only C per step t spent
equally over all steps. ERM-Naive acts as a training method
with hindsight, spending the complete computational budget
at once after collecting the full dataset. This acts as a very

Attributes ImageNet2K CGLM
Initial memory ImageNet1K {}
Initial memory size 1.2M 0
Per step stream size n 60K 29K
Time steps 20 20
Stream size 1.2M 58K
Size of data by the last time step 2.4M 58K

Stream Class incremental
Data incremental Time incremental

# iterations per time step C 400 100
Training batch size B 1500 1500

Metrics Acc on ImageNet1K
Acc on Stream Acc on Stream

Eq. Distillation Iters 267 67
Eq. Sampling Iters 200 100
Eq. FC Correction Iters 400 100
Iters per t (Sensitivity) 100, 1200 40, 400
Time Steps (Sensitivity) 50, 200 50, 200

Table 2. Experimental Details. The first block shows the various
considered settings in the experiments section. The second block
denotes the effective training iterations C for each class of methods
due to their over head extra computation. The last block details the
setup for our sensitivity analysis.

strong baseline against all continual learning methods. We
report it in shades of red in the same figures. We also report
the average accuracy, averaged over all time steps, for each
sampling method in the yellow box in each figure.
Conclusion. First, we observe that the top inexpensive sam-
pling strategies perform very similarly to each other. This
is consistent across settings, CI-ImageNet2K, and CGLM,
on both ImageNet1K accuracy and Stream Accuracy. There
are some advantages for Class-Balanced over other sampling
strategies, e.g., gaining an average accuracy of 2.5% over
Uniform in DI-ImageNet2K. However, sampling strategies
such as FIFO completely forget ImageNet1K (dark blue
line), leading to poor performance over all three settings. In-
terestingly, costly sampling strategies perform significantly
worse in CL performance over the simple Uniform sampling
when subjected to an effectively similar computational bud-
get. This observation is different from previous settings [35],
as the additional computational overhead of costly sampling
does not seem worthwhile to improve performance.
2. Does Distillation Matter? We evaluate four well-
known distillation losses in our benchmark, namely, Cosine,
CrossEntropy, BCE, and MSE losses. Given that Class-
Balanced is a simple inexpensive sampling procedure that
performed slightly favorably, as highlighted in the previous
section, we use it as a default sampling strategy from now
onward, where the number of samples used per training step
is equal over all classes. We refer to this basic approach with
a cross entropy loss as Naive. To fairly factor in the overhead
of an additional forward pass, distillation approaches are
allowed 2C/3 iterations compared to Naive with C training
iterations. That is, the distillation losses perform 267 itera-
tions for ImageNet2k and 67 iterations for CGLM compared
to 400 and 100 iterations for Naive. We report the results for
Cosine and MSE on DI-ImageNet2K, CI-ImageNet2K, and
CGLM datasets in the first, second, and third rows of Figure
6, respectively. Other methods are left for the Appendix due
to lack of space. Distillation methods are shown in shades
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Figure 7. FC Layer Correction. Even though loss functions (CosineFC and ACE) might outperform Naive in the first few time steps,
eventually Naive catches up. Overall, Naive consistently outperforms all considered calibration methods too, namely, BIC and WA.

Figure 8. CGLM Distillation with Different Number of Time
Steps. Under larger number of time steps, where total number of
iterations is normalized accordingly, Naive outperforms distillation
in both settings, namely, 50 and 200 time steps.

of blue, whereas Naive is shown in shades of red. We report
the average accuracy, averaged over all time steps, for each
distillation method in the yellow box in each figure.
Conclusion. In all three settings, distillation methods
underperform compared to Naive. Even in ImageNet1K
Acc, which measures forgetting, Naive performs simi-
larly or slightly better than all distillation methods in DI-
ImageNet2K and CI-ImageNet2K streams. The results in
Figure 6 show that the top distillation methods, such as MSE,
perform only slightly worse compared to Naive (54.9 vs
55.9 on DI-ImageNet2K and 64 vs 64.9 on CI-ImageNet2K).
However, in CGLM they perform significantly worse (26.4
compared to 35.7) due to the limited iterations. We attribute
this to the fact that distillation methods often require a larger
number of training samples, and thereof a large enough com-
putational budget per time step.
3. Does FC Layer Correction Matter? We evaluate five
FC layer correction approaches from two different families.
A family of methods that modifies the FC layer directly,
including CosineFC [22] and ACE [10, 31, 54]. The other
family of methods applies post-training calibration including
BiC [49], WA [56], along with temperature scaling [20]. All
methods employ Class-Balanced as a sampling strategy and
compare against Naive (Class-balanced with cross entropy
loss) with no corrections in FC layer. The first three subplots
of Figure 7 correspond to comparisons of direct FC layer
modification methods against Naive on DI-ImageNet2K, CI-
ImageNet2K, and CGLM. Since calibration methods tailored
for Class Incremental settings, in the rightmost plot of Figure
7, we report comparisons with Naive on CI-ImageNet2K.
Since all FC layer corrections are with virtually no extra cost,
the number of training iterations per time step is set to C, i.e.,

Figure 9. CGLM Distillation with Different Computational
Budgets. Naive outperforms distillation methods under the re-
stricted 40 and the larger 400 iterations (originally 100). Distilla-
tion methods become competitive when enough budget is available.

400 for ImageNet2K and 100 for CGLM.
Conclusion. No method consistently outperforms Naive
in computationally budgeted continual learning. The first
family of methods helps in DI-ImageNet2K, particularly in
the initial steps due to class imbalance, but no method out-
performs Naive in the CI-ImageNet2K set-up. Calibration-
based methods, such as BIC, are somewhat competitive with
Naive, but WA fails. Surprisingly, even under various FC
correction approaches, all methods fail to outperform Naive
in computationally budgeted continual learning.

4.3. Sensitivity Analysis
We have analyzed the performance of various CL methods

under budgeted computation. We have consistently observed
over a variety of settings on large-scale datasets that a simple
method, i.e., Naive, simply sampling with a Class-Balanced
strategy and a cross entropy loss outperforms all existing
methods. However, all reported results were for 20 time steps
with C = 400 or C = 100 training iterations for ImageNet2K
and CGLM, respectively, in which expensive methods were
normalized accordingly. Now, we analyze the sensitivity of
our conclusions over different time steps and iterations C.
Does the Number of Time Steps Matter? Prior art, such
as GDumb [37], found that the relative performance of CL
methods changes drastically when the number of time steps
is varied. Subsequently, we increased the number of time
steps to 50 and 200 from 20, a more extreme setting than
explored in recent works, while maintaining the same overall
computational budget C eliminating any source of perfor-
mance variation due to a different total computational budget.
This is since per time step, the stream reveals fewer number
of samples n with an increased number of time steps. We
report experiments in the CGLM setting where Naive will re-
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Figure 10. Linear vs Full Model Training. Performing Linear
fine tuning allows to leveraging the computational budget efficiently
improving the gap compared to full model training particularly for
better pretrained models, e.g., Instagram1B+ImNet1K.

ceive only 40 and 10 iterations for the 50 and 200 time steps,
respectively. We consider distillation approaches where they
are permitted 2/3C, which is 27 and 7 iterations, respectively,
on the 50 and 200 time steps, respectively. Note that, in these
settings, per time step, methods observe 2/3 × 11.6K and
2/3 × 2.9K samples, respectively. We leave the experiments
on ImageNet2K for the Appendix due to space constraints.
We compare two distillation methods against Naive in Figure
8. Other methods are presented in the Appendix.

Conclusion. We still consistently observe that Naive outper-
forms all distillation methods on both the 50 and the 200 time
steps. Moreover, the relative performance across distillation
methods is preserved similarly to the 20 time steps setup.
That is, our conclusions are largely robust under different
number of time steps. This is contrary to the observation of
the prior art [37], this is because unlike our setting, [37] does
not scale the compute with increased number of time steps.

Does the Compute Budget Matter? Finally, we explore
the impact of changing the computational budget on the per-
formance of different distillation methods on CGLM under
20 time steps. We study two scenarios, one where the budget
is increased to C = 400 and where it is reduced to C = 40,
originally C = 100 for CGLM. Hence, distillation would be
allocated 267 and 27 iterations in this setting, respectively.
As shown in Figure 2, the higher budget setting allows ap-
proximately a full pass per time step over all stored data. We
leave the experiments on ImageNet2K for the Appendix. We
compare two distillation methods with Naive in Figure 9.
The remaining methods are presented in the Appendix.

Conclusion. Again, we observe that Naive outperforms all
distillation methods in both increased and decreased compute
budget settings. The final gap between MSE distillation and
Naive is 11.41% for C = 40, this gap is reduced to 3.85%
for C = 400. Surprisingly, even with increased compute
budget, distillation methods still fall behind Naive. However,
the reduced gap in performance compared to that of Naive
is a strong indication that the reason behind the failure of
distillation methods is indeed the limited computation.

4.4. Exploring Partial Training
We now investigate the reallocation of the computational

budget through partial training of the model, which is a
model expansion method that involves pre-selecting the sub-
network to be trained. This approach is more computation-
ally efficient, especially on large-scale datasets. The top
(FC) layer is the smallest part of the network that can be
retrained. We compare partial training of the network, i.e.,
FC layer only, to training the full model (Naive) using two
different model initializations, ImageNet1K pretraining [21]
and Instagram1B+ImageNet1K pretraining [30]. Note that
Instagram1B+ImageNet1K is a stronger pretrained model,
with better feature representations. To normalize the com-
putation for the FC partial training, we permit 3C training
iterations compared to full model training (Naive) with C
training iterations. Hence, CGLM FC partial training per-
forms 300 iterations compared to 100 iterations for training
Naive. We present our results in Figure 10, where the shades
of purple and blue represent models trained from pretrained
ImageNet1K and Instagram1B+ImageNet1K models, respec-
tively.
Conclusion. There exists a gap between full model train-
ing and partial FC layer training (Linear). However, this
gap is greatly reduced when a stronger pretrained model is
adopted as an initialization. More specifically, the final gap
drops from 23.73% for ImageNet1K initialization to 9.45%
for Instagram1B+ImageNet1K initialization. Partial train-
ing of the FC layer for Instagram1B+ImageNet1K model
initialization outperforms ImageNet1K full model training
on average, over time steps, by 8.08%, which verifies that
partially training a strong backbone could be more beneficial
than fully training a weaker one.

5. Conclusion
Existing CL algorithms, such as sampling strategies, dis-

tillation, and FC layer corrections, fail in a budgeted compu-
tational setup. Simple Naive methods based on experience
replay outperform all the considered CL methods. This con-
clusion was persistent even under various computational
budgets and an increased number of time steps. We find that
most CL approaches perform worse when a lower computa-
tional budget is allowed per time step.
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