
Ground-Truth Free Meta-Learning for Deep Compressive Sampling

Xinran Qin1,2 Yuhui Quan1,2* Tongyao Pang3 Hui Ji3
1School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

2 Pazhou Lab, Guangzhou 510335, China
3 Department of Mathematics, National University of Singapore, 119076, Singapore

csqinxinran@gmail.com, csyhquan@scut.edu.cn, matpt@nus.edu.sg, matjh@nus.edu.sg †

Abstract

Compressive sampling (CS) is an efficient technique for
imaging. This paper proposes a ground-truth (GT) free
meta-learning method for CS, which leverages both ex-
ternal and internal deep learning for unsupervised high-
quality image reconstruction. The proposed method first
trains a deep neural network (NN) via external meta-
learning using only CS measurements, and then efficiently
adapts the trained model to a test sample for exploit-
ing sample-specific internal characteristic for performance
gain. The meta-learning and model adaptation are built on
an improved Stein’s unbiased risk estimator (iSURE) that
provides efficient computation and effective guidance for
accurate prediction in the range space of the adjoint of the
measurement matrix. To improve the learning and adap-
tion on the null space of the measurement matrix, a modi-
fied model-agnostic meta-learning scheme and a null-space
consistency loss are proposed. In addition, a bias tuning
scheme for unrolling NNs is introduced for further acceler-
ation of model adaption. Experimental results have demon-
strated that the proposed GT-free method performs well and
can even compete with supervised methods.

1. Introduction
CS is an imaging technique that captures an image by

collecting a limited number of measurements using a spe-
cific measurement matrix [5]. This technique has a wide
range of applications, including magnetic resonance (MR)
imaging, computed tomography (CT), and many others.
One main challenges in CS is reconstructing an image from
its limited measurements. Let x ∈ RN denote an image of
interest, y ∈ CM its CS measurement vector withM � N ,
and Φ the measurement matrix. Then the CS reconstruction
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needs to solve an under-determined system:

y = Φx+ ε, (1)

where ε ∈ CM denotes measurement noise. As Φ is under-
determined, a direct inversion suffers from solution ambi-
guity and noise sensitivity.

Supervised learning is one popular approach for CSR,
which trains an end-to-end NN for CSR over a dataset with
pairs of a GT image and its measurements; see e.g. [11,
42, 45, 47]. However, supervised CSR has two limitations.
Firstly, it is often expensive or even impractical to collect a
sufficient number of GT images in practice. Consequently,
the NN trained using a limited amount of external training
data may not generalize well. Secondly, the training data
may be biased or insufficient to cover the full range of pat-
terns and characteristics of the images being reconstructed,
resulting in poor generalization performance.

Recently, many works (e.g. [6, 7, 27, 50]) have sought to
address the first limitation of supervised CSR by developing
GT-free external learning techniques, which train an end-to-
end NN without accessing GT images. Quite a few meth-
ods along this line are based on the Stein’s unbiased risk
estimator (SURE) [37]. While they have shown promise,
there remains a noticeable performance gap between these
GT-free techniques and existing supervised methods.

To address the second limitation of supervised CSR,
there are also some works on self-supervised internal learn-
ing, which train a deep NN model directly on a test sam-
ple to exploit sample-specific internal characteristics; see
e.g. [15, 30, 39]. These methods are based on the deep im-
age prior (DIP) [38] induced by the structures of a convo-
lutional NN (CNN). The downside of these methods is their
computational efficiency. Since each test example requires
learning an individual model, processing a large number of
test samples can be time-consuming and overwhelming.

Motivated by the pros and cons of existing works on ex-
ternal and internal learning, this paper aims at developing a
GT-free joint external and internal learning method for CSR
that takes the full advantages of both:
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• Same as existing external learning methods, it trains a
model using an external dataset in an offline manner. The
advantage is that the resulting model trained without GTs
can compete well against its supervised counterparts.

• Same as existing internal learning methods, it is GT-free
and its model is adaptive to test samples to reduce dataset
bias. The advantage is that it is much more computation-
ally efficient when processing many test samples.

This paper proposes a GT-free meta-learning method for
CSR that achieves these goals. Meta-learning is about
“learning to learn” which develops a learning model that
can learn new concepts or fast adapt to new environments
with efficient updates to an existing model. Different from
existing works which access GT images for meta-learning
(e.g. [21, 40]), we consider a GT-free environment where
only measurement data is available during training. In the
training stage, our proposed method trains a deep NN model
so that not only it can reconstruct high-quality images, but
also its weights are suitable for efficient test-time model
adaption (i.e. internal learning). Then, in the test stage, the
meta-trained model can be efficiently adapted to each test
sample for further performance improvement.

Since no GT images are exposed to meta-learning and
model adaptation, the key challenge is how to train the
model to make accurate predictions solely based on mea-
surement data. Motivated by SURE-based unsupervised
learning, we propose a SURE-motivated self-supervised
loss function, called iSURE (“i” for “improved”). Simi-
lar to SURE, iSURE provides an unbiased estimate of the
mean squared error in range(ΦH) (range space of adjoint
of Φ), but using noisier input. The gradients derived from
iSURE result in a more computationally efficient iteration
scheme than existing SURE-based loss functions. Further-
more, the noise injection in iSURE also helps to alleviate
potential overfitting during model training and adaptation.

Built upon the iSURE, an unsupervised training scheme
is developed with the integration of model-agnostic meta-
learning (MAML) [12]. MAML is a gradient-based meta-
learning algorithm, which trains a model such that a small
number of gradient updates on it will give a model to per-
form well on a new task. In our method, each target task is
defined as the self-supervised reconstruction on a test sam-
ple via iSURE. Similar to other SURE variants, the iSURE
defined on range(ΦH) does not address the solution ambi-
guity caused by non-empty null(Φ) (null space of Φ). For-
tunately, the DIP from a CNN imposes implicit regulariza-
tion on the output, partially addressing such ambiguity. To
further reduce ambiguity, an ensemble-based sub-process is
introduced into MAML. The basic idea is that the CNN with
re-corrupted inputs in iSURE is likely to generate estimates
with some degree of diversity on null(Φ), and the ensemble
of these estimates will refine the prediction in null(Φ).

The adaption that only updates the gradients via iSURE

ignores the influence on the prediction on null(Φ). Thus,
an additional loss on the prediction consistency in null(Φ)
between the original and adapted models is adopted, which
provides guidance on reducing the solution ambiguity in
null(Φ) during adaption. To further accelerate the adapta-
tion process, we use an unrolling CNN and propose a bias-
tuning scheme that only adapts the bias parameters of the
unrolling CNN. The motivation stems from the similarity
between the bias parameters in an unrolling CNN and the
threshold values in a shrinkage-based scheme for CSR.

To summarize, this paper proposes a GT-free meta-
learning method for CSR, with the following contributions:

• An iSURE loss function for GT-free meta-learning and
model adaption, which results in a more efficient and ef-
fective scheme for mitigating overfitting compared to ex-
isting SURE-based loss functions;

• A meta-learning process based on MAML and iSURE
for learning CSR from external GT-less data, with an en-
semble sub-process for improving null-space learning;

• A model adaption scheme using iSURE and null-space
consistency, which exploits internal characteristics of a
test sample for more accurate prediction;

• A bias-tuning scheme for accelerating the adaption of
unrolling CNNs, with little reconstruction accuracy loss.

The experiments demonstrate that the proposed method out-
performs GT-free learning methods and competes with su-
pervised methods, while being faster than internal methods.

2. Related Work

Deep external learning for CSR Supervised methods use
an external dataset to train a deep NN for CSR, with a focus
on architecture design. One popular design is the physics-
aware CNNs that incorporate CS models via deep unrolling,
often implemented by replacing prior-related operations
in an iterative algorithm using convolutional blocks, e.g.,
[11,13,16,28,41,44–48]. To avoid collecting paired data in
supervised learning, the plug-and-play methods (e.g. [18])
call some pre-trained denoiser(s) in a deep unrolling model,
while the generative methods (e.g. [17, 23]) call generative
models pre-trained on domain-specific images for estima-
tion. Nevertheless, these methods still rely on latent images.

There is an increasing interest in GT-free external learn-
ing. Xia et al. [43] used measurement samples collected
by two sensors to derive a self-supervised consistency
loss. Working on single measurement samples, Metzler et
al. [27] as well as Zhussip et al. [50] proposed to train
with SURE-based denoisers. Chen et al. [6, 7] proposed
the equivalent imaging framework which showed improve-
ment over SURE-based methods. Quan et al. [34] proposed
a joint self-supervised learning and model adaption scheme
which leads to further improvement.
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Deep internal learning for CSR Methods along this line
express the target image by an untrained CNN fit on the test
sample. Their foundation is DIP [38] that demonstrates the
inductive biases of CNNs towards regular image structures
over random patterns, with additional regularizations used,
e.g., the explicit ones via a specific CNN structure [15, 30]
or the implicit ones via random sampling [39]. While in-
ternal learning shows promising performance by exploiting
the characteristics of a test sample, its per-sample train-
ing is computationally expensive, which is addressed in
our method by meta-learning and model adaption. Though
model adaption has been investigated in [2, 14, 34], these
works left a lot of room for improvement in both compu-
tational efficiency and prediction accuracy. Recently, for
efficiency improvement, Mohan et al. [29] proposed the
gain-tuning, re-weighting of feature maps, for fast adaption
of denoising models. However, gain-tuning does not work
well for our problem, and instead we propose a bias-tuning
scheme which is more effective.
Meta-learning for image restoration and reconstruction
There is increasing attention in applying meta-learning for
fast model adaption in image recovery, and MAML is of-
ten used for its simplicity; see e.g. denoising [21], deblur-
ring [8] and super-resolution [22, 32, 36]. One related work
to ours is [40] that applies meta-learning for CSR of videos.
All these works are supervised and need GTs for training.
SURE and its variants for image recovery reconstruc-
tion The gSURE [10] generalized the SURE as a regu-
larization term in range(ΦH) to solving inverse problems.
The eSURE [51] extended SURE to paired noisy images
for training a denoising NN. In the context of unsupervised
deep learning, Metzler et al. [27] applied SURE to image
denoising and CSR. The EnSURE [3] applies SURE with
multiple measurement matrices for having an unbiased es-
timate beyond range(ΦH) via ensemble. Quan et al. [34]
revealed the connection between SURE and the R2R [31],
a self-supervised loss for denoising and other image recov-
ery tasks [33, 49]. Compared to gSURE, our iSURE addi-
tionally injects noise into input data, which leads to a more
efficient iterative scheme. In comparison to EnSURE, our
method only assumes a single measurement matrix, and we
exploit noise injection for self-ensemble during learning.

3. Methodology
Consider a GT-free training dataset D := {y}y with the

measurements y generated by some measurement matrix Φ.
Denote a CNN with weights ω by

Fω(·, ·) : (CM ,CM×N )→ RN , (2)

which reconstructs latent images from their measurements
and measurement matrix. Our proposed method has two
steps: 1) Using unsupervised meta-learning to train Fω on

D for better test-time model adaptation; and 2) Running Fω
on all test samples with ω fine-tuned (adapted) to each one.

3.1. iSURE Loss

Both the meta-learning and model adaption are based on
a self-supervised loss motivated by SURE. For Gaussian
white noise ε ∈ N (0, σ2I), a direct adoption of SURE (e.g.
gSURE [10]) to our problem can be expressed by the loss

`SURE(ω;y,Φ) := ‖ΦFω(y,Φ)− y‖22
+ 2σ2tr

(
Φ(∂Fω(y,Φ)/∂y)

)
,

(3)

where tr(·) denotes matrix trace and
(
∂Fω(y,Φ)/∂y

)
ij

=

∂
(
Fω(y,Φ)

)
i
/∂yj . The SURE loss involves a derivative

term ∂Fω(y,Φ)/∂y, which is approximated by the Monte-
Carlo (MC) simulation [35] (termed MC-SURE) in exiting
works, as there is no explicit form for a general NNFω with
a complicated structure and it is quite expensive to com-
pute the 2nd-order derivative ∂F2

ω(y,Φ)/∂y∂ω in back-
propagation during training.

The iSURE loss we propose is defined as

`iSURE(ω;y,Φ, ε′) := ‖ΦFω(y + ε′,Φ)− y‖22
+ 2σ2tr

(
Φ(∂Fω(y + ε′,Φ)/∂y)

)
,

(4)

where ε′ is (complex) Gaussian white noise independent
from measurement noise ε. Under Gaussian white noise
assumption on ε, the training with Ey,ε′`iSURE can be sim-
plified into an efficient gradient update shown in Theorem 1
(with the proof given in our supplement).

Theorem 1. Let Jω be the Jacobian matrix w.r.t. ω, i.e.,
JωFω = ∂Fω/∂ω, and y = Φx + ε. Assume ε, ε′ ∼
N (0, σ2I) are independent. Then, we have

∇ωEy,ε′`iSURE(ω;y,Φ, ε′) = 2Ey,ε′
[
JH
ω

(
Fω(y + ε′,Φ)

)
ΦH(ΦFω(y + ε′,Φ)− y + ε′

)]
. (5)

Now the handling of ∂Fω(y,Φ)/∂y is avoided in (5),
while the Jacobian term in (5) can be implemented with
standard back prorogation. Similar to gSURE [10], iSURE
is a weak form of SURE to provide accurate estimation
in range(ΦH). By the range-null space decomposition:
CN = range(ΦH) ⊕ null(Φ), the remaining is to recover
the information in null(Φ). It can be addressed to certain
degree by the implicit regularization effect of a CNN struc-
ture [19,38] and by the noise injection scheme in (4) which
is a common practice in deep learning. The noise-injection
scheme also allows us to design an ensemble-based sub-
process to improve learning on null(Φ) in the following.

3.2. Unsupervised Training with Meta-Learning

Before meta-learning is applied, the model Fω is pre-
trained on D with an iSURE-based loss for sufficient epochs
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to achieve reasonable performance. This helps to improve
the efficiency of the subsequent meta-learning and allevi-
ate the possible instability of MAML. Based on MAML,
we propose a more pertinent meta-learning scheme. Recall
that MAML learns the optimal initial state of a model such
that the base-learner can adapt to a new task effectively and
rapidly. Following MAML, our meta-learning scheme in-
cludes an inner loop and an outer loop. At the beginning of
each outer iteration, several task batches are sampled. The
sequential inner loop updates model weights using gradi-
ent descent for each batch task individually. After the inner
loop is completed, the losses of all tasks along with their
updated weights are combined to perform a meta-gradient
update on original model parameters. The complete training
process is described in Algorithm 1.

In our MAML setting, each task is the self-supervised
image reconstruction on a test sample based on the iSURE
loss. Consider a specific task with the training samples Yj
drawn from D, where Yj contains only one sample theoret-
ically but we use a small batch of samples in practice for
faster convergence. The training loss is then given by

LiSURE
Yj

(ω) := Ey∈Yj ,ε′∼N (0,σ2I) `
iSURE(ω;y,Φ, ε′). (6)

At each inner loop, we first copy current parameters ω to
ω̄ to form a detached model, and then update ω̄ via LiSURE

Yj

for Q steps with a step size γ. At the end of the inner loop,
we conduct one-step gradient descent with the loss:

Lensem
Yj

(ω; ω̄) := Ey∈Yj `
ensem(ω;y,Φ, ω̄), (7)

where `ensem is the ensemble loss defined by

‖Fω(y,Φ)− Eε′′∼N (0,σ2I)(Fω̄(y + ε′′,Φ))‖22. (8)

This step is additionally introduced to MAML for better ad-
dressing the ambiguity on null(Φ). The second term in (8)
is the average of multiple estimates from Fω̄ with noise-
perturbed inputs, which is likely to cancel the prediction
errors of these estimates to some degree. As a result, the
loss (7) may improve the NN’s prediction, particularly on
null(Φ). Then the adapted parameters are calculated by

ωj = ω − α∇ωLensem
Yj

(ω; ω̄), (9)

where α ∈ R+ controls the rate of inner update.
Then, the outer iteration updates model parameters by

ω ← ω − β∇ω
∑

j
LiSURE
Yj

(ωj), (10)

with β ∈ R+ controlling the rate of outer update. This step
is to achieve minimal test errors for the tasks.

3.3. Testing with Nullspace-Consistent Adaptation

Let Fω̃ denote the meta-learned model. One may adapt
Fω̃ to a test sample y? via minimizing LiSURE. However, as

Algorithm 1: GT-Free Meta-Learning for CSR
Input: Measurement dataset D; Initial ω
Required: Learn Rates α, β, γ; Inner Iter Num Q
1. Pre-training: update ω with an iSURE-based loss
2. while not done do
3. Sample sets of measurements {Yj}j from D
4. for each Yj do
5. Initialize ω̄ with ω
6. for q = 1, · · · , Q
7. ω̄ ← ω̄ − γ∇ω̄LiSURE

Yj
(ω̄)

8. end
9. ωj = ω − α∇ωLensem

Yj
(ω; ω̄)

10. end
11. Update ω ← ω − β∇ω

∑
j LiSURE

Yj
(ωj)

13. end

Algorithm 2: Testing with Model Adaption
Input: Measurements y?; Meta-trained ω̃
Required: Learn Rate γ; Epoch Num S
1. Initialize ω? with ω̃
2. for s = 1, · · · , S
3. ω? ← ω?−∇ω?(γLiSURE

{y?} (ω?) +λLNC
y? (ω?; ω̃))

4. end
5. Compute x? = Eε′∼N (0,σ2I)Fω?(y? + ε′,Φ)

LiSURE only considers the predition w.r.t. range(ΦH), such
an adaption may bring negative effects to the reconstruction
w.r.t. null(Φ). Therefore, we propose a null-space consis-
tency (NC) loss to mitigate those effects, which measures
the prediction difference on null(Φ) between the original
and adapted models:

LNC
y? (ω; Φ, ω̃) := ‖Pnull(Φ)(Fω(y?,Φ)−Fω̃(y?,Φ))‖22,

(11)
wherePnull(Φ) = I−Φ†Φ is the null-space projection with
the pseudo inverse Φ†. Concretely, we first initialize ω? by
ω̃ and then adapt the model to y? using LiSURE

{y?} and LNC
y?

with the weights γ, λ ∈ R+, leading to the gradient update:

ω? ← ω?− γ∇ω?LiSURE
{y?} (ω?)−λ∇ω?LNC

y? (ω?, ω̃), (12)

for S steps, where S is a much smaller number than that in
training. It can be seen that the above scheme is expected
to adapt the model w.r.t. range(ΦH) while maintaining the
prediction accuracy on null(Φ) by pulling the prediction
back. When the noise level is unknown, we estimate σ in
iSURE with ‖Fω̃(y?,Φ)−y?‖ from the pre-trained model.

To consist with the iSURE training and the sub-task im-
plied in Lensem

Y , we adopt an ensemble inference scheme:

x? := Eε′∼N (0,σ2I)Fω?(y? + ε′,Φ). (13)
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Noise CS
Ratio

Non-Learning Unsupervised Internal Unsupervised + Internal Supervised

ZF SparseMRI REI BNN ASGLD DDSSL MetaCS ADMMNet Supervised

w/o

50% 37.07/.89 39.93/.94 41.15/.95 40.24/.93 41.60/.95 42.53/.97 43.92/.98 43.00/.97 44.09/.98
40% 35.14/.85 38.51/.93 39.06/.95 38.63/.91 39.29/.95 41.00/.96 41.24/.97 41.56/.96 42.52/.98
30% 33.01/.80 37.72/.91 37.84/.92 37.14/.89 38.11/.93 38.47/.94 39.59/.95 39.84/.93 40.70/.94
20% 30.41/.72 35.46/.89 36.07/.90 35.54/.88 36.08/.90 36.73/.92 37.12/.93 37.17/.93 37.58/.94

w/

50% 30.87/.66 31.54/.67 34.91/.90 34.69/.89 34.51/.89 35.35/.91 36.23/.93 35.71/.91 36.44/.93
40% 30.81/.68 31.24/.69 34.45/.90 33.32/.86 33.71/.87 34.83/.90 35.53/.91 35.31/.91 35.64/.91
30% 30.39/.67 30.55/.68 33.64/.90 31.86/.85 32.25/.87 34.51/.91 35.25/.92 34.82/.90 35.18/.91
20% 29.18/.64 29.74/.64 33.04/.88 31.29/.87 32.16/.88 33.79/.90 34.34/.91 34.04/.89 34.32/.90

Table 1. Mean PSNR(dB)/SSIM of MR image reconstruction on MRI150 dataset. Boldfaced: best of all compared GT-free methods.

Noise CS
Ratio

Non-Learning Unsupervised Internal Unsupervised + Internal Supervised

ZF SparseMRI REI BNN ASGLD DDSSL MetaCS ADMMNet Supervised

w/o
1/3 28.20/.72 34.58/.92 36.02/.94 35.58/.94 35.79/.94 36.40/.95 36.54/.95 35.31/.94 37.08/.97
1/4 26.23/.65 32.31/.90 33.15/.91 34.08/.95 34.38/.95 34.66/.95 34.85/.96 33.70/.93 35.67/.98
1/5 25.00/.61 30.72/.86 32.34/.90 32.28/.92 32.40/.92 33.83/.95 34.08/.95 32.32/.92 35.26/.96

w/
1/3 27.38/.66 29.32/.69 30.15/.74 29.58/.82 29.85/.84 31.68/.86 31.79/.91 30.94/.83 31.68/.91
1/4 25.82/.62 25.93/.65 29.75/.75 29.47/.87 29.61/.87 31.04/.88 31.17/.90 29.95/.82 31.02/.90
1/5 24.75/.58 24.88/.59 29.67/.77 28.38/.84 28.45/.84 30.44/.87 30.56/.87 28.81/.81 30.47/.87

Table 2. Mean PSNR(dB)/SSIM of MR image reconstruction on ADNI dataset. Boldfaced: best of all compared GT-free methods.

It is actually done by averaging the predictions w.r.t. differ-
ent instances of ε′ (only 3 instances suffice in practice). See
Algorithm 2 for a description of the whole test process.

3.4. Unrolling CNN with Bias-Tuning

Similar to [9], the physics-aware CNN for meta-learning
is constructed by unrolling the proximal gradient descent
of the regularized optimization problem: minx ‖y −
Φx‖22 + ψ(x). The unrolling leads to the iteration: x(k) =
proxρψ(x(k−1) − ρΦH(Φx(k−1) − y)), where proxρψ(x) :=

argminz
1
2ρ‖x−z‖

2
2 +ψ(z) is the proximal operator of the

prior-inducing term ψ. The CNN Fw is then constructed
by replacing proxρψ with a standard residual convolutional
block. It contains K blocks in total. Each block acts as
one iteration and contains 6 convolutional layers; see our
supplement for an illustration. The learnable parameters ω
then consists of the rate ρ (initialized to 0.5), as well as the
weights (initialized by Xavier) and biases (initialized to 0)
inside all convolutional layers.

We propose to perform adaption only on the bias param-
eters of the unfolding CNN, with other parameters frozen.
The rational is, viewing the unrolling CNN as an advanced
iterative shrinkage process, the biases play a similar role as
the thresholds of shrinkage. In traditional iterative shrink-
age approaches for CSR, such thresholds are critical to the
performance while the filters can be fixed (e.g. wavelet fil-
ters), and their optimal values vary much across different
samples. Thus, adapting the biases suffice to yield good
performance. Since the number of biases is much less than
the number of weights of convolutional kernels, our bias

tuning scheme can further accelerate the adaption process.

4. Experiments
Out proposed method is named MetaCS and evaluated

on reconstruction of natural images and MR images. Its
configuration is as follows: 1) NN: K = 10; 2) Training:
Adam is called with 500 epochs and 200 epochs respec-
tively for pre-training, with a fixed learning rate of 10−4,
and then called with 50 epochs for meta-learning, where
α, β, γ = 10−4, λ = 5 × 10−5, Q = 50; 3) Adaption:
S = 200; and 4) Ensemble: only three instances are used.

4.1. MR Image Reconstruction

Two datasets are used for evaluation: MRI150 [47] and
ADNI [24]. The MRI150 dataset contains 100 MR images
for training and 50 test, where the k-space measurements
are taken by applying a fixed radial mask to the Fourier co-
efficients with sampling ratio r = 20%, 30%, 40%, 50% re-
spectively. The ADNI dataset contains 300 MR images for
training and 21 for test, where radial and Gaussian masks
of ratios r = 1

5 ,
1
4 ,

1
3 are applied respectively. Two cases

of noise are considered on both datasets: the noiseless case
with ε = 0 and the noisy case with ε = Φ(ε1 + iε2) where
ε1, ε2 ∼ N (0, (0.1 max(x))2I). In the noiseless case, we
set σ = 2.55 for iSURE. We train models separately for
different settings and different datasets, and each image is
called only once to generate measurements. The MetaCS
is compared with some GT-free methods of different kinds,
including ZF [4], SparseMRI [26], REI [7], BNN [30], AS-
GLD [39], and DDSSL [34]. For DDSSL which is also a
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Supervised REI ASGLD DDSSL MetaCS GT

COAST REI ASGLD DDSSL MetaCS GT

Figure 1. Visual inspection on reconstructed image. Top: reconstructed MR images with radial mask and sampling ratio 1/4 in noisy
setting. Bottom: reconstructed natural images reconstruction from Gaussian measurements of sampling ratio 25% in noisy setting.

Noise CS
Ratio

Non-Learning Unsupervised Internal Unsupervised+Internal Supervised

TVAL3 LSURE REI BNN ASGLD DDSSL MetaCS Supervised COAST SSLIP

w/o
40% 31.21/.75 33.30/95 35.63/.95 35.71/.95 35.87/.95 37.18/.96 37.25/.96 36.02/.96 36.94/.96 33.73/.93
25% 27.63/.62 31.31/.90 31.11/.90 32.30/.92 33.06/.92 33.28/.94 33.52/.94 32.44/.92 33.85/.94 30.42/.89
10% 22.45/.38 25.00/.65 22.79/.64 27.49/.83 28.15/.83 27.57/.84 28.02 /.84 26.94/.82 28.34/.84 25.02/.75
1% 14.90/.06 - 15.16/.32 16.69/.40 17.32/.41 17.37/.41 17.63/.42 17.48/.42 17.57/.42 15.72/.41

w/
40% 26.66/.72 28.73/.81 28.99/.81 30.39/.88 31.11/.90 31.58/.88 31.64/.88 31.14/.89 31.16/.89 30.58/.89
25% 24.75/.67 28.14/.82 28.08/.81 28.67/.84 29.35/.85 29.61/.87 29.71/.87 29.49/.86 29.37/.86 28.71/.85
10% 21.02/.54 23.31/.64 22.26/.66 25.23/.76 26.06/.76 26.10/.78 26.17/.78 25.03/.70 25.81/.78 24.48/.73
1% 13.23/.05 - 14.75/.29 16.03/.32 16.74/.33 16.88/.34 17.01/.35 16.86/.34 16.92/.35 15.21/.35

Table 3. Mean PSNR(dB)/SSIM of natural image reconstruction on Set11 dataset. Boldfaced: best of all compared GT-free methods.

joint GT-free learning and model adaption method, we re-
duce its block number to have a similar model size as our
CNN for a fair comparison. In addition, we introduce two
supervised methods for the performance reference. One is
ADMMNet [45] and the other is the supervised counterpart
of MetaCS trained with the same data but with GTs.

The quantitative results on the two datasets are listed
in Table 1 and Table 2, respectively, with some recon-
structed images shown in Figure 1 and our supplement.
It can be seen that on both datasets, MetaCS consistently
outperforms both the internal learning methods including
BNN and ASGLD and the recent GT-free external learning
method REI. The PSNR gain by MetaCS is noticeable over-
all and significant in some settings. Such impressive perfor-
mance is due to that MetaCS simultaneously exploits exter-
nal knowledge of training datasets and internal properties
of test samples. MetaCS also shows superior performance
over DDSSL, the latest joint GT-free learning and adap-
tion method. While GT-free methods are not expected to
beat supervised methods, the results also show that MetaCS
competes against its supervised counterpart in many set-

tings. Our MetaCS even outperforms the supervised AD-
MMNet in many cases, which is probably due to the use of
meta-learning and the difference in NN structures.

4.2. Natural Image Reconstruction

Following [20,47], the measurements are taken by a row-
orthogonalized block Gaussian matrix Φ ∈ RM×N with the
ratio r = M/N set to 40%, 25%, 10%, 1%, respectively.
Both noiseless (ε=0) and noisy (ε ∼ N (0, 102I)) cases are
employed. We train an individual model for each setting.
The 88912 image blocks of size 33 × 33 (i.e. N = 1089)
provided by [20] are used to generate 88912 measurement
samples for unsupervised meta-learning. The Set11 [47]
dataset is used for test, each image of which is cropped into
non-overlapping blocks to generate measurements. In ad-
dition to BNN, AGSLD, REI and DDSSL, our MetaCS is
compared with LSURE [27], another GT-free learning. We
also introduce COAST [46], SSLIP [18], and the supervised
counterpart of MetaCS for performance reference.

The results in terms of PSNR and SSIM are summarized
in Table 3. Some reconstructed images are shown in Fig-
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ure 1. Compared to BNN and AGSLD, two internal learn-
ing methods, MetaCS performs noticeably better in almost
all cases. Compared to LSURE and REI, two unsupervised
external learning methods trained on the same dataset as
ours, MetaCS also shows superior performance. Compared
to DDSSL, the latest model adaption method, MetaCS out-
performs it in all settings in terms of PSNR. Again, MetaCS
remains competitive to its supervised counterpart and even
outperforms other supervised methods in some settings. All
these results have demonstrated the benefits of joint external
and internal learning via the meta-learning of MetaCS.

4.3. Ablation Studies

We conduct ablation studies on the ADNI dataset and
present the results in Table 4. First, we study the effective-
ness of the meta-learning by disabling it and training the
NN until convergence. We can see that the meta-learning
always brings performance gain which varies in different
settings. Figure 2 displays the overall PSNR trace over
iterations in the adaptation procedure w/ and w/o meta-
learning. The curves indicated by w/ meta-learning are al-
ways above and increase faster than those indicated by w/o
meta-learning, which implies that the meta-learning leads
to faster and more effective model adaptation. Note that the
meta-learning has already yielded a better model at the be-
ginning, as our modified MAML benefits not only the adap-
tion but also the unsupervised training. We further skip the
adaptation process in the test phase (see “w/o Adaption”).
Obviously, the adaptation brings noticeable improvement.

Next, we study the effectiveness of the components of
meta-learning in MetaCS. A standard MAML is used to
replace our modified one. We can see that the modified
MAML leads to higher PSNR gain than the standard one.
The standard MAML even performs a bit worse than “w/o
Meta-Learning” in some cases. This is because the standard
MAML does not address the learning ambiguity in null(Φ)
well. Further, we replace the iSURE loss with the gSURE-
related loss (3) solved by MC approximation, and replace
the ensemble inference by a single inference without noise
injection. As a result, a significant PSNR drop is observed.

Last, the effectiveness of the ingredients in the adaption
process is studied. We disable the NC loss during adap-
tion by setting λ = 0, which leads to a certain PSNR de-
crease. We also use all model parameters beyond the biases
for meta-learning and adaption; see “All weights”. The re-
sulting PSNR performance is slightly higher or lower than
that purely adjusting biases for adaption. This indicates our
bias tuning scheme suffices for a good adaption. Further,
following gain-tuning [29], we conduct adaption only on
the weights of feature maps. The resulting PSNR gain is
not big and much less than that only using bias-tuning.

Regarding the inference process, the ensemble does not
contribute a big part to the performance (not shown in Ta-

Method
w/o Noise w/ Noise

r = 1/5 1/4 1/3 r = 1/5 1/4 1/3

Tr
ai

ni
ng iSure → gSURE 29.13 32.57 34.29 28.56 29.17 29.14

w/o Meta-Learning 32.93 33.97 35.68 29.52 30.03 30.34
Standard MAML 32.86 34.01 35.73 29.63 30.08 30.42

Te
st

w/o Adaption 33.63 34.40 35.89 29.60 30.78 31.36
w/o NC 33.71 34.65 36.40 30.41 31.01 31.66

All weights 34.02 34.82 36.58 30.60 31.19 31.74
Gain-tuning 33.68 34.58 36.19 30.35 30.83 31.37

MetaCS 34.00 34.85 36.54 30.56 31.17 31.79

Table 4. PSNR(dB) results in ablation studies on ADNI dataset
with radial masks.

ble 4). However, the ensemble inference that provides a
number of instances can be utilized for uncertainty quanti-
zation of CSR, a feature welcomed in scientific imaging and
medical imaging. See our supplement for more details. To
conclude, the ablation studies have demonstrated the effec-
tiveness of each key component in MetaCS.

4.4. More Analysis

Computational complexity See Table 5 for the running
time of MetaCS in natural image reconstruction, with the
comparison to four GT-free methods. With an additional
adaptation process in the test phase, MetaCS is slower than
the SURE-based external learning method LSURE. How-
ever, the time cost caused by adaptation is acceptable, com-
pared to the internal learning methods BNN and ASGLD.
While BNN and ASGLD show superior performance to
LSURE in previous experiments, their time cost is very high
due to millions of iterations. Our MetaCS is much faster
than BNN and ASGLD while providing overall superior
performance. Compared to the adaption method DDSSL,
our MetaCS takes only around 1/7 time, which benefits
from the acceleration by meta-learning and bias tuning. The
comparison regarding number of model parameters is given
in Table 6. It can be seen that our model is relatively small,
and the bias parameters are much less than that of the whole
model, which thus leads to noticeable acceleration.

CS Ratio LSURE BNN ASGLD DDSSL MetaCS

40% 0.45 282.54 178.01 5.72 0.89
25% 0.44 294.32 178.32 5.67 0.87
10% 0.44 298.93 189.40 5.50 0.86

Table 5. Running time (minutes) of different methods for recon-
structing the images in Set11, tested on a TITAN RTX GPU.

COAST SSLIP LSURE ASGLD DDSSL MetaCS / Bias-only

1.12 0.67 0.38 2.19 0.67 0.3756 / 0.0013

Table 6. Comparison in number of model parameters (M).
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Figure 2. Performance curves vs. iteration number during adaptation on ANDI dataset (left three) and Set11 dataset (last one).

Adaption across different measurement matrices We
also evaluate the performance of MetaCS for the case where
the measurement matrix differs between training and test.
Table 7 presents the results on the ADNI dataset, with the
comparison to REI. We can see that when the performance
of both methods drops in dealing with an unseen mask.
However, the PSNR drop of MetaCS is much smaller than
REI. Particularly, when training on a Gaussian mask of ratio
1/4 and testing on a Gaussian mask of ratio 1/3, the perfor-
mance of MetaCS is nearly unchanged. This is attributed to
the effectiveness of the meta-learning and model adaption.
Also note that with some PSNR drop, MetaCS is still very
competitive against the supervised methods in Table 2.

Test Mask
Training = Test Gauss, r=1/4 PSNR Drop

REI MetaCS REI MetaCS REI MetaCS

Gauss, r=1/3 36.72 37.87 36.38 37.80 -0.34 -0.07
Gauss, r=1/5 34.04 35.52 33.63 35.47 -0.41 -0.05
Radial, r=1/4 33.15 34.46 32.62 34.84 -0.53 -0.01

Table 7. PSNR(dB) comparison in adaption across different mea-
surement matrices in noiseless setting.

Joint training across different noise levels We train a sin-
gle model across different noise levels for natural images,
with noise level randomly drawn from [1, 10]. We re-train
REI and DDSSL for comparison and test on three noise lev-
els. See Table 8 for the comparison. All the methods have
a performance drop compared to their individually-trained
versions, as shown in the case of noise level 10. For all the
three tested noise levels, our MetaCS performs the best.

Method Joint training Individual training
σ = 1 5 10 10

REI 30.29/.86 28.16/.82 27.45/.80 28.08/.81
DDSSL 31.24/.89 30.73/.88 29.29/.86 29.61/.87
MetaCS 31.89/.91 31.66/.90 29.64/.87 29.71/.87

Table 8. PSNR(dB)/SSIM on Set11 (25%) in joint training.

Handling unknown noise types in real scenarios Fol-
low [25], we conduct performance evaluation using the sub-
set (500/25 for training/test) of the MICCAI2013 dataset [1]

with Rician noise to simulate unknown noise types in real
scenarios. See Table 9 for the results and comparison. Our
MetaCS outperforms other GT-free methods.

REI AGLSD DDSSL MetaCS ADMMNet Supervised

27.32/.74 27.18/.73 28.55/.83 28.79/.84 27.81/.81 29.42/.86

Table 9. PSNR(dB)/SSIM results in CS-MRI with an unknown
noise type. Boldfaced: best of all compared GT-free methods.

Performance of using a larger model We enlarge the
model of MetaCS by using K=20 blocks and compare its
performance to the original DDSSL model. See our supple-
ment for the results. Our MetaCS still performs better in
both reconstruction accuracy and complexity.

5. Conclusion and Discussion

This paper developed an effective GT-free meta-learning
method for CSR, which can leverage external measurement
data for unsupervised end-to-end NN training as well as ex-
ploit internal characteristics of test samples via model adap-
tion for performance gain. The meta-learning was achieved
through the iSURE loss for efficient range-space learning
and the modified MAML algorithm for improved null-space
learning. The model adaption was achieved by the null-
space consistency loss for better null-space prediction and
the bias-tuning scheme on an unrolling CNN for further ac-
celeration. The effectiveness of the proposed method has
been demonstrated in extensive experiments on two tasks.
The techniques developed above can be extended to solving
other ill-posed image reconstruction problems, which will
be investigated in our future work.

One limitation of our proposed method is that it assumes
the availability of the statistical characteristics of measure-
ment noise. Indeed, this limitation also exists in existing
GT-free methods, both external and internal, and even some
supervised ones. Our future work will also investigate how
to improve GT-free meta-learning and model adaption for
data with unknown noise distributions.
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