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Figure 1. Based on sparse input views, we predict depth and feature maps to infer a volumetric scene representation in terms of a radiance

field which enables novel viewpoint synthesis. The depth information allows us to use input views with high relative distance such that the

scene can be captured more completely and with higher synthesis quality compared to previous state-of-the-art methods.

Abstract

We present Depth-aware Image-based NEural Radiance

fields (DINER). Given a sparse set of RGB input views, we

predict depth and feature maps to guide the reconstruction

of a volumetric scene representation that allows us to ren-

der 3D objects under novel views. Specifically, we propose

novel techniques to incorporate depth information into fea-

ture fusion and efficient scene sampling. In comparison to

the previous state of the art, DINER achieves higher synthe-

sis quality and can process input views with greater dispar-

ity. This allows us to capture scenes more completely with-

out changing capturing hardware requirements and ulti-

mately enables larger viewpoint changes during novel view

synthesis. We evaluate our method by synthesizing novel

views, both for human heads and for general objects, and

observe significantly improved qualitative results and in-

creased perceptual metrics compared to the previous state

of the art. The code is publicly available through the Project

Webpage.

1. Introduction

In the past few years, we have seen immense progress in

digitizing humans for virtual and augmented reality applica-

tions. Especially with the introduction of neural rendering

and neural scene representations [43, 44], we see 3D digital

humans that can be rendered under novel views while being

controlled via face and body tracking [3, 11, 14, 15, 24, 32,

37,47,50,51,58]. Another line of research reproduces gen-

eral 3D objects from few input images without aiming for

control over expressions and poses [5,25,38,41,46,56]. We

argue that this offers significant advantages in real-world

applications like video-conferencing with holographic dis-

plays: (i) it is not limited to heads and bodies but can also

reproduce objects that humans interact with, (ii) even for

unseen extreme expressions, fine texture details can be syn-

thesized since they can be transferred from the input im-

ages, (iii) only little capturing hardware is required e.g.

four webcams suffice, and (iv) the approach can generalize

across identities such that new participants could join the

conference ad hoc without requiring subject-specific opti-

mization. Because of these advantages, we study the sce-

nario of reconstructing a volumetric scene representation

for novel view synthesis from sparse camera views. Specif-

ically, we assume an input of four cameras with high rel-

ative distances to observe large parts of the scene. Based

on these images, we condition a neural radiance field [27]

which can be rendered under novel views including view-

dependent effects. We refer to this approach as image-based

neural radiance fields. It implicitly requires estimating the
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scene geometry from the source images. However, we ob-

serve that even for current state-of-the-art methods the ge-

ometry estimation often fails and significant synthesis arti-

facts occur when the distance between the source cameras

becomes large because they rely on implicit correspondence

search between the different views. Recent research demon-

strates the benefits of exploiting triangulated landmarks to

guide the correspondence search [25]. However, landmarks

have several drawbacks: They only provide sparse guid-

ance, are limited to specific classes, and the downstream

task is bounded by the quality of the keypoint estimation,

which is known to deteriorate for profile views.

To this end, we propose DINER to compute an image-

based neural radiance field that is guided by estimated dense

depth. This has significant advantages: depth maps are not

restricted to specific object categories, provide dense guid-

ance, and are easy to attain via either a commodity depth

sensor or off-the-shelf depth estimation methods. Specif-

ically, we leverage a state-of-the-art depth estimation net-

work [8] to predict depth maps for each of the source views

and employ an encoder network that regresses pixel-aligned

feature maps. DINER exploits the depth maps in two im-

portant ways: (i) we condition the neural radiance field

on the deviation between sample location and depth esti-

mates which provides strong prior information about visual

opacity, and (ii) we focus sampling on the estimated sur-

faces to improve sampling efficiency. Furthermore, we im-

prove the extrapolation capabilities of image-based NeRFs

by padding and positionally encoding the input images be-

fore applying the feature extractor. Our model is trained on

many different scenes and at inference time, four input im-

ages suffice to reconstruct the target scene in one inference

step. As a result, compared to the previous state of the art,

DINER can reconstruct 3D scenes from more distinct source

views with better visual quality, while allowing for larger

viewpoint changes during novel view synthesis. We eval-

uate our method on the large-scale FaceScape dataset [54]

on the task of novel view synthesis for human heads from

only four highly diverse source views and on general ob-

jects in the DTU dataset [18]. For both datasets, our model

outperforms all baselines by a significant margin.

In summary, DINER is a novel method that produces vol-

umetric scene reconstructions from few source views with

higher quality and completeness than the previous state of

the art. In summary, we contribute:

• an effective approach to condition image-based NeRFs

on depth maps predicted from the RGB input,

• a novel depth-guided sampling strategy that increases

efficiency,

• and a method to improve the extrapolation capabilities

of image-based NeRFs by padding and positionally en-

coding the source images prior to feature extraction.

2. Related Work

Our work is related to recent approaches on 3D head

avatar generation, and to general neural radiance fields that

are reconstructed from a sparse set of input images.

Neural Radiance Fields Neural radiance fields (NeRF)

[27] and their derivatives have become a popular choice

for representing photo-realistic 3D scenes, both for static

[1, 4, 22, 26, 28, 35, 42, 53] and dynamic [11, 19, 30, 31, 33]

cases. While originally requiring many training images per

scene and long training and inference times, latest research

focused on increasing data sufficiency [7,29,35,36] as well

as making NeRFs more efficient and faster [4,6, 13,17,28].

Some of these methods even exploit depth information

[7, 35, 36], however, they employ it during scene-specific

optimization.

Image-Based Rendering The above methods require

scene-specific optimization which is time-consuming and

expensive. Methods that extract features from as little as

one source image and warp them for novel view synthe-

sis [9, 39, 48, 57] offer a fast and efficient alternative but

produce artifacts for strong rotations. Image-based NeRFs

[5, 25, 46, 56] solve such artifacts through explicit 3D rea-

soning by using few source images to reconstruct NeRF-

like representations in one inference step. However, for

source images with small overlap artifacts occur. Triangu-

lated landmarks may be used to guide the geometry esti-

mation [25], but they only offer sparse guidance and can-

not be applied to arbitrary objects. Our method instead

exploits depth maps which are more general and provide

denser guidance.

Head Avatars The research on head avatar synthesis can

be separated along many dimensions [43, 59]. With regard

to the choice of representation, the different approaches ei-

ther rely on image-to-image translation [2, 21, 39, 45, 57],

volumetric rendering [11, 12, 16, 24, 37, 49, 50], or non-

transparent surface textures [3,10,14,20,34,58]. The meth-

ods reconstruct head avatars from as little as one source im-

age [2,9,16,20,39,48,57], monocular videos [3,11,14,21],

or entire camera domes [12, 23, 24, 49, 50]. Our method re-

lies on four source images to reconstruct a volumetric head

representation, allowing us to synthesize even thin semi-

transparent structures like hair plausibly. The focus of our

method is not to learn an animatable avatar, instead, we fo-

cus on reconstructing a high-quality volumetric representa-

tion from few (e.g., four) and widely spaced source views

to enable light-weight capture of immersive, viewpoint-

independent video (e.g., for 3D telepresence applications).

Furthermore, our approach is not limited to human heads

but can be applied to general objects as well.
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Figure 2. Method overview. Given few source images, we first regress depth and feature maps. Image padding and positional encoding

prior to the feature map prediction improve extrapolation beyond the source image frustums (Section 4.2). Sampled points along target

rays are projected onto the source camera planes to interpolate feature vectors ω
(i) and the deviations ∆

(i)
z between the sampling point

and predicted depth. They are processed into view-wise intermediate feature vectors V (i) (Section 4.1). The average-pooled intermediate

feature vectors of all source views determine the color c and opacity σ of each sampling point. The final colors of the target rays are

obtained through standard volumetric rendering (1). Depth-guided sampling increases sampling efficiency (Section 4.3).

3. Background

Before detailing the architecture of our pipeline, we

briefly review the concepts which it is based on, namely

NeRFs in general and image-based NeRFs in particular, and

introduce the used notation.

NeRF Neural radiance fields (NeRF) [27] employ multi-

layer perceptrons (MLP) to implicitly parameterize a con-

tinuous volumetric function f that maps a 3D position x and

a view direction vector d to a view-dependent color value c

and an isotropic optical density σ, so that (c, σ) = f(x,d).
To render the scene, rays are cast into the scene for ev-

ery pixel of the target image. We assume such a ray is

parametrized by r(t) = o + t · d with near and far plane

tnear, tfar respectively. NeRF samples 3D points along the

ray tj ∼ [tnear, tfar], estimates their color and optical density

(cj , σj) = f(r(tj),d), and integrates the results along the

ray following volumetric rendering:

Ĉ(r) =
N
∑

i=j

Tj(1−exp(−σjδj))cj with Tj = exp



−

j−1
∑

k=1

σkδk



 , (1)

where δj = tj+1 − tj denotes the distance between adja-

cent samples. In practice, NeRF employs a coarse-to-fine

strategy to place samples more efficiently: a coarse MLP is

queried to determine regions of importance around which

the sample density is increased for evaluating a fine MLP

that regresses the final ray color.

Image-Based NeRFs Image-based NeRFs enable gener-

alization across scenes by conditioning the NeRF on fea-

tures extracted from source images. We build our model on

top of the pixelNeRF [56] pipeline. Assuming N source

images {I(i)}Ni=1 with known extrinsics P (i) = [R(i)
t
(i)]

and intrinsics K
(i), a 2D-convolutional encoding network

E extracts feature maps W (i) for each source image:

W
(i) = E(I(i)). (2)

For obtaining the color and opacity of a point, its 3D po-

sition x and view direction d are first transformed into the

source view coordinate systems:

x
(i) = P

(i) ◦ x, d
(i) = R

(i) ◦ d, (3)

after which x
(i) is projected onto the respective feature map

to sample a feature vector ω(i) trough bilinear interpolation:

ω
(i) = W

(i)
(

K
(i) ◦ x(i)

)

. (4)

The NeRF MLP f is split into two parts, f1 and f2. f1 pro-

cesses the input coordinates of the sampling point along-

side the sampled feature vectors into intermediate feature

vectors V (i) for every view independently:

V
(i) = f1

(

x
(i),d(i),ω(i)

)

. (5)

The feature vectors from different views are aggregated

through average pooling and then processed by f2 to regress

the final color and density values:

c, σ = f2

(

meani

{

V
(i)
})

. (6)

During training, the l1 distance between estimated ray col-

ors and ground truth RGB values is minimized.
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4. Method

Given a sparse set of input images {I(i)} (i = 1...N = 4),

our approach infers a NeRF which allows rendering novel

views of the scene. We estimate the depth in the given input

views and propose two novel techniques to leverage this in-

formation during scene reconstruction: (i) the NeRF MLP is

conditioned on the difference between sample location and

estimated depth which serves as a strong prior for the vi-

sual opacity (Section 4.1), and (ii) we focus the scene sam-

pling on the estimated surface regions, i.e. on regions that

actually contribute to the scene appearance (Section 4.3).

Furthermore, we propose to pad and positionally encode

the source images prior to the feature extraction to improve

extrapolation capabilities beyond the source view frustums

(Section 4.2). Please refer to Figure 2 for an overview of

our pipeline.

4.1. Depth Conditioning

Our method is based on pixelNeRF (see Section 3) and

leverages the attention-based TransMVSNet [8] architec-

ture to estimate depth from the sparse observations. Trans-

MVSNet takes all four input images I
(i) as input and pre-

dicts the per-view depth maps D
(i) as well as the corre-

sponding standard deviations Dstd
(i). For each sampling

point x, we calculate the difference ∆
(i)
z between its z-

component in the i-th camera space and its corresponding

projected depth value: ∆
(i)
z = D

(i)
(

K
(i) ◦ x(i)

)

− x
(i)
[z] ,

which is input to the pixelNeRF MLP f1 as additional con-

ditioning:

V
(i) = f1

(

x
(i),d(i),ω(i), γ

(

∆(i)
z

))

. (7)

γ(·) denotes positional encoding with exponential frequen-

cies as proposed in [27].

4.2. Source Feature Extrapolation

When projecting sampling points on the source feature

maps, image-based NeRFs typically apply border padding,

i.e. points outside the map’s boundaries are assigned con-

stant feature vectors irrespective of their distance to the fea-

ture map. During synthesis, this causes smearing artifacts

in regions that are not visible by the source images (see Fig-

ure 5, third column). To solve this, we make two modifica-

tions to the source images I(i) before applying the encoder

network E . We apply border padding and add channels with

positional encodings of the padded pixel coordinates, result-

ing in I
′(i) = concatenate

(

I
(i)
pad,Γ

)

, where Γ contains

the pixel-wise positional encodings for the padded regions:

Γ[u,v] =

{

γ(u, v) if (u, v) ̸∈ I
(i)

0 if (u, v) ∈ I
(i).

(8)

The positional encoding supports E in regressing distinctive

features in padded regions where the extrapolated color val-

ues are constant.

4.3. Depth­Guided Sampling

Since only object surfaces and the immediate surround-

ings contribute to ray colors, we aim to focus our sampling

on these regions. The estimated depth maps provide strong

priors about the placements of such surfaces. This allows

us to increase the sample density in relevant regions which

improves the synthesis quality (see Section 5.2). Figure 3

provides an overview of our approach. Note that while pre-

vious work incorporates depth information of target views

during NeRF training [7, 35, 36], we are the first to exploit

depth from input views that do not coincide with the target

view and which we predict both at training and test time.

Depth-Guided Probability Fields For each input image,

the depth estimator provides pixel-wise depth expectation

values D
(i) and standard deviations Dstd

(i). These maps

define pixel-aligned probability density fields for the pres-

ence of object surfaces. Assuming a ray r(t) with near

plane tnear and far plane tfar, we first uniformly sample a

large set of Ncand candidate samples along the ray :

{x} = {r(t) | t ∼ [tnear, tfar]} . (9)

For each of the input views, we project {x} onto the respec-

tive depth maps and determine the likelihood of x being a

surface point:

p(i)(x) =
1√
2πσ

∫ z+δ/2

z−δ/2

e
− 1

2

(

z′−µ
σ

)2

dz′, (10)

with µ = D
(i)

(

K
(i) ◦ x(i)

)

, z = x
(i)

[z] ,

σ = D
(i)
std

(

K
(i) ◦ x(i)

)

, δ = (tfar − tnear)/Ncand.

We perform backface culling by first calculating normals

from each depth map and then discarding samples if the an-

gle between the ray direction and the projected normal value

is smaller than 90◦. The likelihood p(x) of a point coincid-

ing with a surface is determined by view-wise max-pooling:

p(x) = max
i

{

p(i)(x)
}

. (11)

We shortlist Nsamples candidates with the highest likelihoods

for sampling the NeRF.

Gaussian Boosting To further improve sampling effi-

ciency, we sample additional points around the termination

expectation value of the ray. The occlusion-aware likeli-

hoods of the ray r terminating in sample x is given by:

poa(x) = p(x) ·
∏

{x̃ | x̃[t]<x[t]}
(1− p(x̃)). (12)
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Figure 3. Depth-guided sampling. We sample candidate points along the target ray and evaluate their surface likelihoods given the depth

estimates for each input view. The view-wise likelihoods are aggregated through max-pooling and we shortlist the most-likely samples.

Additional points are sampled according to a Gaussian distribution that was fitted against the occlusion-aware likelihoods of all candidates.

Please note the simplified notation x[t] := t so that

r(t) = x. We fit a Gaussian distribution against the

occlusion-aware likelihoods along the ray (see Figure 3

right) and sample Ngauss points from it which are added to

the shortlisted candidates.

4.4. Loss Formulation

Our loss formulation consists of a per-pixel reconstruc-

tion error Ll1 as well as a perceptual loss Lvgg [40]. While

a perceptual loss improves high-frequency details, it can in-

troduce color shifts (see Figure 5). Thus, we introduce an

anti-bias term Lab which corresponds to a standard l1 loss

that is applied to downsampled versions of prediction and

ground truth. Lab effectively eliminates color shifts while

being robust against minor misalignments, hence in contrast

to the standard l1 loss, it does not introduce low-frequency

bias. Let P denote the ground truth image patch and P̂ its

predicted counterpart, then Lab is given by:

Lab =
∣

∣

∣

∣

∣

∣
DSk(P )− DSk(P̂ )

∣

∣

∣

∣

∣

∣

1

1
, (13)

where DSk(·) denotes k-fold downsampling. Our full ob-

jective function is defined as:

L = wl1 · Ll1 + wvgg · Lvgg + wab · Lab, (14)

where Ll1 corresponds to a pixel-wise l1 distance. We use

an Adam optimizer with standard parameters and a learning

rate of 10−4 and train on patches of 64 × 64 px on a sin-

gle NVIDIA A100-SXM-80GB GPU with batch size 4 for

330k iterations which takes 4 days. Note that depth-guided

sampling allows reducing the samples per ray by a factor

of 4 w.r.t. pixelNeRF because samples are focused on non-

empty areas which improves the performance (see Table 2).

5. Results

We conduct the validation of our approach on the

FaceScape dataset [54] which contains more than 400k por-

trait photographs of 359 subjects under 20 different expres-

sions captured with a rig of approximately 60 cameras, pro-

viding camera parameters and a 3D mesh that can be used

to render the ground truth depth maps and segmentations

for training. Four of the captured subjects consented to the

public display of their data which determined our training

and validation splits. We apply post-processing in terms of

color calibration and unification of depth ranges, crop the

images around the face region and rescale it to 256 × 256
px. We sample source view quadruples spanning horizon-

tal and vertical angles of 45° and 30° respectively. Target

views are sampled between the source views which results

in 500k samples for training and 7k for validation.

Baselines We compare our approach against the state-of-

the-art methods pixelNeRF [56], IBRNet [46], and Key-

pointNeRF [25] using the author’s codebases. pixel-

NeRF [56] enables NeRFs to generalize across scenes by

conditioning them on feature maps extracted from posed

source views. IBRNet [46] adds a transformer architecture

and estimates blend weights for the source images instead

of regressing color directly. KeypointNeRF [25] adds trian-

gulated landmarks to guide the geometry estimation. In the

official implementation, KeypointNeRF only renders the in-

tersection of the source view frustums which we changed to

their union in order to be able to cope with partial observa-

tions in source views. Since off-the-shelf keypoint detectors

struggle with strong head rotations, we provide Keypoint-

NeRF with ground truth keypoints. We also evaluate a ver-

sion of our method that does not include the perceptual loss

and anti-bias term (see Section 4.4).
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Figure 4. Qualitative comparison on FaceScape. IBRNet and KeypointNeRF produce artifacts for regions outside of the source images

(pink). pixelNeRF handles these aspects better but produces blurry results. KeypointNeRF synthesizes heads with deformations (orange).

Even without the perceptual loss, our method yields better results and adding the perceptual loss further emphasizes high-frequency details.
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Figure 5. Qualitative ablation study. Starting with pixelNeRF [56] (first row, first column) as a baseline, we progressively add the

components of our method and demonstrate their effects until we reach our final model (second row, last column).

Method LPIPS ↓ PSNR ↑ SSIM ↑ L1 ↓ L2 ↓
IBRNet [46] 0.159 22.7 0.89 0.025 0.006
pixelNeRF [56] 0.165 23.54 0.90 0.021 0.005
KeypointNeRF [25] 0.148 18.39 0.86 0.036 0.017

Ours w/o Lvgg 0.137 24.40 0.92 0.018 0.004

Ours 0.099 22.42 0.91 0.020 0.007

Table 1. Quantitative comparisons on FaceScape show that our

method has a significantly lower perceptual error in comparison to

state-of-the-art methods while having on-par pixel-wise errors.

Metrics We quantitatively evaluate the performance of

our model through the pixel-wise Manhattan and Euclidean

distances (L1) and (L2), structural similarity (SSIM),

learned perceptual image patch similarity (LPIPS), and the

peak signal-to-noise ratio (PSNR).

5.1. Novel View Synthesis

Figure 4 displays a qualitative comparison between our

method and the baselines on the FaceScape dataset [54].

IBRNet [46] generally performs well in regions that project

onto large areas on the source images, e.g., wrinkles in the

mouth region for extreme expressions are synthesized con-

vincingly. However, especially the eye regions project onto

small areas and IBRNet fails to produce plausible results.

Regions that lie outside of the source views show signifi-

cant artifacts. pixelNeRF [56] solves these cases better but

tends to produce blurry results. KeypointNeRF [25] syn-

thesizes high-frequency details very plausibly but shows ar-

tifacts for regions outside of the source views and we also

noticed severe deformations of the overall head shape. We

attribute these deformations to the sparsity of the triangu-

lated landmarks. The dense guidance by depth maps in

our method effectively solves this artifact and similarly to

pixelNeRF, regressing color values directly allows us to

plausibly synthesize regions that lie outside of the source

views. At the same time, even without a perceptual loss, our

method synthesizes high-frequency details better than IBR-

Net and pixelNeRF. Adding a perceptual loss emphasizes

high-frequency detail synthesis even more and yields re-

sults that qualitatively outperform all baselines even though

pixel-wise scores slightly worsen (see Table 1).

5.2. Ablation Study

Since our approach is based on pixelNeRF [56], we per-

form an additive ablation study to evaluate the contribu-

tions of our changes in which we progressively add our

novel components and discuss their effects on the model

performance. Figure 5 visualizes the qualitative effects

by progressively introducing one new component per col-

umn. Table 2 provides the quantitative evaluation. First,

we add depth awareness to pixelNeRF (Section 4.1) which

improves the overall synthesis quality and all scores. The

perceptual loss Lvgg adds more high-frequency details but

pixel-wise scores degrade slightly. Source feature extrap-

olation (Section 4.2) counters smearing artifacts that oc-

cur in regions that are invisible in the source views. Color

shifts that appeared after adding Lvgg can be eliminated with

the anti-bias loss Lab (Section 4.4). Depth-guided sam-

pling (Section 4.3) increases the sampling density around
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Method LPIPS ↓ L1 ↓ L2 ↓ PSNR ↑ SSIM ↑
pixelNeRF [56] 0.16 0.021 0.005 23.54 0.90
+ Depth Awareness 0.15 0.020 0.005 23.71 0.91

+ Perc. Loss Lvgg 0.11 0.032 0.008 21.66 0.89
+ Source Feature Extrapolation 0.11 0.029 0.008 21.96 0.90
+ Anti-bias Loss Lab 0.11 0.022 0.008 22.02 0.90
+ Depth-Guided Sampling 0.12 0.023 0.008 21.95 0.90
+ Increased Batch Size 0.10 0.020 0.007 22.42 0.91

Table 2. Quantitative ablation study on FaceScape [54].

the head surface and especially improves the synthesis qual-

ity of thin surfaces like ears. As a side effect, it also allows

us to reduce the number of samples per ray and increase the

batch size from 1 to 4 without changing GPU memory re-

quirements. This stabilizes training such that minor artifacts

vanish and consistently improves all metrics.

5.3. Generalization to out­of­train­distribution data

The Facescape dataset [54] used for training DINER is

restricted to subjects of Asian ethnicity wearing a red swim-

ming cap. However, especially for video-conferencing ap-

plications it is crucial that models generalize well to out-of-

train-distribution data to prevent discrimination of under-

represented minorities. We demonstrate the generalization

capabilities of DINER in Fig. 6 by applying it to two sub-

jects from the Multiface dataset [52]. Despite their highly

different ethnicities and headwear, DINER yields plausible

synthesis results. In the suppl. video we further show that

despite only being trained on static frames, DINER exhibits

high temporal stability for continuous sequences.

Source Views Prediction Prediction Source Views

Figure 6. Generalization to out-of-train-distribution samples with

different ethnicities and headwear.

5.4. Novel View Synthesis on General Objects

We further evaluate DINER on general objects in the

DTU dataset [18]. We follow the training/validation split

convention proposed in [56], adopt the preprocessing steps

from [8], and apply additional 2-fold downsampling to ob-

tain images with resolution 256 × 320 px. Similar to the

training on FaceScape, we sample source view quadruples

spanning horizontal and vertical angles of ≈ 50◦ and ≈ 35◦

respectively which results in 30k samples for training and

5k for validation. In Figure 7, we show the comparison

of our method to the baselines. Note that KeypointNeRF is

IBRNet [46] pixelNeRF [56] Ours w/o Lperc Ours Ground Truth

Figure 7. Qualitative comparison on DTU [18] which consists of

a variety of objects like a bucket (1rst row) or bricks (2nd row).

class-specific and can not be applied to general objects. The

results demonstrate that our method outperforms all base-

lines by a significant margin, see suppl. material for the

quantitative evaluation.

6. Discussion

DINER excels at synthesizing photo-realistic 3D scenes

from few input images. Still, some challenges remain be-

fore it may be used for real-world applications such as im-

mersive video conferencing. Similar to most NeRF-based

methods, our rendering speed is slow. Despite improved

sampling efficiency through depth guidance, the synthesis

of a 2562 px image still takes two seconds. While real-time-

capable NeRF methods exist [13,28,55], none of them gen-

eralizes across scenes yet. As our method relies on a depth

prediction network, we are bound by its accuracy. However,

it could be replaced by Kinect-like depth sensors.

7. Conclusion

We presented depth-aware image-based neural radiance

fields (DINER) which synthesize photo-realistic 3D scenes

given only four input images. To capture scenes more com-

pletely and with high visual quality, we assume to have in-

put images with a high disparity. We leverage a state-of-

the-art depth estimator to guide the implicit geometry es-

timation and to improve sampling efficiency. In addition,

we propose a technique to extrapolate features from the

input images. Our experiments show that DINER outper-

forms the state of the art both qualitatively and quantita-

tively. DINER’s ability to reconstruct both human heads as

well as general objects with high quality is vital for real-

world applications like immersive video conferencing with

holographic displays.
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