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Abstract

Federated learning can coordinate multiple users to par-
ticipate in data training while ensuring data privacy. The
collaboration of multiple agents allows for a natural con-
nection between federated learning and collective intelli-
gence. When there are large differences in data distri-
bution among clients, it is crucial for federated learning
to design a reliable client selection strategy and an inter-
pretable client communication framework to better utilize
group knowledge. Herein, a reliable personalized federated
learning approach, termed RIPFL, is proposed and fully in-
terpreted from the perspective of social learning. RIPFL
reliably selects and divides the clients involved in training
such that each client can use different amounts of social
information and more effectively communicate with other
clients. Simultaneously, the method effectively integrates
personal information with the social information generated
by the global model from the perspective of Bayesian de-
cision rules and evidence theory, enabling individuals to
grow better with the help of collective wisdom. An inter-
pretable federated learning mind is well scalable, and the
experimental results indicate that the proposed method has
superior robustness and accuracy than other state-of-the-
art federated learning algorithms.

1. Introduction

Federated learning is a new machine learning technique
with various applications in data privacy protection and data
security [19, 21, 37]. It can be viewed as social learning
involving multiple agents coinciding with collective intelli-
gence [3, 11, 13]. Unlike ordinary federated learning, per-
sonalized federated learning can address the problem of
data heterogeneity among clients and thereby improve their
capabilities in relatively more realistic scenarios [4, 18].
However, designing a reliable and interpretable federated
learning framework remains a significant challenge in the
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Figure 1. Cooperation between clients. Uninterpretable simple ag-
gregation produces a global model that is not helpful for all clients
because the information containing classes 2 and 3 may be nega-
tive for client 4, as well as for clients 1 and 4. Clients 1 and 2 can
well identify classes 1, 2, 3, and 4; however, unreliable random
selection does not guarantee the participation of clients 1 and 2
in aggregation, whereas the simultaneous selection of less-capable
clients such as clients 3 and 4 does. In this case, smart customers
cannot offer more help to the not-so-smart ones.

field of federated learning. FedProx [32], SCAFFOLD [15],
MOON [17] used the global model to impose different con-
straints on the client’s local training process. Consequently,
the knowledge of the global model was better absorbed.

Although [6, 33, 40] solved the problem of client het-
erogeneity in a personalized federated learning framework
by incorporating techniques such as clustering and knowl-
edge distillation. [22, 35] propose a certain degree of inter-
pretable client aggregation from the perspective of client
contribution to the group. However, their selection and
training of clients are often unreliable and uninterpretable,
resulting in uncertainty in the training process and a ten-
dency to ignore synergies between clients when the number
of clients is large and the data distribution widely varies.
Consequently, the collective intelligence is underutilized, as
shown in Fig. 1.

Herein, we propose a reliable and interpretable feder-
ated learning framework, RIPFL. Specifically, we introduce
Dempster–Shafer evidence theory (DST) [20, 34] to quan-
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tify the uncertainty and performance of each client and pro-
vide reliable client selection strategies. To reliably explain
client choices and aggregation methods without wasting
collective intelligence, RIPFL ensures that all smart clients
participate in the aggregation process while a small num-
ber of nonsmart individuals participate, to enable that nons-
mart clients can adequately gain more valuable collective
knowledge from smart clients. Moreover, a method that
can reliably integrate social and personal information is pro-
posed. The proposed framework is primarily applicable to
situations where the number of clients is large and the tasks
solved by clients are complex. The main contributions of
this paper are as follows.

• This paper proposes a reliable and interpretable per-
sonalized FL architecture from the perspective of so-
cial learning, which consists of interpretable local
training, reliable clients selection and division, and ef-
fective federated aggregation.

• To reliably select the required clients, this paper intro-
duces evidence theory to the local training of clients,
thus quantifying the uncertainty of each client and pro-
viding interpretable training methods.

• A Bayesian-rule-based evidence fusion method is in-
troduced by considering the global model as the prior
information of clients when there are differences in
the data distribution among clients. Consequently, the
knowledge of the global model is not forgotten by
clients in local training.

2. Background and Related Work
2.1. Personalized Federated Learning

As personalized federated learning shifts from tradi-
tional server-centered federated learning to each-client-
centered federated learning, it is better suited for cases with
a Non-IID data distribution. FedProx [32] restricted the lo-
cal update direction by imposing a global constraint on the
client training loss. [6, 15] placed different constraints on
client losses based on [32]. MOON [17] utilized the similar-
ity between model representations to correct the local train-
ing of clients. FedPer [4] aggregated the entire model base
layer while retaining the last few layers as personalized lay-
ers for local updates. Clustered federated learning [33] ag-
gregated individuals with similar data distributions among
clients for training. [22] proposed APPLE, a cross-silo FL
framework that adaptively learns how much each client ben-
efits from other clients’ models. Recently, knowledge distil-
lation [1,38,40] has been widely applied to federated learn-
ing, [5, 23, 36, 39] solving the problem of data heterogene-
ity among clients from different perspectives using different
technologies. The federated learning framework proposed

herein is also personalized with the objective of allowing
each individual to improve their performance.

2.2. Collective Intelligence

Collective intelligence, a shared or group intelligence,
is a process of acquiring the opinions of numerous people
and transforming them into decisions [13, 31]. In groups,
individuals often simultaneously select different learning
strategies [16,28], including social and asocial learning. So-
cial learning requires extensive decision-making knowledge
from other individuals and can be understood as ‘copying’
behavior to some extent, whereas asocial learning is more
self-reliant. Better-performing individuals primarily engage
in asocial learning, whereas less-capable individuals tend
to improve their abilities by replicating the knowledge of
better-performing learners through extensive social learn-
ing. [2, 3, 11, 14] reported the use of various conditions to
better stimulate collective intelligence. Herein, we interpret
the federated learning framework from the perspective of
collective intelligence.

2.3. Dempster-Shafer Evidence Theory

Dempster-Shafer evidence theory (DST) is a generaliza-
tion of Bayesian theory to subjective probabilities [7] and
has been applied to reliably quantify uncertainty [10, 20].
Subjective logic formalizes the notion of evidence distribu-
tion of DST in a discriminative framework as the Dirichlet
distribution [12]. In the classification task, for the input,
the sample is classified as having a certain belief mass sup-
ported by each class. For the class matching the true la-
bel of the sample, belief mass should be increased for more
credible judgments [34]. Herein, evidence theory is used
to quantify the uncertainty in client classification tasks, and
evidence generated by different models is fused to better
learn group knowledge.

3. Methodology
3.1. Interpretable Objectives

RIPFL aims to enable clients to more reliably select
more appropriate partners to work with, thereby leverag-
ing interpretable learning strategies and achieving improved
training results. The overall framework of this method is
shown in Figure 2. [8, 9] proposed that interpretable ma-
chine learning should be reliably interpretable from data to
the model; hence, to better illustrate the interpretability of
the proposed method, we first present our objective.

Let Q be an evaluation metric for interpretability and
E be a specific method for achieving interpretability. For
a single client training, we need to find a method E that
enables the client C to solve the task T on the basis of
the given data D while having the maximum understand-
ing of the model M , then the interpretable objective is
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Figure 2. Framework of RIPFL. Each global iteration round comprises three parts and six steps. After the clients complete their local
training, the server reliably selects and divides them. Then, clients upload model parameters, select partners interpretably by social
learning strategies, and perform model aggregation. In step 3, all clients with low uncertainty are selected, and some clients with high
uncertainty are randomly selected. In step 6, we improve the parameter passing method of [4] for application to the scenarios in this paper.
For most iteration rounds, the model is downloaded by passing the parameters of the front part (e.g., the layer inside the dashed box), and
for a few rounds, the rear part of the model parameters containing the fully connected layer is passed.

ArgmaxEQ(E|M,C,D, T ).
In personalized federated learning, Cs denotes the s-th

client involved in learning, Ds, Ts, Ms represent the data,
task and model of the s-th client respectively, then the opti-
mization objective of personalized federated learning is

ArgmaxEFL

N∑
s=1

Q(EFL|Ms, Cs, Ds, Ts), (1)

where EFL denotes the interpretable federated learning
method required to solve the problem. So the process from
client training to final aggregation is to seek an interpretable
method such that Q is maximum.

3.2. Interpretable Local Training

Let Eloc denote the interpretable local training method.
The interpretable objectives for each client in this period are
ArgmaxEloc,Ms

∑N
s=1Q(Eloc|Ms, Ds, Ts). At this stage,

it is important to design reliable interpretable training mod-
els from the data to quantify the uncertainty. Thus, this pa-
per adopts a reliable classification method based on DST
[34]. For the classification problem to be solved by each
client, the k-th class is given a belief mass bk to determine
the sample labels, and an overall quality of uncertainty u
is given for each sample. For a K classification problem,
the k belief mass and uncertainty are nonnegative and add
to 1, i.e., u +

∑K
k=1bk = 1, where u ≥ 0 and bk ≥ 0 for

k = 1, ...,K. A belief mass bk for a class k is computed us-
ing the class evidence. Let ek ≥ 0 be the evidence derived
for the k-th class. Then, the belief bk and uncertainty u are

computed as bk = ek
S , u = K

S , where S =
∑K

k=1(ei + 1).
The evidence for the k-th class, ek, is determined by the
Dirichlet distribution parameter α, i.e., αk = ek +1. Given
an opinion, the expected probability for the k-th class is the
mean of the corresponding Dirichlet distribution and com-
puted as p̂k = αk

S . Clearly, the more evidence there is for a
category, the smaller is the corresponding uncertainty. This
explains how the model makes judgments about the prob-
ability of classification for each data sample from the per-
spective of subjective beliefs, while the evidence is gener-
ated with a complete understanding of the data.

Federated learning can produce adequate results and re-
lies heavily on the client’s use of group information such as
global models [30]. However, during local iterative training,
this global knowledge can significantly decrease or even
disappear with increasing number of training rounds, es-
pecially when the data distribution between clients is very
different. Therefore, to better fuse local and global informa-
tion, the following Bayesian evidence fusion theorem [20]
is introduced.

Theorem 1 Given the prior Dirichlet distribution
p(z|β) = Dir(z|β) and distribution parameters col-
lected from observed training samples γ, the posterior
distribution p(z|β,γ) = Dir(z|β + γ).

Theorem 1 provides the basis for fusing two types of ev-
idence information. The client receives a global model
before local training and can generate global evidence egk,
which can be considered prior information of clients, us-
ing local data through the global model. Similarly, the local
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Figure 3. Local training and evidence fusion process. After the
client receives the global model, a prior evidence egk is generated
using local sample i, and the global model is not involved in the
update to maintain social information. Simultaneously, the client
updates the individual model while generating the evidence epk.
Eventually, the two parts of evidence are fused, thereby gener-
ating evidence containing social and individual information and
keeping the global model information continuously acting in the
local training process.

model generates individual evidence epk after starting the up-
date, and this part of evidence is acquired by observing the
training sample. According to Theorem 1, for each sample
posterior, evidence ek containing social and asocial infor-
mation can be generated and calculated as

ek = epk + λ · egk, (2)

where k represents the class and the parameter λ is used
to control the ratio of prior evidence to locally observed
evidence. Consequently, there is a different impact on the
posterior evidence. The local training and evidence fusion
process is shown in Fig. 3.

To make better use of the fused evidence while making
model Ms training interpretable, this paper introduces evi-
dence classification loss. To obtain nonnegative outputs, the
softmax layer of the normal DNN is replaced with an acti-
vation function layer (i.e., exp(·)), and the output is used
as an evidence vector to predict the Dirichlet distribution.
For sample xi, the evidence epk is obtained after the network
as epk = exp(f(xi|θ)), θ is the parameter of the client per-
sonal model. Similarly, the prior evidence egk generated by
the global model θg can be obtained. According to Eq. (2),
the fusion evidence ek and the posterior Dirichlet distribu-
tion parameter αk can be calculated.

Generated posterior Dirichlet parameters can generate
Dir(pi|αi) for a given sample i, where pi represents the

class assignment probability on a simplex. After the mod-
ification of the ordinary cross-entropy loss, the loss for a
single sample i is calculated as follows:

Ledl
i (θ) =

∫  K∑
j=1

−yij log(pij)

 1

B(αi)

K∏
j=1

pij
αij−1dpi

=

K∑
j=1

yij(ψ(Si)− ψ(αij)),

(3)
where yij is a one-hot vector encoding the ground-truth
class of observation xi with yij = 1 and yij = 0 for all
k ̸= j, Si =

∑K
j=1αij ; ψ(·) is the digamma function.

Eq. (3) means assigning the sum of all categories of ev-
idence generated by the prediction to the true classes as
much as possible and providing positive feedback. How-
ever, the above losses do not guarantee that incorrect labels
will yield less evidence; hence, to shrink the evidence for
incorrect labels to 0 to the maximum possible extent, the
following KL dispersion term is introduced:

KL[D(pi|α̃i)||D(pi|1)] = log(
Γ(

∑K
k=1 α̃ik)

Γ(K)
∏K

k=1 Γ(α̃ik)
)

+

K∑
k=1

(α̃ik − 1)[log(α̃ik)− log(

K∑
j=1

α̃ij)],

(4)
where 1 represents the parameter vector of K ones, Γ(·) is
the gamma function, α̃i = yi +(1−yi)⊙αi is the Dirich-
let adjustment parameter that prevents excessive penalties
for all evidence of the ground-truth class. Therefore, for a
single sample i, the loss is:

Li(θ) = Ledl
i (θ) + λtKL[D(pi|α̃i)||D(pi|1)], (5)

where λt is the balance parameter, and Eq. (5) can be con-
sidered an interpretable optimization method Elocal. The
optimization objective Fs(θs) for the s-client with data Ds

is as follows:

Fs(θs) = min
θs

1

|Ds|

|Ds|∑
i=1

Li(θs), (6)

where θs denotes the personal model parameters of the s-
th client. For client c, we determine a way Eloc to collect
evidence from data Ds that supports the choice decision.
Consequently, we have an interpretable modelMs when the
client is faced with the classification task Ts. Finally, the
goal of local training interpretability is reached.

3.3. Reliable Individual Selection and Division

Assume that Esel represents the interpretable method of
client selection. The interpretable objectives of this pe-
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riod is ArgmaxEsel,Msel
Q(Esel|Msel, Cg), where Cg de-

notes all clients participating in federated aggregation and
Msel denotes the client selection model. In federated learn-
ing, clients are randomly selected to participate in aggre-
gation. For client selection, the ratio of well-performing
clients to poor-performing clients is not considered, as ex-
cessive poor-performing clients degrade the global informa-
tion generated by aggregation and do not provide sufficient
help to each client [13]. To solve this problem, RIPFL se-
lects all intelligent clients, i.e., C1 = Cbetter. Meanwhile,
a fraction of unintelligent individuals is randomly selected
to participate in the aggregation, i.e., C2 ∈ Cpoor. The
clients involved in each global iteration are Cg = C1 ∪ C2.
Compared to normal random selection, this approach en-
sures that numerous better-performing individuals are in-
volved in federated training each time, thus helping as many
poor-performing individuals as possible. Simultaneously,
the RIPFL determination of client performance is reliable
because sample uncertainty can be determined by evidence
theory, and the sum of the uncertainty us of all samples
on the client s reliably reflects the client’s ability (i.e., the
smaller the us, the more intelligent is the individual).

3.4. Effective Federated Aggregation

As a unified global model does not help all clients in
the same manner, providing all clients with the same global
model is not the best solution. Let Eagg denote the spe-
cific method for solving the interpretability of client ag-
gregation; then, the interpretable objectives of this period
are ArgmaxEagg,Magg

Q(Eagg|Magg, Cg, T ), where T =∑N
s=1 Ts and Magg is the federated aggregation model.

From collective intelligence, each client selects individuals
who are well suited to their own tasks and models to better
help themselves [3, 11]. The model similarity dsk between
clients s and k is calculated as dsk = cos(θs, θk), where
θs is the model parameter, and cos(a, b) denotes the calcu-
lation of the cosine similarity between a and b. This value
can be considered the similarity of model Ms and task Ts
contained in the individual. It is updated as the iteration
proceeds and stored in the relationship matrix.

For client s, the sequence of similarity of the remaining
clients participating in this round of federated aggregation
to themselves is vs = [ds1, ds2, . . . , dsk] from largest to
smallest, where client k must satisfy Ck ∈ Cg . After the
sequence vs is sorted, the first c client models that are more
similar to the s-client are selected from the sequence af-
ter elimination for aggregation, and the aggregated global
model θgs is sent to client for the next round of iterations.
i.e., θgs = 1

c

∑c
k=1 θk. Here, c can be a fixed constant ad-

justed to different group sizes; however, the introduction
of uncertainty values allows c to be adaptively adjusted to
the performance of different individuals. For individuals,
higher uncertainty implies that they are less capable of solv-

ing the task and therefore require more group information to
help themselves. By contrast, individuals with lower uncer-
tainty are more capable and require less group information.
Therefore, the number of similar models selected by the
client is proportional to the uncertainty us, i.e., c = ζ(us),
where ζ(·) is the ordinary mapping function. As the value
of us ranges from 0 to 1, mapping operation is required to
convert it to a larger value based on the real group size.

This flexible and interpretable aggregation approach
Eagg is not limited by a single global model. It ensures
that each client can aggregate a different amount of social
information to generate a personalized global model that is
beneficial to them, depending on their performance. Finally,
the global optimization objectives are as follows.

min
θ
F (θ) = min

θs,s∈[C]
F (θ1, . . . , θN ) = min

θs,s∈[C]

N∑
s=1

Fs(θs)

(7)
Following the t-th global iteration, θ(t+1)

s = θgs
(t), where

θ(t) is the model parameter for the t-th round. The com-
plete federated frame comprises local training, client se-
lection, and model aggregation; hence, the interpretable
method EFL = Eloc ∪ Esel ∪ Eagg , and up to this point,
we complete the interpretable goal proposed in Eq. (1).

3.5. Generalization Bound for RIPFL

Let X and Y denote the input and output spaces, respec-
tively. This paper focuses on the multiclassification prob-
lem, where Y is a finite set of classes. Consider a hypothesis
of the form h : X → ∆Y , where ∆Y represents the simplex
over Y . Thus, h(x) is the probability distribution that can
be assigned to the class on x ∈ X . According to Eq. (5),
the loss of h ∈ H for a labeled sample (x, y) ∈ X × Y is
given by L(h(x), y), where H denotes a family of such hy-
potheses h with V C-dimension d. We denote the risk and
empirical risk of hypothesis h to distribution D and empiri-
cal distribution D̂ as ϵD(h) and ϵ̂D(h); ϵD(h) is denoted as
ϵD(h) = ED[L(h(x), y)].

RIPFL client local training introduces interpretable mod-
els m ∈ M, where M is a class of interpretable models.
However, not every client model is sufficiently simple to be
well interpreted on its own data. Therefore, ϵ̂Ds

(m) is used
to denote the empirical risk thatm cannot be interpreted us-
ing complex models in the face of complex data. The data
distribution of client s is denoted by Ds, where ns is the
number of samples. For client s, ms is the client model.
According to standard learning–theoretic tools [26], with a
probability of at least 1− δ, the minimizer of empirical risk
and risk satisfies

ϵDs(h) ≤ ϵ̂Ds(h) + 2

√
2d log(2ns) + log(4/δ)

ns
+ ϵ̂Ds(ms).

(8)
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For two distributions D1 and D2 and a class of hypothe-
ses H, dH(D1,D2) denotes the divergence between two dis-
tributions. In the federation system, multiple clients are
involved in training, and the mixture of all client distri-
butions is the global distribution. However, in the frame-
work proposed herein, each client selects models similar
to its own and uses its own aggregation model, instead
of using a unified global model after the aggregation of
all clients, i.e., m(t+1)

s = mg
s
(t), Dg

s =
∑ζ(us)

s=1
1

ζ(us)
Ds,

ζ(us) ≤ N ; m(t) is the model for the t-th round. The mix-
ture distribution then corresponds to the global hypothesis
hgs =

∑ζ(us)
s=1

1
ζ(us)

hs, where hs is a hypothesis for the s-th
client. Based on the global model generalization proposed
by [24, 27], with a probability of at least 1− δ, the risk of a
single client in the federation system can be given as

ϵDs(hs) ≤ ϵ̂Ds(h
g
s) + 2

√
2d log(2ngs) + log(4/δ)

ngs

+ dH(Ds,Dg
s) + ϵ̂Ds

(ms),

(9)

where ngs is the total number of samples of the clients partic-
ipating in the aggregation for client s. According to Eq. (7),
the final optimization objective is

min
1

N

N∑
s=1

ϵDs(hs). (10)

Assuming that n =
∑N

s=1 ns denotes the total number of
samples, combining Eq. (9) and Eq. (10) yields the general-
ization bound for the entire framework as

N∑
s=1

1

N
min
hs∈H

ϵDs(hs) ≤
N∑
s=1

1

N
ϵ̂Ds(h

g
s) +

N∑
s=1

1

N
ϵ̂Ds(ms)

+

N∑
s=1

1

N
dH(Ds,Dg

s) + 2

√
2d log(2n) + log(4/δ)

n
.

(11)

4. Experiment
In this section, through specific experiments on two dif-

ferent real data sets, we verify that the proposed RIPFL
method has better robustness.

4.1. Implementation Details

4.1.1 Compared Methods

FedAvg [25] is the classical federated learning algorithm.
FedPer [4], FedProx [32], MOON [17], and Fed-Rod [6] are
all personalized federated learning techniques, with the dif-
ferent local training losses employed to address the hetero-
geneity among clients being the difference between them.
CFL [33] reduces the impact of irrelevant data for each

client by clustering clients with similar data distributions
such that multiple clustering centers coordinate for train-
ing. APPLE [22] is a cross-silo personalized FL framework
where each client adaptively selects the aggregator to max-
imize its own benefits.

4.1.2 Datasets

The CIFAR10 and CIFAR100 datasets are widely used to
test the ability of models in federated learning to accom-
plish classification tasks. Herein, we follow the data parti-
tioning approach of [4]. The experiment controls the degree
of variation in the data distribution by controlling the max-
imum number of sampled classes σ for each client. The
larger σ is, the more classes a client can randomly receive.

4.1.3 Model and Hyperparameters

An experiment was conducted with PyTorch [29] to im-
plement RIPFL and other baselines. A simple CNN net-
work containing two convolutional layers and three fully
connected layers is used for CIFAR10, and a ResNet18 net-
work is used for CIFAR100. For CIFAR10, the number of
local training rounds is 5, and the number of global rounds
is 200. For cifar100, the number of local training rounds
is 10, and the number of global rounds is 200. The Adam
optimizer is used with a uniform learning rate of 0.0003.

4.2. Performance Comparison

4.2.1 Performance in Different Environments

The test accuracy in this experiment is the average of the
accuracy of all clients that participated in federated learn-
ing on the local test dataset. Tab. 1 indicates that RIPFL
produces better results in all cases; particularly, it outper-
forms other methods by at least 2.14% and 2.55% in the
cases where σ = 60, the dataset is CIFAR100, and the
numbers of clients are 30 and 50, respectively. This indi-
cates that RIPFL has a more significant advantage as the
task becomes complex and the number of clients increases.

With increasing discrepancy in data distribution between
clients, the number of clients increases, number of classes
per client increases, and number of samples per class de-
creases, FedPer causes the clients to rapidly overfit on the
training set as a result of not passing the classification layer
parameters during fine-tuning, resulting in a significant de-
crease in test accuracy. CFL exhibits poor performance in
all cases because when the class overlap between clients is
less and the sample size of each class is smaller, CFL needs
to use most clients as cluster centers, which results in inef-
fective clustering. For the same case, the use of Fed-Rod
with class balance loss to resolve the sample size of classes
and class differences between clients is not feasible. AP-
PLE reduces the communication overhead by limiting the
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Dataset CIFAR10 CIFAR100
Number of clients N = 30 N = 50 N = 30 N = 50

Non-IID σ = 4 σ = 5 σ = 6 σ = 4 σ = 5 σ = 6 σ = 40 σ = 50 σ = 60 σ = 40 σ = 50 σ = 60

FedAvg [25] 78.19 74.75 71.27 75.49 72.42 71.14 65.97 63.89 61.29 62.45 59.56 56.41
FedPer [4] 78.31 75.32 72.45 76.88 74.81 71.05 60.05 55.20 50.94 50.05 46.15 43.70

FedProx [32] 76.38 73.58 70.16 74.32 72.02 70.75 67.27 64.41 62.03 62.94 60.42 58.10
MOON [17] 78.84 74.29 72.54 76.17 73.89 71.11 67.65 65.32 62.40 62.36 61.04 58.50

CFL [33] 64.33 67.73 67.48 57.23 60.37 60.05 57.10 56.93 56.38 50.77 51.48 52.81
APPLE [22] 77.14 72.64 69.58 70.48 67.17 66.22 −− −− −− −− −− −−
Fed-Rod [6] 77.65 74.67 70.95 75.04 69.02 65.90 65.88 63.50 61.72 60.45 56.73 53.01

RIPFL 79.11 76.43 74.52 78.57 76.16 73.21 68.73 66.84 64.54 63.65 62.51 61.05

Table 1. Test accuracy (%) of different FL methods on CIFAR10 and CIFAR100, where N denotes the number of clients. APPLE with a
more complex network on a larger dataset would lead to a large overhead, and experiments are only performed on CIFAR10 owing to the
limitations of the experimental equipment.

Figure 4. Convergence rate of each method on CIFAR10. N = 50
and σ = 6.

number of core models each client can download from other
clients. However, with increasing complexity of the task,
the amount of social information required by the clients in-
creases, and this limitation degrades the performance of the
algorithm.

4.2.2 Convergence Rate

Fig. 4 reflects the convergence rate of each method within
200 rounds of communication. RIPFL achieves the best
performance, followed by FedPer. FedPer converges faster
than FedAvg, MOON, and FedProx because the base layer
part of the model is uploaded during aggregation, while
the final parts of the parameters are fine-tuned individu-
ally. RIPFL converges the fastest because it makes a reliable
client selection while uploading partial parameters of the
model. Consequently, poorly performing clients can gain
knowledge from numerous good clients and thus have faster
convergence.

Figure 5. Performance of the RIPFL method on CIFAR10 for dif-
ferent λ and σ cases, N = 50.

4.3. Effect of Evidence Fusion

To show the influence of mixed evidence incorporating
global prior evidence on the training effect, the experiments
show the variation of accuracy with λ for different σ. As
shown inFig. 5, with increasing σ, the task becomes more
difficult. The client requires help from stronger social in-
formation to facilitate social learning, and therefore, the pa-
rameter λ to achieve the best performance increases with
it. Clearly, if λ is excessively small, clients tend to forget
social knowledge during training and do not receive help
from other clients, resulting in poor performance. If λ is ex-
ceedingly large, the global model containing other clients’
knowledge has excessive influence on the local model, con-
sequently decreasing the accuracy rate.

4.4. Reliability Verification

To verify the reliability of client selection, the relation-
ship between the number of classes included in the clients,
accuracy, and client uncertainty is given. Fig. 6a shows
that the uncertainty of clients varies with train/test set ac-
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(a) Global iteration rounds of 20.

(b) Global iteration rounds of 60.

Figure 6. Train/Test accuracy (%), uncertainty, and number of
classes included in the client on CIFAR10 with different global
rounds (N = 30, σ = 6). The experiments randomly select one
client from the clients containing different numbers of classes and
show the variation of each metric in different training rounds.

curacy. Furthermore, they show a negative correlation, with
the uncertainty decreasing with increasing accuracy. Fig. 6b
shows that uncertainty can reliably distinguish the perfor-
mance of different clients on the test set when the accuracy
of the training set is generally high. The higher the number
of client inclusion classes, the more complex the task, and
the more likely it is to overfit as training proceeds, thus for-
getting knowledge from the global model. As such clients
with multiple classes tend to have intersection of classes
with other clients, more social information is required. By
contrast, clients with fewer classes have better classifica-
tion ability and low uncertainty, and therefore, they do not
require much social information.

Moreover, we conducted experiments of RIPFL and Fe-
dAvg with the attacks on client data. The accuracy of RIPFL
dropped from 74.52% to 73.58% after being attacked, while
the accuracy of FedAvg dropped from 71.27% to 68.86%.
The performance of RIPFL decreases less than FedAvg,
which demonstrates the robustness of RIPFL. From the per-
spective of aggregation, the uncertainty has been increased
after being attacked, and the probability of being selected is
reduced. From the perspective of personalization, only sim-
ilar clients are selected for collaboration, which can also
reduce the impact of attacks.

4.5. Interpretability Verification

Client division Acc%
well-performed(15); poor-performed(5) 74.18

well-performed(10); poor-performed(10) 72.25
well-performed(5); poor-performed(15) 71.30

Table 2. Interpretability verification. The experiment was con-
ducted on CIFAR10 with a number of 30 clients, from which 20
were selected to participate in the aggregation.

In this work, we account for interpretability with that
uncertainty can be used to guide the grouping and selec-
tion. Specifically, clients with low uncertainty can obtain
good performance, while the uncertainty of each client can
be quantified by evidence theory during the local training,
which is relevant to the performance. The results of the in-
terpretability verification experiments are shown in Tab. 2.
Clients are divided into well-performing (lower uncertainty)
and poor-performing (higher uncertainty) groups, with 15
in each group. The numbers of well-performing and poor-
performing are 15/5, 10/10, 5/15, respectively. It can be
shown that accuracy is higher when more well-performing
clients are selected, indicating that well-performing clients
are more capable of helping others to improve the perfor-
mance, while poor-performing clients may reduce the per-
formance of the global model, clearly supporting the obser-
vation on our interpretability.

5. Conclusion

In this study, we developed a reliable and interpretable
FL method (RIPFL) for the image classification task in the
case of Non-IID data distribution among clients. We reli-
ably quantified client uncertainty in training and designed
interpretable client selection and aggregation methods that
fully exploit group collaboration. Further, we introduced
a Bayesian evidence fusion approach that allows social in-
formation to continue to work on local clients, enabling
them to grow better with collective intelligence. The exper-
imental results showed that the proposed model exhibited
higher performance than state-of-the-art FL methods. The
proposed FL framework is suitable for classification prob-
lems with large data distribution among customers, complex
tasks of customers, and numerous clients.
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ven. Explainable and Interpretable Models in Computer Vi-
sion and Machine Learning. Springer Cham, 2018. 2

[10] Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi
Zhou. Trusted multi-view classification. In Proceedings of
the International Conference on Learning Representations,
2021. 2

[11] Bertrand Jayles, Hye rin Kim, Ramón Escobedo, Stéphane
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