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Abstract

The hardware image signal processing (ISP) pipeline is
the intermediate layer between the imaging sensor and the
downstream application, processing the sensor signal into
an RGB image. The ISP is less programmable and con-
sists of a series of processing modules. Each processing
module handles a subtask and contains a set of tunable hy-
perparameters. A large number of hyperparameters form
a complex mapping with the ISP output. The industry typi-
cally relies on manual and time-consuming hyperparameter
tuning by image experts, biased towards human perception.
Recently, several automatic ISP hyperparameter optimiza-
tion methods using downstream evaluation metrics come
into sight. However, existing methods for ISP tuning treat
the high-dimensional parameter space as a global space for
optimization and prediction all at once without inducing the
structure knowledge of ISP. To this end, we propose a se-
quential ISP hyperparameter prediction framework that uti-
lizes the sequential relationship within ISP modules and the
similarity among parameters to guide the model sequence
process. We validate the proposed method on object detec-
tion, image segmentation, and image quality tasks.

1. Introduction

Hardware ISPs are low-level image processing pipelines
that convert RAW images into high-quality RGB images.
Typically, ISPs include a series of processing modules [5],
each of which handles a subtask such as denoising, white
balance, demosaicing, or sharpening. Compared to soft-
ware image processing pipelines, hardware ISPs are faster,
more power-efficient, and widely used in real-time prod-
ucts [7, 34], including cameras [28], smartphones, surveil-

lance [21], IoT and driven-assistance systems. ISPs are
highly modular and less programmable but with a set of tun-
able hyperparameters. The industry always relies on man-
ual and costly hyperparameter tuning by image experts [1]
to adapt the ISP to different application scenarios.

The ISP is always designed as a sequential pipeline [5]
and the configurable hyperparameters of various modules
from any ISP aggregate to be a complex parameter space
(with tens to hundreds of parameters), making the manual
tuning process time-consuming. It is also difficult to sub-
jectively find optimal hyperparameters settings for various
downstream tasks (such as object detection and image seg-
mentation [29, 30]). Recently, several automatic ISP hyper-
parameter optimization methods [17,31] using downstream
evaluation metrics come into sight. These methods tuning
hyperparameters for downstream tasks include derivative-
free [18] or gradient methods [12, 25, 27] based on differ-
entiable approximation. There are also methods to demon-
strate the potential of predicting specific hyperparameters
for each image or scene [22]. However, existing meth-
ods treat the high-dimensional parameter space as a global
black-box space for optimization and prediction all at once,
while ignoring the inherent sequence of the ISP modules
and the critical intra-correlation among hyperparameters.

Inspired by the operating principles and structure knowl-
edge of ISPs, we first propose a sequential ISP hyperpa-
rameter prediction framework (as shown in Fig. 1) that con-
tains Sequential CNN model and Global Similarity Group-
ing. The sequential CNN model runs recurrently by predict-
ing a group of parameters from several ISP modules, not all
parameters, at each step. Meanwhile, the predicted param-
eters, along with the network’s hidden layer and the input
data, are in turn encoded as prior knowledge for predicting
the following grouping of parameters. The Global Similar-
ity Grouping module divides ISP parameters into multiple
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Figure 1. (A) Previous methods treat the hyperparameter space
as a black box optimization problem and estimate all parameters
at once without considering the prior knowledge of the ISP. (B)
Our proposed method first decouples ISP structural knowledge and
treats ISP tuning as a sequential prediction problem. It is effective
to introduce sequence information and similarity relations in the
high-dimensional hyperparameter space.

disjoint groupings. The sequence order between groupings
is explored heuristically using prior knowledge of the order
of ISP modules. Given the flexibility, groupings are deter-
mined based on similarity among parameters, not limited to
the same module parameters. The correlation of parameter
activation maps learned through the model is used as the
basis for parameter groupings.

Our contributions can be summarized as the following:

• We propose a new sequential CNN structure to exploit
the sequence processing knowledge within ISP. The
potential sequential information among parameters is
used to guide the processing of the model.

• We exploit the correlation among parameters by the
proposed similarity grouping module. The flexible
parameter groupings allow the exploration of cross-
module relationships among parameters.

• We validate the effectiveness of our method in a variety
of downstream tasks, including object detection, image
segmentation, and image quality. In these applications,

our method outperforms existing methods.

2. Related Work
ISPs contain several components, and each module car-

ries a specific image-processing algorithm. These algo-
rithms are permanently configured with tens to hundreds of
handcrafted parameters, for instance, noise reduction, color
space transformation, and sharpening. It is desirable to find
parameter configurations for imaging experts that make ISP
work well in real-world scenarios and output compressed
images with good human perception. Recently, to tackle
this challenging optimization problem, several automatic
ISP tuning methods were proposed by optimizing the hy-
perparameters with downstream task feedback [3,4,35], for
instance, object detection [27,29], object segmentation [17],
and image quality [2, 6, 30, 32].

With the high-level feedback information, recent works
always leverage a differentiable mapping between the pa-
rameter space and high-level evaluation metrics. Some ex-
isting optimization methods try to mimic the whole hard-
ware ISP pipeline as an approximate CNN proxy model and
construct an end-to-end differentiable CNN framework to
optimize the proxy network [8, 12, 33]. Tseng et al. [27]
trained an approximate CNN proxy model to mimic hard-
ware ISP and optimized the differentiable CNN model with
Stochastic Gradient Descent. Onzon et al. [19] propose a
neural network for exposure selection that is jointly end-
to-end with an object detector and ISP pipeline. Pfister et
al. [20] proposes to optimize sparsity regularization for de-
noising. These methods are based on the assumption that
a single proxy network can mimic the whole ISP pipeline
and cannot be used to optimize the hardware ISPs. Other
methods can directly put the hardware ISP into the opti-
mization stage and predict all hyperparameters at once. For
instance, Mosleh et al. [17, 24] directly optimize hardware
ISP by a novel CMA-ES strategy [9] with max-rank-based
multi-objective scalarization and initial search space reduc-
tion. Kim et al. [14] utilize the objective function of multi-
output regression for modeling the relation between ISP pa-
rameter and IQM score. Qin et al. [22] directly infer all
ISP hyperparameters via an attention-based CNN method.
However, these methods do not take sequential information
into consideration. Only Nishimura et al. [18] optimize ISP
components with sequential prior knowledge based on a 0-
th order Nelder-Mead method. Nevertheless, it can only be
used to optimize ISP modules one at a time, ignores cross-
module connections while viewing the modules in isolation,
and is difficult to apply to hardware ISPs.

Therefore, with the massive number of parameters in
hardware ISPs, it needs to exploit the structural knowledge
to tune ISPs in high-dimensional parameter space accu-
rately. ISP tuning tasks should introduce ISP prior informa-
tion and explore implicit relationships among parameters.
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3. Image Processing Pipelines
For better comparison, we follow the most common ISP

modules, and contains the following typical stages [5]:
(1) Optics and Sensor: The sensor captures the illumina-

tion through the optics, and the RAW image is the sensor
output. The pixel value of RAW is linearly related to the
intensity of illumination.

(2) Denoising: Noise is generally considered to be a ran-
dom variable with zero mean. Denoising will reduce noise
but also remove details by blurring the image.

(3) DigitalGain and White Balance: The RAW pixel val-
ues are gain-adjusted. Color correction is processed by au-
tomatically estimating illuminations or the specific white-
balance matrices of common illuminations.

(4) Demosaicking: Convert the color filter array over
pixel sensors to RGB values for each pixel by performing
interpolation.

(5) Color Space Transform: Map the RAW pixel values
to CIE XYZ color space using a 3x3 transform matrix.

(6) Sharpening: Detect edges in the image. Apply filter-
ing measures to eligible edges to improve edge strength and
enhance details.

(7) Color and Tone Correction: Applying gamma curves
and adjusting image contrast by histogram operations to im-
prove the image’s global appearance.

(8) Compression: Image pixel values are compressed to
JPEG and storage.

The ISP in this work models stages (2) to (8). This ISP
fISP takes the RAW image I as input and converts into an
RGB image OISP:

OISP = fISP(I;P), P ∈ RN
[0,1], (1)

where I ∈ RW×H , OISP ∈ RW×H×3. The ISP is con-
trolled by N continuous hyperparameters P . For the dis-
crete parameters, mapping them to continuous values within
the range of values facilitates prediction [17].

4. Method
In this section, we devise the sequence model for predict-

ing ISP hyperparameters, as shown in Fig. 2. We first intro-
duce the ISP hyperparameter prediction task and the pro-
posed model framework in Sec. 4.1. The Sequential CNN
model design and the Global Similarity Grouping (GSG)
for hyperparameters are introduced in Sec. 4.2 and Sec. 4.3.

4.1. Formulation

Given a RAW image I and a downstream task, the pro-
posed method needs to maximize the following objectives:

θ∗ = argmin
θ

M∑
i=1

Ltask(fISP (Ii; fpred(Ii;θ))), (2)

where θ are the weights of the model, M is the images’
number, fpred is the proposed method, and P̂ = fpred(I;θ)
is the prediction ISP parameters. Since ISP is a black-box
hardware unit, we convert the optimization objectives to:

θ∗ = argmin
θ

M∑
i=1

L2(P∗, fpred(Ii;θ)), (3)

where P∗ is the optimal ISP parameter for image I and the
downstream task. Our method divides the parameter P into
T disjoint subsets, P = P1∪P2∪. . .PT . There is an order
between them, and Pt is predicted at step t. This division
decomposes the loss function into ordered conditions.

L2(P∗, P̂) =
T∑

t=1

L2(P
∗
t , P̂t), (4)

The proposed Sequential CNN model and Global Simi-
larity Grouping achieve the above process. Sequential CNN
model uses a fully convolutional structure and runs the loop
T times to predict the sequential parameters groupings.
Global Similarity Grouping exploits the implicit relations
among parameters to achieve flexible parameter grouping.

4.2. Sequential CNN Model

In ISPs, one module’s output is input to the next module.
The effect of one set of parameters will be reflected in the
image features and influence the next set of parameters. So
we encode visual contextual features ct as the following:

ct = fencoder(v,P1 ∪P2 ∪ . . .Pt−1), (5)

where v is the visual feature extracted by the feature ex-
tractor on image I. The feature extractor is a pre-trained
ResNet [11] model. At step t, the encoder encodes the vi-
sual features v and the predicted parameters sets at the time
from 1 to t − 1 into visual context features ct, after which
ct is used to predict of Pt. Specifically, we concatenate the
visual features v with parameters channels and convolve
them. The number of parameters channels is the same as
that of hyperparameter P . Each channel replicates the value
of the corresponding hyperparameter in the spatial dimen-
sion. Only the channels corresponding to {P1, . . . ,Pt−1}
are assigned parameters’ values, and the rest of the channels
are assigned 0. The subsequent convolution module is de-
signed as three parallel branching structures with 1x1, 3x3,
and 5x5 convolutions. The three output features are con-
catenated to obtain the visual contextual features ct. Con-
catenating feature maps with different receptive fields gen-
erate multi-scale feature representations, which help encode
parameters with different effect ranges.

There are five decoders to complete the decoding pro-
cess. Each decoder contains a 3x3 convolution followed by
a ReLU unit and a span2 upsampling. Each decoder reduces
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Figure 2. Proposed sequence parameters prediction framework and ISP tuning process. Sequential CNN model has a fully convolutional
encoder-decoder structure and predicts parameter groupings sequentially. Global Similarity Grouping module divides the parameters
into ordered disjoint sub-groupings by implicit relations among parameters. Multi-step prediction results are concatenated to obtain the
predicted hyperparameters, which are set as the parameters setting of the ISP.

the number of feature channels by half, and the last one out-
puts a parameter feature map for N channels. We replicate
the feature maps output by all decoders as hidden states ht

and concatenate them with the intermediate feature maps of
the decoders at step t + 1. The input feature maps of the
decoder at step t+1 are the concatenate of the feature maps
generated by the previous decoder at step t+1 and step t. In
this process, the intermediate features of the convolutional
network are passed as the hidden state ht and combined
with the visual context ct for parameter prediction.

The visual context features ct and the network hidden
state ht−1 at time t − 1 are input to the decoder, and the
parameter feature maps for N channels are generated:

Φt = fdecoder(ct,ht−1)

= fdecoder(fencoder(v,P1 ∪ . . .Pt−1),ht−1),
(6)

where Φt = {p(1)
t ,p

(2)
t , . . . ,p

(N)
t } is the set of feature

maps of all parameters at step t. And p
(i)
t is the feature

map of parameter pi at time t. And Φt go through the GSG
module and the global average pooling (GAP) layer to ob-
tain the predicted parameter grouping Pt at step t:

Pt = fgap(fgsg(Φt))

= fgap(fgsg(fscnn(v,ht−1,P1 ∪ . . .Pt−1))),
(7)

For convenience, fscnn is used to express the Sequential
CNN model that contains the encoder and decoder men-
tioned above. Eq. 7 shows the function of the sequential
model at one step. The model is run T times recurrently
by passing the hidden layer hi and the predicted parameter
groupings Pi, where i = 1, . . . , T . All the predicted group-
ings are concatenated to obtain the predicted parameters.

4.3. Global Similarity Grouping

GSG runs once at the beginning of an iteration, and par-
titions hyperparameters into T disjoint subsets. Multiple
steps of an iteration run mask operation (before GAP) ac-
cording to the results of GSG. Parameters groups number T
is less than or equal to the number of ISP modules M . Some
modules in ISP have similar roles. Grouping these similar
parameters can reduce the model steps and make it more
efficient for a large number of parameters and modules.

Hyperparameters P have an original division P = P′
1 ∪

P′
2 ∪ . . .P′

M , where P′
i is the set of parameters of module

i. Details are described in Sec. 3 and supplement material.
Considering the flexibility, we take the primal division as
prior knowledge and use the correlation between parameters
to explore the sequential divisions of parameters.

The Sequential CNN model generates feature maps of
all parameters, and the feature maps are passed through the
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Algorithm 1: Sequential initial clustering centers
Input: Model partition graphs: P′

1, . . . ,P
′
M ;

Weighted adjacency matrix: W; Steps in the
prediction model: T ≤M .

Output: Sequential clustering centers: c1, . . . , cT .

vol(P′
x) =

∑
p(i)∈P′

x

∑n
j=1 wij ;

Ncut(P′
x,P

′
y) =

( 1
vol(P′

x)
+ 1

vol(P′
y)
)
∑

p(i)∈Px,p(j)∈Py
wij ;

for I ∈ [1,M − T ] do
i← i s.t.max{Ncut(P′

i,P
′
i+1)|i ∈ [1,M−I]}

P′
i ← P′

i ∪P′
i+1

if i ̸= M − I then
P′

i+1, . . . ,P
′
M−I ← P′

i+2, . . . ,P
′
M−I+1

C1, . . . ,CT ← P1, . . . ,PT ;

for J ∈ [1, T ] do
cJ ← p(x) s.t.max{

∑
p(y)∈CJ

wxy|p(x) ∈ CJ}

GAP module to obtain the predicted parameters. The pixel
values on the feature map represent the predicted parameter
values in the corresponding region of the image I. The fea-
ture map is a higher-dimension representation of the effect
of the parameter on the image [22]. Therefore, we use the
similarity between feature maps to perform the division of
similar parameters. Here we directly use the cosine similar-
ity to measure the feature map similarity as follows:

Lcos(p
(i), p(j)) =

p(i) ∗ p(j)

|p(i)||p(j)|
, (8)

where p(i) and p(j) are the feature maps of p(i) and p(j),
respectively, and Lcos(p

(i), p(j)) is the similarity of p(i) and
p(j). After the decoder outputs the parameter feature maps,
We can obtain the similarity values between all parameters.
All parameters can be expressed in the form of a graph:

G = (V,E),V = {p(1), p(2), . . . , p(N)}. (9)

Graph G is weighted, and E is the set of edges between
the vertices. The weight of each edge between two vertices
p(i) and p(j) is wij = Lcos(p

(i), p(j)) ≥ 0. The weighted
adjacency matrix is W = (wij)i,j=1,...,n.

The problem of partitioning the set P of parameters into
T disjoint subsets is transformed into partitioning graph G:

V =P1 ∪P2 ∪ . . .PT ,

Pi ∩Pj = ∅, 1 ≤ i < j ≤ T.
(10)

Graph G should be divided so that the parameters are dis-
similar between groups and similar in the same group. That

means the edges between different groups have low weights
and the edges within a group have high weights. The above
optimization objective can be expressed as follows:

min

T∑
t=1

W (Pt,Pt)

vol(Pt)
=

T∑
t=1

∑
p(i)∈Pt,p(j)∈Pt

wij∑
p(i)∈Pt

∑N
j=1 wij

. (11)

For the above optimization objectives and sequence par-
titioning of the parameters, we use the prior structure infor-
mation of ISP and perform spectral clustering of the param-
eters. Precisely, we first compute the normalized Laplacian
matrix L of the adjacency matrix W. The first T eigenvec-
tors of L are used as columns to form T ∈ Rn×T . After T
is normalized by rows, the vector y(i) of the parameter p(i)

corresponds to the i-th row of T.
To make cluster P1, . . . ,PT with sequence information,

we introduce serialized initial clustering centers c1, . . . , cT .
The sequential partition graphs P′

1, . . . ,P
′
M can be ob-

tained based on the structure information of ISP. The graphs
that are adjacent and related in order are merged to obtain
T partitioned graphs C1, . . . ,CT , and ci is the vertex in Ci

that is most closely connected to other vertices. The spe-
cific process is described in Algorithm 1. With c1, . . . , cT
as the initial clustering center, the points (y(i))i=1,...,N are
clustered using the k-means algorithm to obtain the clusters
P1, . . . ,PT . Pt is the cluster with ct as the initial cluster
center and is predicted at step t in the sequential model.

The final obtained P1, . . . ,PT for the division of param-
etersP is sequential, and its order is determined by the orig-
inal ISP structure information. The parameters are similar
within each grouping based on the similarity of the feature
maps corresponding to the parameters. This flexible divi-
sion enables cross-module grouping of similar parameters.

5. Experiments
5.1. Settings

In this section, we introduce the ISPs, datasets, and
downstream tasks used for evaluation.

(1) Object detection on MS COCO [15] using [23]. For
comparison with [22] and [17], we use the same synthetic
(simulated) ISP to process simulated RAW as the upstream
module for the downstream task. The ISP contains 20 hy-
perparameters, and detailed information is described in the
supplementary material.

(2) Image segmentation using [10] on COCO with the
same experimental setup as the object detection task.

(3) ISP parameter prediction for image quality. A SONY
IMX766 CMOS sensor is used to collect the RAW dataset.
The RAW data were processed using Qualcomm Spectra
580 ISP oriented to image quality. The ISP contains 144
hyperparameters, and detailed information is described in
the supplementary material.
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Figure 3. Image analytic vision tasks: Object Detection (left) and Image Segmentation (right) on COCO dataset. Default ISP hyperparam-
eters (top), expert-tuned hyperparameters (middle), and the proposed method (bottom). The proposed method achieve better performance
for downstream tasks.

Table 1. Synthetic ISP optimization for Object Detection on
COCO. We borrow the results from [17] by constructing a similar
processing pipeline with the ISP used in other methods.

ISP
Model

mAP
0.5

mAP
0.75

mAP
0.5:0.95

Default P ISP
[17]

15. - -
blockwise-tuned [18] 20. - -
Hardware-tuned [17] 39. - -
Default P

ISP
Sec.3

34.1 22.4 21.4
Expert-tuned 56.8 40.8 37.7
Attention-ware [22] 61.0 44.1 41.0
Sequential-tuned 62.8 45.2 42.3

During the training stage, the RAW images are input into
the model, which sequentially predicts several groups of hy-
perparameters. As described in Sec. 4.1, the predicted pa-
rameters and ground-truth parameters are used to calculate
the losses for training the model. We use a combination
of iterative search and manual annotation to batch annotate
the training set, as described in detail in the supplementary
material. The pre-trained Resnet [11] for feature extraction
and the rest of the model is trained using loss defined in
Eq. 4 and the RMSprop optimizer. The learning rate was
initially set to 10−4 and reduced to 10−6 after 200 calendar
hours. The training process was performed for 400 epochs.

Table 2. Synthetic ISP optimization for Image Segmentation on
COCO. We borrow the results from [17] by constructing a similar
processing pipeline with the ISP used in other methods.

ISP
Model

mAP
0.5

mAP
0.75

mAP
0.5:0.95

Default P ISP
[17]

12. - -
Hardware-tuned [17] 32. - -
Default P

ISP
Sec.3

22.7 13.2 12.0
Expert-tuned 46.9 28.2 27.1
Attention-ware [22] 52.3 33.4 31.5
Sequential-tuned 54.2 35.1 32.6

In the evaluation stage, we used the test set as model input
to predict the hyperparameters for each RAW image. The
RAW image and predicted hyperparameters were input to
the ISP to obtain RGB output as input to the downstream
tasks. The upstream RGB output is used as input for the
object detection and instance segmentation tasks, and the
evaluation metric uses the mean accuracy (mAP) [15]. The
PSNR and SSIM between the RGB output and the reference
image are used as evaluation metrics for the image quality.

5.2. Optimization for Object Detection

In this task, we use an existing large sRGB dataset and a
synthetic ISP to evaluate our ISP hyperparameter sequence
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Figure 4. Default setting hyperparameters (top), proposed method
(middle), and reference images (bottom). The proposed method
achieves an image quality close to the reference image.

Table 3. Perceptual image quality using default parameters setting,
recent method [22], and the proposed method.

ISP Model PSNR SSIM
Default Parameters Hardware ISP

Sec. 5.1

30.73 0.720
Attention-ware [22] 40.08 0.965
Sequential-tuned 45.29 0.982

prediction method. The RGB images are converted to RAW
as input to the ISP by simulating the processing of sRGB
images with RAW data [13]. We use pre-trained [23] for
object detection on the COCO dataset [15] as a downstream
task. The proposed model is trained for the object detection
task and evaluated using the mAP [15]. The quantitative
evaluation results are shown in Table 1. Compared to the
default parameter settings of the untuned ISP, our method
shows a more significant improvement over current meth-
ods and better results than non-sequential prediction meth-
ods. The subjective results are shown in Fig. 3. The pro-
posed method emphasizes the image’s texture details and
color features compared to the expert-tuned image. Al-
though expert-tuned images are more consistent with hu-

man visual preferences, the predicted parameters allow for
better results in these images for the object detection tasks.

5.3. Optimization for Image Segmentation

Next, we use pre-trained [10] for image segmentation
task on the COCO dataset as the downstream task. The pro-
posed method is trained and tested on the simulated RAW
COCO dataset and synthetic ISP. The results in Table 2
show that the proposed method has the best final results
for the instance segmentation task compared to the recent
methods. It also significantly improves over the default pa-
rameters (baseline). Fig. 3 shows the default parameters,
the expert tuning parameters, and examples of the proposed
method. Similar to the results obtained in the object detec-
tion task, the predicted parameters improve the performance
of the downstream task (image segmentation) by adjusting
the texture and color of the image. The predicted parame-
ters of our model achieve an improvement of 0.3 mAP and
0.2 mAP compared to the default parameters and the expert-
tuned parameters, respectively, and 0.1 mAP compared to
the non-sequential prediction method.

5.4. Optimization for Image Quality

The image quality optimization task aims to achieve a
specific image rendering preference [16]. This specific ren-
dering preference allows the output RGB to match the hu-
man visual preference by combining the visibility of various
distortions in the image (noise, color shifts, blockiness) [26]
and the imaging style. In this task, we aim to make the RAW
image undergoes ISP to produce an RGB as close as possi-
ble to the reference image by the hyperparameters predicted
by the proposed method. We collected a dataset for the im-
age quality optimization task. The dataset contains images
from 251 scenes acquired by the IMX766 sensor. The ref-
erence images are generated through the Spectra 580 ISP
with the RAW images and the expert-tuned parameters as
input. We used PSNR and SSIM metrics to evaluate the
consistency between the images generated by the predicted
parameters and the reference images. The quantitative re-
sults are shown in Table 3, and the proposed method con-
sists of better PSNR and SSIM results than recent methods.
Our method brings more improvements based on the default
parameter settings. Fig. 4 shows some examples of image
quality tasks. Our method produces images with better vi-
sual quality that conform to human preferences regarding
texture details, noise control, and color representation.

5.5. Ablation Study

Sequential Structure. Recent ISP hyperparameter tun-
ing methods, both iterative optimization and direct predic-
tion methods, treat the set of ISP hyperparameters as a black
box space and estimate all the parameters at once. In con-
trast, the proposed method allows step-by-step sequential
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Table 4. Ablation study of evaluating the proposed sequential structure and similarity grouping. The first column is the results for multiple
step settings of the proposed method, and the second is the results of multiple changes in Global Similarity Grouping module.

Steps Sequence Prior Knowledge Similarity Group PSNR SSIM

Sequence prediction
(Multi step-settings)

one - - - 39.52 0.957
two ✓ ✓ ✓ 40.05 0.962

three ✓ ✓ ✓ 42.66 0.971
four ✓ ✓ ✓ 45.29 0.982
five ✓ ✓ ✓ 45.23 0.982

Blockwise sequence & similarity group

four

✓ ✓ ✓ 45.29 0.982
Blockwise sequence & blockwise group ✓ ✓ - 43.57 0.969
Random sequence & similarity group ✓ - ✓ 42.62 0.960
Random sequence & random group ✓ - - 39.30 0.947

prediction of ISP parameters, achieving more refined pre-
dictions by modeling the sequential relationships among
parameter groupings. We verify that this sequential tuning
method has better results than the non-sequential method.

The effectiveness of sequence prediction is tested on the
image quality dataset and a Spectra 580 ISP with 144 pa-
rameters. The results are shown in Table 4. We tested the
non-sequential and sequential methods under multiple set-
tings, and the test metrics are the PSNR and SSIM results of
the output and the reference image. The number of model
running steps equals the number of parameter groupings.
For the same number of hyperparameters, the fewer steps of
the model, the more parameters are predicted in each step.
When the step is set to one, the model predicts all hyper-
parameters simultaneously, equivalent to the non-sequential
method. The sequential prediction results have better results
than the non-sequential ones. We also validate the results of
several experiments with different step counts. The method
loop steps size larger to generate long-distance dependen-
cies, which will be more challenging to learn and converge.
Endlessly increasing the size of steps with the same dataset
may suffer performance degradation. Experimental results
show that a compromise step count setting achieves the best
results for a particular experimental setting.

Global Similarity Grouping. In sequential prediction,
each step predicts a sub-grouping of the hyperparameters.
Based on the block-wise structure of the ISP and the corre-
lation between parameters, the Global Similarity Grouping
module defines the order between different groups and how
the parameters within the groups are divided. We validated
the effectiveness of this adaptive grouping approach. The
experimental setup is consistent with the ablation experi-
ments above, and the results are shown in Table 4.

To verify the effectiveness of the prior structural infor-
mation of ISP, we changed the Global Similarity Grouping
in Sec. 4.3 by removing the block-wise sequence cluster-
ing centers and directly performing spectral clustering for
all parameters. The model uses random order for prediction
for multiple parameter groupings clustered out. The results

in Table 4 show that the approach introducing the ISP prior
structure information has a better result. To verify the effec-
tiveness of cross-module grouping achieved by parameter
similarity, we define the parameter grouping pattern directly
with the block-wise structural information of ISP. Parame-
ters of the same module are grouped into the same group,
while the order between groups is consistent with the ISP
module sequence. The results in Table 4 show the effec-
tiveness of the similarity grouping with the introduction of
parameter correlation. Similarity group compared to block-
wise group is obtained from GSG by parameter similarity
while predicting similar parameters at once will improve
the accuracy. Finally, we remove both prior knowledge and
similarity grouping by randomly defining the hyperparam-
eter division and the order among groups. As shown in Ta-
ble 4, such a setup has the worst results.

6. Conclusions

This work proposes a novel sequential method for ISP
tuning that uses module relation and parameter similarity to
guide the process. It decouples the ISP structure and treats
tuning as a sequential prediction problem. It groups param-
eters to tune ISP sequentially. Experiments show that intro-
ducing sequence information and similarity relations in the
high-dimensional parameter space improves performance.
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Stephen Lin, and Michael S Brown. A new in-camera
imaging model for color computer vision and its applica-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(12):2289–2302, 2012. 7

[14] Younghoon Kim, Jungmin Lee, Sung-Su Kim, Cheoljong
Yang, TaeHyung Kim, and JoonSeo Yim. Dnn-based isp

parameter inference algorithm for automatic image quality
optimization. Electronic Imaging, 2020(9):315–1, 2020. 2

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755,
2014. 5, 6, 7

[16] Rafał K Mantiuk, Anna Tomaszewska, and Radosław Man-
tiuk. Comparison of four subjective methods for image qual-
ity assessment. In Computer graphics forum, volume 31,
pages 2478–2491. Wiley Online Library, 2012. 7

[17] Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim
Mannan, Nicolas Robidoux, and Felix Heide. Hardware-in-
the-loop end-to-end optimization of camera image process-
ing pipelines. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7529–
7538, 2020. 1, 2, 3, 5, 6

[18] Jun Nishimura, Timo Gerasimow, Rao Sushma, Aleksandar
Sutic, Chyuan-Tyng Wu, and Gilad Michael. Automatic isp
image quality tuning using nonlinear optimization. In 2018
25th IEEE International Conference on Image Processing,
pages 2471–2475. IEEE, 2018. 1, 2, 6

[19] Emmanuel Onzon, Fahim Mannan, and Felix Heide. Neu-
ral auto-exposure for high-dynamic range object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7710–7720, 2021. 2

[20] Luke Pfister and Yoram Bresler. Learning filter bank sparsi-
fying transforms. IEEE Transactions on Signal Processing,
67(2):504–519, 2018. 2

[21] Buu Phan, Fahim Mannan, and Felix Heide. Adversar-
ial imaging pipelines. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16051–16061, 2021. 1

[22] Haina Qin, Longfei Han, Juan Wang, Congxuan Zhang,
Yanwei Li, Bing Li, and Weiming Hu. Attention-aware
learning for hyperparameters prediction in image process-
ing pipelines. In European Conference on Computer Vision,
pages 271–287. Springer, 2022. 1, 2, 5, 6, 7

[23] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 5, 7

[24] Nicolas Robidoux, Luis E Garcia Capel, Dong-eun Seo,
Avinash Sharma, Federico Ariza, and Felix Heide. End-
to-end high dynamic range camera pipeline optimization.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6297–6307, 2021. 2

[25] Eli Schwartz, Raja Giryes, and Alex M Bronstein. Deepisp:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2018. 1

[26] Kim-Han Thung and Paramesran Raveendran. A survey of
image quality measures. In IEEE international conference
for technical postgraduates, pages 1–4, 2009. 7

[27] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan,
Karl ST Arnaud, Derek Nowrouzezahrai, Jean-François
Lalonde, and Felix Heide. Hyperparameter optimization
in black-box image processing using differentiable proxies.
ACM Transactions on Graphics, 38(4):27–1, 2019. 1, 2

22322



[28] Peter van Beek, Chyuan-Tyng Roger Wu, Baishali Chaud-
hury, and Thomas R Gardos. Boosting computer vision
performance by enhancing camera isp. Electronic Imaging,
2021(17):174–1, 2021. 1

[29] Chyuan-Tyng Wu, Leo F Isikdogan, Sushma Rao, Bhavin
Nayak, Timo Gerasimow, Aleksandar Sutic, Liron Ain-
kedem, and Gilad Michael. Visionisp: Repurposing the im-
age signal processor for computer vision applications. In
IEEE International Conference on Image Processing, pages
4624–4628. IEEE, 2019. 1, 2

[30] Lucie Yahiaoui, Ciarán Hughes, Jonathan Horgan, Brian
Deegan, Patrick Denny, and Senthil Yogamani. Optimization
of isp parameters for object detection algorithms. Electronic
Imaging, 2019(15):44–1, 2019. 1, 2

[31] Cheoljong Yang, Jinhyun Kim, Jungmin Lee, Younghoon
Kim, Sung-Su Kim, TaeHyung Kim, and JoonSeo Yim. Ef-
fective isp tuning framework based on user preference feed-
back. Electronic Imaging, 2020(9):316–1, 2020. 1

[32] Dani Yogatama and Gideon Mann. Efficient transfer learning
method for automatic hyperparameter tuning. In Artificial
intelligence and statistics, pages 1077–1085. PMLR, 2014.
2

[33] Ke Yu, Zexian Li, Yue Peng, Chen Change Loy, and Jinwei
Gu. Reconfigisp: Reconfigurable camera image processing
pipeline. arXiv preprint arXiv:2109.04760, 2021. 2

[34] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Cycleisp: Real image restoration via improved data
synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2696–
2705, 2020. 1

[35] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 2

22323


