
CafeBoost: Causal Feature Boost to Eliminate Task-Induced Bias for Class
Incremental Learning

Benliu Qiu Hongliang Li* Haitao Wen Heqian Qiu
Lanxiao Wang* Fanman Meng Qingbo Wu Lili Pan

University of Electronic Science and Technology of China, Chengdu, China
{qbenliu, haitaowen, hqqiu, lanxiao.wang}@std.uestc.edu.cn
{hlli, fmmeng, qbwu}@uestc.edu.cn panlili8255@gmail.com

Abstract
Continual learning requires a model to incrementally

learn a sequence of tasks and aims to predict well on all
the learned tasks so far, which notoriously suffers from the
catastrophic forgetting problem. In this paper, we find a new
type of bias appearing in continual learning, coined as task-
induced bias. We place continual learning into a causal
framework, based on which we find the task-induced bias
is reduced naturally by two underlying mechanisms in task
and domain incremental learning. However, these mecha-
nisms do not exist in class incremental learning (CIL), in
which each task contains a unique subset of classes. To
eliminate the task-induced bias in CIL, we devise a causal
intervention operation so as to cut off the causal path that
causes the task-induced bias, and then implement it as a
causal debias module that transforms biased features into
unbiased ones. In addition, we propose a training pipeline
to incorporate the novel module into existing methods and
jointly optimize the entire architecture. Our overall ap-
proach does not rely on data replay, and is simple and
convenient to plug into existing methods. Extensive em-
pirical study on CIFAR-100 and ImageNet shows that our
approach can improve accuracy and reduce forgetting of
well-established methods by a large margin.

1. Introduction
Deep learning has been widely applied in many fields

like computer vision, social media analytics, natural lan-
guage processing, etc. The standard paradigm of deep
learning is to train models on a prepared dataset, of which
all data are accessible in the whole training stage. However,
in most real-world applications, a sequence of tasks arrives
incrementally, which requires models to learn continuously
from a new task, namely continual learning [27]. Despite
fine-tuning achieves this goal somewhat, such naı̈ve method
forgets obtained knowledge of previous tasks after learning

*Corresponding authors.

X Y

T

X Y

T

(b) Task-induced bias between class features

C1 C2

T

C1 C2

T

A TaskA Task

(c) Task-induced bias between images and labels

A Task

C1 C2

X
Y

T

T

Color

Stripe

Elephant Leopard

Stripe

Elephant Leopard

Color

Stripe

Elephant Leopard

Old classesOld classes

New classes

Old classes

New classes

P
ro

b
.

Old classes

New classes

P
ro

b
.

Current TaskPrevious Task

P
ro

b
.

P
ro

b
.

Train

data

Test

data

Train

data

Test

data

(a) Illustration of CIL

Figure 1. Illustration of CIL, task-induced bias and their detrimen-
tal effects. (a) Illustration of CIL. (b) Task-induced bias between
class features. Two classes in a task are correlated by a task iden-
tifier. (c) Task-induced bias between images and labels. Images
and labels in a task are correlated by a task identifier. In (b)(c), the
first column describes perspectives of task-induced bias, the sec-
ond shows the underlying causal effect causing task-induced bias,
and the last illustrates adverse influence of task-induced bias.

a new task, dubbed as catastrophic forgetting [18].
Much effort has been devoted as a remedy for alleviating

this problem in literature [2, 3, 11–14, 16, 33]. One general
direction is to preserve knowledge representations of pre-
vious tasks by knowledge distillation [10] and by storing a
few observed exemplars for replay [22]. [11] discovers the
class imbalance between old classes and new ones is a key
challenge of large-scale applications in class incremental
learning (CIL), in which classes of a new task never appear
in the previous tasks, as illustrated in Fig. 1 (a). [2,7,31,35]
all follow this direction and propose effective methods to
overcome the class imbalance. However, these methods ig-
nore bias problems in continual learning. In this work, we

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16016

consider the problem of CIL in a novel perspective of bias.
We think that catastrophic forgetting is the reflection of a
new-type bias, coined as task-induced bias.

Deep neural networks are easily misled by language
bias [1] and vision bias [6, 9, 29], which are both derived
from spurious correlations of two or more items in differ-
ent positions of a sentence or an image. In contrast to these
two bias, the task-induced bias occurs across different im-
ages in a common task. In CIL, data of specific classes
are accessible only in a certain task if replay buffer is not
applied. A deep neural network is capable of learning cor-
relations among images of different categories or between
images and labels as possible as it can, which includes a few
spurious correlations, namely biases, leading to a limited
generalization. On the one hand, a portion of these image
correlations can be shared beneficially in this task, but these
benefits cannot share among different tasks. For example, in
Fig. 1 (b), color is sufficient to discriminate elephants and
leopards in a specific task since elephants are grey while
leopards are orange, and thus deep models have no moti-
vation to capture more complex characteristic, like stripe.
This is detrimental to the feature extractor because it cap-
tures a few details that cannot generalize among all tasks.
On the other hand, as shown in Fig. 1 (c), a classifier will
be biased to new classes in the current task [11,31,35], be-
cause the classes in the training data are all the new classes
and to predict new classes is more possible to be correct.

To better understand the task-induced bias in continual
learning, we model three continual learning scenarios [27]
into a common causal inference framework, which merely
contains three necessary variables: image, label, and task
identifier. Thanks to the framework, we discover that the
task-induced bias is minor in task incremental and domain
incremental learning due to innate mechanisms that cut off
an inappropriate causal path, which partially explain why
the two scenarios are easier to tackle than CIL [27]. For
the existence of the causal path in CIL, we seek an ac-
tive causal intervention to close the path. To implement
the intervention, we devise a simple but effective causal
debias module, which is established on attention mecha-
nisms [28]. Subsequently, we incorporate this module into
existing CIL architectures and propose a training pipeline
to optimize it. Our overall approach transforms causally bi-
ased features into unbiased ones, and hence we refer to it as
Casual Feature Boost (CafeBoost). Finally, we systemat-
ically compare accuracy and forgetting of well-established
methods with ours in various settings. Experimental results
show that CafeBoost yields significant and consistent per-
formance boost for existing methods in CIFAR-100 and Im-
ageNet by a large margin (0.67%∼ 12.08% on accuracy).

2. Related Work
Continual learning. Existing CIL works mostly aim to

maintain knowledge representations of previous tasks, in-

W4

W3

W1

C

Causal Block

Softmax

W4

W3

W1

C

Causal Block

Softmax

C
o
n
v

B
lo

c
k

Causal

Block

Classifier

Classifier

CafeBoost
ℳ

𝒟𝑡

𝑫𝑡−1 𝑫𝑡

𝜓𝑡 𝜙𝑡

𝜃1:𝑡−1

𝜃𝑡

C

Feature Dictionary

Concatenation

Matrix

multiplication

Input

samples

α
Task t

1-α

From task t-1

W2

W0

Figure 2. Overview of Casual Feature Boost (CafeBoost). Green
blocks are learnable, whereas white blocks are fixed. Conv block
is updated with a smaller learning rate than Causal block. The
training objectives including distillation loss, margin ranking loss,
etc., are omitted in this figure, since they depends on baselines.
Whether to use replay bufferM depends on specific baselines.

cluding replay-based methods and distillation-based meth-
ods. Replay-based methods [22, 25, 26] store a few exam-
ples to represent previous data and replay the stored data in
the current training stage. The purpose of relay-based meth-
ods is to select the most representative samples of the entire
training dataset. iCaRL [22] uses herding strategy [30] to
choose typical exemplars for future training. [25] calcu-
lates example influence of stability and plasticity for every
example in validation sets, based on which it selects exam-
ples for replay. Distillation-based methods [3,11,23,24] fo-
cus on transferring learned knowledge of a previous model
to the current one. LUCIR [11] combines cosine nor-
malization, less-forget constraint, and inter-class separa-
tion to mitigate the forgetting caused by class imbalance.
GeoDL [24] utilizes geodesic path for knowledge distilla-
tion which considers the gradual change between subspaces
of tasks. CSCCT [3] encourages features of each class to lo-
cate in an appropriate position of the feature space, and uti-
lizes inter-class relationships to transfer inter-class knowl-
edge positively or negatively. CwD [23] scatters uniformly
representations of each class in the initial task, which sig-
nificantly benefits performance in subsequent tasks. These
two types of methods are usually incorporated together to
achieve better performance.

Spurious correlation. Spurious correlation is also
known as bias. [19] has extensively investigated the bias
problem in machine learning. Many methods [1,9,29] have
been proposed to eliminate bias in their specific applica-
tions. [1] introduces counterfactual in the training to elim-
inate bias in visual question answering datasets. [9] pro-
poses a new Equalizer model to force a model look at a
person instead of inferring a person’s gender by context
cues. [29] applies causal intervention to alleviate vision bias

16017

among detected objects in an image.
Causal inference. Causal inference [21] aims to estab-

lish reasonable causal graphs for specific applications, then
analyze problems and propose solutions based on the estab-
lished causal graph. Causal intervention and counterfactual
process are two powerful tools of causal inference. These
two tools have been ubiquitously applied in multiple appli-
cations, such as out-of-distribution recognition [17], visual
question answering [1], image captioning [34], knowledge
distillation [6], etc. Recently, [12] builds a causal view to
analyze the cause of forgetting in class incremental learn-
ing, and designs an anti-forgetting technique so as to distill
causal effect of data without replay.

3. Preliminary

3.1. Continual learning scenarios

Continual learning can be categorized into three scenar-
ios [27] in the light of whether a task identifier is given in
a test phase and whether a model is required to infer which
task it meets. If the task identifier is available during both
training and test phases, this scenario is task incremental. If
the task identifier is accessible in training phase but it is only
necessary for a model to solve the task at hand, this scenario
is domain incremental. Similar to the domain incremen-
tal scenario, the class incremental scenario doesn’t provide
task identifiers in test phase, but it requires a model to in-
fer the current task identifier. Generally speaking, the class
incremental scenario is the most difficult among the three,
whereas the task incremental scenario is the easiest [27].

To formulate continual learning, we assume a sequence
of T tasks is given as {T0, T1, ..., TT−1}, each with data
Dt, t = 0, 1, ..., T − 1. Every sample in Dt is a tuple of an
image xi and a corresponding label yi, and hence we can
denote the data of task t as Dt = {(xi, yi)

Nt
i=1} where Nt is

the number of samples, xi ∈ Xt and yi ∈ Yt. Replay-based
continual learning methods require a memory bufferM to
store partial data of previous tasks. For the task T0, only
data D0 can be used for training, but for the task Tt, t >
0, we can train models using data M ∪ Dt. For the task
incremental scenario, task identifier T is given as an input
to models in test phase but not for the other two scenarios.

After the above formulation, we elucidate distinctions
of three incremental scenarios in a formal style [4]. Let
P (·) denote a marginal distribution. The common ground of
three scenarios is P (Xt) ̸= P (Xt+1) for all t. Their distinc-
tions lie in label set Yt and its marginal distribution P (Yt).
For task incremental learning, Yt ̸= Yt+1. For domain in-
cremental learning, Yt = Yt+1 and P (Yt) = P (Yt+1).
These two scenarios have no requirement on inferring task
identifiers. Conversely, the class incremental learning that
defines Yt ⊂ Yt+1 and P (Yt) ̸= P (Yt+1), requires models
to infer which label set is used for an arbitrary task.

X YX Y

X

T

YX

T

YX YX Y X

T

YX

T

Y

(a) Supervised learning (b) Continual learning

X Y

T

X Y

T

X Y

T

X Y

T

(d) Domain-incremental (e) Class-incremental

X Y

T

X Y

T

(d) Domain-incremental (e) Class-incremental

X Y

T

X Y

T

(c) Task-incremental

X Y

T

(c) Task-incremental

Train:

Test:

Train: Test:

Figure 3. Causal graphs of supervised learning and continual
learning. Gray nodes means unconditioned variables. (a) Causal
graphs of supervised learning in training and test phase. (b) Causal
graphs of continual learning. The red task variable depends on
specific continual scenarios. (c) Causal path between images and
labels in task incremental learning. The path X ← T → Y is
impeded because variable T is conditioned. (d) Causal path be-
tween images and labels in domain incremental learning. The path
X ← T → Y is cut off because of T ↛ Y . (e) Causal path be-
tween images and labels in class incremental learning. The path
X ← T → Y causes task-induced bias.

3.2. Causal graphs in continual learning
A causal graph is a directed acyclic graph, of which

nodes denote variables and directed edges denote the
causality between two variables. We treat images, labels
and task identifiers as nodes in our causal graphs. Although
only three nodes are incorporated into our causal graph, it
is powerful to reveal underlying characteristics of continual
learning as we will show in Sec. 4.

We denote an image as X , a label as Y and a task iden-
tifier as T in Fig. 3. The edges are listed below: X → Y
means label Y is deduced from image X; T → X denotes
that task identifier T have a causal influence to image X;
T → Y denotes task identifier T causally affect label Y .

For supervised learning in Fig. 3 (a), its causal graph
only contains an image X , a label Y and an causal path
X → Y that represents a model to capture the causality be-
tween two variables. In training phase of supervised learn-
ing, both image X and label Y are accessible and we utilize
them to learn the causal effect into the model. But in test
phase, an image X and the causal path are known and Y
is the label to be inferred. For three continual learning sce-
narios, images, labels and task identifiers are all given in
training phase. As a result, they have the same causal graph
for training in Fig. 3 (b). We illustrate their distinctions in
test phase in Fig. 3 (b). Due to the involvement of the task
identifier T , X may have an indirect effect on Y through
the causal path X ← T → Y , solely dependent on T . We
will explain it in Sec. 4. See Appendix for additional expla-
nation of causal graphs.

4. Methodology
In this section, we introduce the task-induced bias

through the causal framework, a causal intervention for

16018

CIL, its corresponding implementation, and the entire
pipeline of our approach.
4.1. Task-induced bias in three continual scenarios

According to the causal graphs, we can explain why task
incremental learning is the most effortless scenario among
the three and why class incremental learning is the most
challenging. We think that this phenomenon is caused by
task-induced bias.

In Fig. 3 (b), the causal path X ← T → Y is of a
fork structure, in which two kid nodes are independent con-
ditioned on the parent. [21] points out that if T is un-
conditioned, the causal influence of X to Y exists, caus-
ing the task-induced bias. We give a simple example to
help understand this statement. A causal graph lighter ←
smoking → cancer means that a smoking person has a
possibility to bring a lighter and get a lung cancer. Whether
a person brings a lighter is usually independent of getting
a lung cancer. Nevertheless, a smoker is highly possible
to bring a lighter and to get a lung cancer, which leads to
observe a correlation between lighter and cancer. If we
can control the confounder smoking and collect data about
non-smoking persons who usually bring lighters, then we
can draw a correct conclusion that lighter is independent
on cancer.

Fortunately, mechanisms to eliminate the task-induced
bias naturally exist under setups of task incremental learn-
ing and domain incremental learning. In task incremental
learning shown in Fig. 3 (c), the value of parent node (task
identifier) is given, hence the indirected effect of X on Y
is 0 and the task-induced bias between X and Y disap-
pears due to the characteristic of the fork structure. In do-
main incremental learning, the label set remains the same
along task identifiers, which is implied in Yt = Yt+1 and
P (Yt) = P (Yt+1). For this reason, the causal edge T → Y
is cut as shown in Fig. 3 (d), resulting in disappearance of
the task-induced bias. However, in the CIL, the causal path
X ← T → Y cannot be cut by the task identifiers since
they are inaccessible, or by the independence between T
and Y like domain incremental learning. In order to elimi-
nate the task-induced bias in CIL, we seek advanced causal
techniques among which causal intervention [21] is a pow-
erful one. It is noteworthy that our analysis indicates that a
key objective of CIL is to cut the causal path X ← T → Y ,
and we can cut it not only by conditioning variable T , but
also by cutting X ← T or T → Y .

4.2. Causal debias
The overall causal graph of CIL is illustrated in Fig. 4 (a),

which considers two facets of task-induced bias in Fig. 1.
The causal effect of X1 and X2 on Y in the original causal
graph can be formulated by Bayes’ rule:

P (Y |X1, X2) =
∑
t

P (Y |X1, X2, t)P (t|X1, X2) (1)

X Y

T

X Y

T

X Y

T

X Y

T

X1 X2

T

X1 X2

T

YX1 X2

T

Y

Dt

X Y

Dt

X Y

(a) Causal graph on CIL

(c) Simplified causal graph (e) An implementation(d) Causal intervention

X1 X2

T

X1 X2

T

Y

(b) Transformation of the graph

X

Figure 4. Causal intervention for class incremental learning. To
approximate the task identifier, we utilize a class feature dictionary
Dt recording information about tasks.

We can treat the two variables X1 and X2 as one as shown in
Fig. 4 (b), because they have the same context in the causal
graph. As a result, we obtain a simplified causal graph in
Fig. 4 (c), of which the causal effect of X on Y is reformu-
lated as:

P (Y |X) =
∑
t

P (Y |X, t)P (t|X). (2)

We have shown in Fig. 3 (e) that the causal path X ←
T → Y is the cause of task-induced bias. If we can cut this
causal path, the task-induced bias will be eliminated. We
opt to cut the X ← T using the causal intervention, as il-
lustrated in Fig. 4 (d). The causal path X ← T is introduced
through the term P (t|X) in Eq. 2. Following [21], the di-
rect causal effect of X on Y is denoted by P (Y |do(X)),
where do(X) means a causal intervention on the single vari-
able X . Because the variable T blocks all the backdoor
path in the causal graph, we can obtain the expression of
P (Y |do(X)) according to the backdoor criterion [21] as:

P (Y |do(X)) =
∑
t

P (Y |X, t)P (t) (3)

Compared with the old term P (t|X), the new term P (t) is
no longer changed with X , equating to cut the causal edge
X ← T , as shown in Fig. 4 (d).

Based on the intervened causal graph in Fig. 4 (d) in
CIL, we devise a causal debias module to implement the
Equation 3. Since the task identifier is not accessible in the
test phase, we propose to use a feature dictionary Dt that
contains information about tasks to approximate the unob-
served confounder T as shown in Fig. 4 (e). The task infor-
mation is retained in class labels of images for CIL, because
class label sets of different tasks cannot overlap with each
other and thus task identifiers can be inferred from classes.
Specifically, given an image x, a label y and a task identifier

16019

0.2 0.5 0.10.2 0.5 0.10.2 0.5 0.1

given

Intervention: Borrow & Put

Figure 5. Illustration of causal intervention operation. This opera-
tion borrows features of classes in previous tasks, and puts them to
features of new classes in the current task. The causal intervention
is implied in the “borrow” and “put” operations, because the two
operations mean that the features containing task information are
directly controlled by ourself.

t, Equation 3 is implemented as

P (Y |do(X)) =
∑
t

P (y|x, t)P (t)

=
∑
dt

P (y|x,dt)P (dt),
(4)

where x is the feature of the image x, dt is sampled from
Dt. If the last layer of a classifier is a softmax layer, we get
P (y|x,dt) = Softmax(fy(x,dt)), where fy(·) is a similar-
ity function. In a nutshell, the implementation of Equation
3 is newly formulated as:

P (Y |do(X)) := Edt [Softmax(fy(x,dt))]. (5)

The above expectation can be approximated by
NWGM [32] as follows:

Edt
[Softmax(fy(x,dt))] ≈ Softmax(Edt

[fy(x,dt)]).
(6)

To implement our causal intervention operation in Fig. 5,
we devise a simple attention-based mechanism with ignor-
able number of parameters:

fy(x,dt) =W
⊤
0 Cat(W⊤

1 x,W
⊤
2 gy(dt)), (7)

where W1 and W2 both are fully connected layers and
Cat(·) is the concatenation operator. Due to the additive
property of expectation, the Edt

[fy(x,dt)] can be rewritten
as:

Edt [fy(x,dt)] =W
⊤
0 Cat(W⊤

1 x,W
⊤
2 Edt [gy(dt)]).

(8)
We devise Edt

[gy(dt)] utilizing a scaled dot-product atten-
tion [28], which is calculated as follows:

Q =W⊤
3 x,K =W⊤

4 Dt,V =Dt,

A = Softmax(Q⊤K/
√
σ),

Edt
[gy(dt)] = V

⊤A,

(9)

where W3 and W4 both are fully connected layers, and σ
is the output dimension of them.

Algorithm 1 CafeBoost training pipeline.

Input: : Training data D0, · · · ,DT , empty dictionary D0,
empty example memoryM,

1: Initialize parameters of feature extractor ψ0, causal de-
bias module ϕ0 (Eq. 8, 9) and classifier θ0

2: // First task training stage.
3: Train ψ0,θ0 on D0 by minimizing LCE

4: Extract example features on D0, using ψ0

5: Store class mean features on D0 to dictionaryD0

6: // Causal debias module training stage.
7: Train ϕ0,θ0 on D0 by minimizing LCE

8: Extract example features on D0, using ψ0 and ϕ0

9: if example memoryM is used then
10: Update example memoryM
11: end if
12: // Class incremental training stage.
13: for t in {1, ..., T} do
14: Add a new classifier θt
15: Train ψt, ϕt and θt on Dt ∪M (or Dt) by Eq. 10
16: Extract example features on Dt, using ψt and ϕt

17: if example memoryM is used then
18: Update example memoryM
19: Update dictionaryDt by Eq. 11
20: end if
21: end for
Output: Final feature extractor ψT , final causal debias

module ϕT , and all classifiers {θ0, ...,θT }

4.3. Causal Feature Boost

In this section, we describe how the causal debias mod-
ule is added into the continual learning pipeline, and the
training strategies to enable the overall architecture. Ad-
ditionally, we propose a momentum method to update the
dictionary so as to catch more task information.

Architecture. Our causal debias module can be added
between the feature extractor and the classifier of existing
continual learning architectures. In Fig. 2, given an im-
age as input, the CNN backbone (e.g. ResNet [8]) will ex-
tract a feature map. Then, we feed this feature map and a
pre-collected dictionary into our causal debias module, and
achieve a newly-updated feature map which is forwarded to
the classifier to get a class label. After a new task comes,
we add one more classifier for new classes and add no other
layers.

Training pipeline. Because the dictionary used in the
causal debias module need to be filled with average fea-
tures of classes, we train a feature extractor and a clas-
sifier by using data of the initial phase firstly. Then, we
fix the feature extractor and run an extra phase before the
incremental phases to train the newly-added causal debias
module and the classifier together. In the remaining phases,

16020

Method CIFAR-100 ImageNet-Sub ImageNet-Full
Average accuracy(%) 5 10 25 5 10 25 5 10

LwF† [16] 49.59 46.98 45.51 53.62 47.64 44.32 44.35 38.90
BiC† [31] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72

iCaRL [22] 62.95 56.92 51.30 65.04 60.82 54.56 51.50 46.89
LUCIR [11] 63.56 57.20 50.29 70.84 68.32 61.44 64.45 61.57
GeoDL [24] 67.08 60.96 53.98 71.27 70.24 64.86 65.23 64.46
CwD [23] 66.84 62.66 56.28 67.36 64.09 60.52 - -

CSCCT [3] 66.89 59.91 52.32 71.33 67.91 61.52 - -
iCaRL+CafeBoost 69.41 64.70 61.60 70.53 67.04 63.40 53.46 48.46
LUCIR+CafeBoost 70.10 66.56 62.37 71.51 70.03 67.74 66.88 64.77
Forgetting rate(%) 5 10 25 5 10 25 5 10

LwF† [16] 43.36 43.58 41.66 55.32 57.00 55.12 48.70 47.94
BiC† [31] 31.42 32.50 34.60 27.04 31.04 37.88 25.06 28.34

iCaRL [22] 22.95 25.30 25.74 18.70 21.35 25.09 26.03 33.76
LUCIR [11] 23.30 26.40 29.21 31.88 33.48 35.40 24.08 27.29
GeoDL [24] 16.83 21.83 24.91 8.68 9.07 11.97 11.03 12.81
CwD [23] 17.70 26.80 26.91 11.16 17.53 25.41 - -

iCaRL+CafeBoost 8.51 12.91 16.08 12.20 14.23 18.52 25.19 28.24
LUCIR+CafeBoost 6.99 9.03 11.75 8.16 7.50 9.10 8.65 11.73

Table 1. The average incremental accuracy and the forgetting rate on CIFAR-100, ImageNet-Sub and ImageNet-Full. The number of
incremental phases are 5, 10, and 25. The number of exemplars per class is 20. An ideal continual learning method should have high
average incremental accuracy and low forgetting rate. Results of models with † are taken from [24].

the causal debias module are always learnable, whereas the
classifiers of old tasks are fixed. Our causal debias mod-
ule can be used in iCaRL [22] and LUCIR [11] as a plugin.
Our overall approach borrows their corresponding training
objectives. Therefore, the training objective of our approach
(CafeBoost) is formulated as:

min
θ

[Lce(x, y, θ) + ηL∗(θ)], (10)

where L∗(θ) denotes specific losses of the corresponding
base methods, e.g., distillation loss for iCaRL, margin rank-
ing loss and others for LUCIR. Algorithm 1 details out the
CafeBoost training pipeline.

Momentum dictionary updating. Our approach ex-
ploits an external dictionary to store mean features of each
class in the initial phase. We can exploit a momentum up-
dating strategy to renew features in the dictionary, if replay
buffer is used. The new dictionary at task t is updated as

Dt = αDt−1 + (1− α)[f t−1
1 , ..., f t−1

c , ..., f t−1
C], (11)

where α controls the updating rate, fc represents a mean
feature of class c, and C is the number of classes.

5. Experiments
5.1. Settings

Datasets & Protocols. We evaluate our approach on
two commonly-used datasets: CIFAR-100 [15] and Ima-
geNet [5]. CIFAR-100 contains 100 classes and each class
has 500 images for training and 100 images for test, with

each image of size 32 × 32. ImageNet with about 1.3 mil-
lion images of size 224 × 224 is divided into two CIL set-
tings: ImageNet-Sub that owns 100 classes and ImageNet-
Full that owns 1000 classes. We follow the protocol used in
many recent works [11,23,24]. Models are firstly trained on
half classes, i.e., 50 classes for CIFAR100 and ImageNet-
Sub, and 500 for ImageNet-Full. Subsequently, we start
incremental learning phases with adding a fixed number of
unobserved classes in each phase. We choose three different
numbers of incremental phases: 5, 10, and 25.
Evaluation Metrics. The two commonly-used metrics to
evaluate performance of a CIL model are 1) the average in-
cremental accuracy [22] AT , and 2) the average forgetting
FT . The average incremental accuracy and the average for-
getting after T tasks are defined as

AT =
1

T

T∑
t=1

At,FT =
1

T − 1

T∑
t=2

Ft,

where ai,j denotes the accuracy on task i after the
model learning task j, At = 1

t

∑t
i=1 ai,t, and Ft =

1
t−1

∑t
j=2 maxi(ai,t − aj,t) with i ∈ 1, ..., j − 1. We re-

port top-1 accuracy.
Implementation details. All methods are implemented
with PyTorch [20]. We use the ResNet18 for CIFAR-100
and ImageNet following [23]. For all experiments, SGD op-
timizer and the batch size 128 are used. For CIFAR-100 and
ImageNet, we train models for 160 epochs and 90 epochs,
respectively. For CIFAR-100, our results are averaged over
three runs with different orders generated by random seed
1993. For ImageNet, the first order with random seed 1993

16021

0 1 2 3 4 5
40

50

60

70

80

90
Ac

cu
ra

cy
(%

)
CIFAR-100 5 Tasks

0 2 4 6 8 10
40

50

60

70

80

90
CIFAR-100 10 Tasks

0 5 10 15 20 25
40

50

60

70

80

90
CIFAR-100 25 Tasks

0 1 2 3 4 5
Task

40

50

60

70

80

90

Ac
cu

ra
cy

(%
)

ImageNet-Sub 5 Tasks

0 2 4 6 8 10
Task

40

50

60

70

80

90
ImageNet-Sub 10 Tasks

0 5 10 15 20 25
Task

40

50

60

70

80

90
ImageNet-Sub 25 Tasks

LUCIR(CNN) CwD GeoDL iCaRL iCaRL+ours LUCIR+ours

Figure 6. Results on CIFAR-100 (5, 10, and 25 tasks), ImageNet-Sub (5, 10, and 25 tasks). The horizontal axis shows the task identifier
and the vertical axis is the corresponding average incremental accuracy.

is conventionally used. In addition, we deploy CafeBoost
to two baselines: iCaRL [22] and LUCIR [11] and compare
it with LwF [16], BiC [31], GeoDL [24], CwD [23] and
CSCCT [3] on all datasets. GeoDL, CwD and CSCCT are
implemented based on LUCIR.

5.2. Evaluations

Results on CIFAR-100. Tab. 1 summarizes the experimen-
tal results of CIFAR-100 in three different numbers of incre-
mental tasks. We observe that CafeBoost improves iCaRL
baseline by 6.46%, 7.78%, 10.30% for 5, 10, and 25 tasks,
respectively. After adding to LUCIR baseline, we observe
a performance boost: 6.54%, 9.36%, 12.08%, for 5, 10,
and 25 tasks. The corresponding average incremental ac-
curacies reach high levels of 70.10%, 66.56%, and 62.37%.
Furthermore, CafeBoost achieves lower forgetting rates af-
ter applying to the baselines. It can decrease the forgetting
rates of iCaRL by 14.44%, 12.39%, and 9.66% and those
of LUCIR by 16.31%, 17.37%, and 17.46%, for 5, 10, and
25 tasks. The first row of Fig. 6 shows CafeBoost improves
performance of baselines by a large margin, achieves higher
accuracies and prevents catastrophic forgetting better than
the prior methods for CIL. See Appendix for more results
about the forgetting rates.
Results on ImageNet. Tab. 1 also reports experimental re-
sults of ImageNet-Sub and ImageNet-Full. On ImageNet-
Sub, CafeBoost boosts average incremental accuracies by
0.67% ∼ 8.84% over iCaRL and LUCIR baselines, for 5,
20, and 25 tasks, and decreases the corresponding forget-
ting rates by 6.57% ∼ 26.30%. For example, CafeBoost

improves average incremental accuracy of LUCIR from
61.44% to 67.74% (+6.30%), and reduces forgetting rate
from 35.40% to 9.10% (-26.30%). The second row of Fig. 6
further validates effectiveness of CafeBoost for all num-
bers of incremental phases. Additionally, we observe in
Fig. 6 CafeBoost has almost no effect on the initial phase,
but brings great boost in the following incremental phases.
CafeBoost also enhances performance of iCaRL and LU-
CIR on ImageNet-Full, as shown in Tab. 1. We observe
CafeBoost improves accuracies of iCaRL by 1.96%, 1.57%,
and those of LUCIR by 2.43%, 3.20% for 5 and 10 incre-
mental phases respectively.

S B 10 20 30 40 50

10
LUCIR 59.12 60.26 61.77 61.62 62.91
+Ours 55.87 62.61 66.21 68.22 69.70
↑ -3.25 +2.35 +4.44 +6.60 +6.79

5
LUCIR 54.62 56.20 56.65 57.29 56.90
+Ours 49.02 58.53 63.39 65.73 65.95
↑ -5.60 +2.33 +6.74 +8.44 +9.05

Table 2. Ablation study on impact of number of classes in the
initial phase. B denotes number of classes in the initial phase. S
is the number of new classes per incremental step. Experiments
are conducted on CIFAR-100 with 20 exemplars per class. The
reported values (%) are average incremental accuracies. ↑ denotes
the increment of values.

5.3. Ablation Studies

In this section, we conduct experiments to study the ef-
fect on our approach of 1) number of classes in initial phase,

16022

S R LUCIR +Ours ↑

10
5 54.23±0.78 64.80±0.36 +10.57

10 59.98±0.54 68.30±0.31 +8.32
20 63.56±0.55 70.10±0.39 +6.54

5
5 47.74±0.84 62.23±0.67 +14.49

10 53.22±1.28 64.08±0.77 +10.86
20 57.20±1.14 66.56±0.80 +9.36

Table 3. Ablation study on impact of number of exemplars. R
represents the number of exemplars per class. S is the number
of new classes per incremental step. Experiments are conducted
on CIFAR-100. The reported values (%) are average incremental
accuracies. ↑ denotes the increment of values.

Methods CIFAR-100 ImageNet-Sub
Accuracy Forgetting Accuracy Forgetting

LUCIR 40.10±1.27 52.35±1.31 60.47 25.73
+Ours 59.01±0.22 23.31±0.76 65.15 18.05

Table 4. Comparisons of average incremental accuracies and for-
getting rates with no replay data. Experiments are conducted with
5 incremental steps. 20 exemplars are stored per class.

2) number of exemplars in memory, 3) different classifiers,
and 4) coefficient of momentum dictionary update.
Impact of number of classes in initial phase. We investi-
gate CafeBoost with 10, 20, 30, 40, and 50 classes of initial
phase in Tab. 2. CafeBoost can enhance performance when
the number of classes in initial phase is larger than 10. The
performance improvement increases from negative to posi-
tive, along the number for both S = 10 and S = 5. When
B equates 10, our approach has a negative influence on the
baseline. This is because characteristics of classes in the
initial phase are insufficient to share for all classes in the
dataset. However, when B >= 20, our approach boosts the
baseline by a large margin, which shows that it tolerates a
broad range of the number B.
Impact of number of exemplars in memory. We vary the
number of exemplars per class and show its effect in Tab. 3.
Both the performance of baselines and CafeBoost improve
along the increase of exemplar number per class, which is
consistently observed for S = 10 and S = 5. In addi-
tion, the improvement margin decreases along the increase
of R. For instance, +10.57 for S = 10 and R = 5, whereas
+6.54 for S = 10 and R = 20. It is worth noting that
CafeBoost does not rely on a replay buffer. Tab. 4 shows
CafeBoost outperforms remarkably the baseline on accu-
racy and forgetting in CIFAR-100 and ImageNet-Sub.
Impact of different classifiers. We also conduct experi-
ments to research behaviors of CafeBoost combined with
three different classifiers. We adopt the classifiers CNN,
k-NME, and AME, as in [11]. CNN classifies examples
by exploiting one class prototype per class. k-NME uses k
samples of each class to represent the class, while AME uti-

Method iCaRL iCaRL+ours LUCIR LUCIR+ours

CNN
5 53.47±0.15 56.53±0.26 63.56±0.55 70.10±0.39

10 49.30±0.43 53.75±0.03 57.20±1.14 66.56±0.80
25 45.59±0.75 51.18±0.78 50.29±1.14 62.37±1.17

k-NME
5 62.95±0.51 69.40±0.23 65.42±0.67 69.77±0.35

10 56.91±0.64 64.70±0.40 59.85±1.20 66.53±0.72
25 51.30±0.92 61.6±0.90 52.07±0.43 62.64±1.30

AME
5 65.02±0.64 70.61±0.29 66.76±0.84 70.54±0.31

10 58.27±0.63 66.52±0.46 61.54±1.36 67.77±0.71
25 52.69±0.92 64.10±0.89 54.84±1.78 65.10±1.35

Table 5. The average incremental accuracy by using different clas-
sifiers (CNN, k-NME, AME) with 20 exemplars per class. Values
are evaluated on CIFAR-100 with 5, 10, and 25 incremental steps.

lizes all samples. Tab. 5 shows our approach achieves the
best performance when using AME classifier. Moreover, it
is noteworthy that our approach enhances performance of
baselines using all three classifiers by a large margin in var-
ious numbers of tasks.
Sensitivity of momentum coefficient. Fig. 7 shows our
approach is not sensitive to the momentum coefficient of
dictionary updating for all three classifiers. We set α to 0.9
for other experiments of our approach.

0.0 0.2 0.4 0.6 0.8 1.0
60

62

64

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

CNN k-NME AME
Figure 7. Experi-
ments on sensitivity
of momentum coef-
ficient. Average ac-
curacies are evalu-
ated on CIFAR-100
with 5 incremental
steps and 20 exem-
plars per class.

6. Conclusions
To the best of our knowledge, this work is the first to con-

sider a new type of bias - task-induced bias in a causal per-
spective, which is derived from special settings of continual
learning. We analyzed three continual scenarios in a causal
framework, and found that the task-induced bias is particu-
larly detrimental to CIL. Based on this framework, we de-
signed a causal intervention operation and implemented it
as a causal debias module by exploiting a powerful attention
mechanism. Comprehensive experiments demonstrated our
plugin method can boost performance of baselines and out-
perform several existing strong methods. In the future, we
think it is a promising direction to regard the task-induced
bias as a problem in CIL and design more exquisite ap-
proaches to eliminate it by cutting the corresponding causal
path.
Acknowledgments. This work was supported
in part by National Key R&D Program of China
(2021ZD0112001) and National Natural Science Founda-
tion of China (No.61831005, 61971095 and 62271119).

16023

References
[1] Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen

Shi, and Anton van den Hengel. Counterfactual vision and
language learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10041—-10051, 2020. 2, 3

[2] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,
Hyojun Kim, and Taesup Moon. SS-IL: Separated softmax
for incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision, pages 844–853, 2021. 1

[3] Arjun Ashok, K. J. Joseph, and Vineeth Balasubramanian.
Class-incremental learning with cross-space clustering and
controlled transfer. In European Conference on Computer
Vision, 2022. 1, 2, 6, 7

[4] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. Transactions on Pattern Analysis and
Machine Intelligence, 44(7):3366–3385, 2021. 3

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 248–255,
2009. 6

[6] Xiang Deng and Zhongfei Zhang. Comprehensive knowl-
edge distillation with causal intervention. In Advances
in Neural Information Processing Systems, pages 22158–
22170, 2021. 2, 3

[7] Chen He, Ruiping Wang, and Xilin Chen. A tale of two
CILs: The connections between class incremental learning
and class imbalanced learning, and beyond. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshop, pages 3554–3564, 2021. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2016. 5

[9] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor
Darrell, and Anna Rohrbach. Women also snowboard: Over-
coming bias in captioning models. In European Conference
on Computer Vision, 2018. 2

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In ArXiv: 1503.02531, 2015.
1

[11] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 831–839,
2019. 1, 2, 6, 7, 8

[12] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua,
and Hanwang Zhang. Distilling causal effect of data in class-
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3956–3965, 2021. 1, 3

[13] K. J. Joseph, Salman Khan, Fahad Shahbaz Khan,
Rao Muhammad Anwer, and Vineeth N. Balasubramanian.

Energy-based latent aligner for incremental learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7452–7461, 2022. 1

[14] Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-
incremental learning by knowledge distillation with adaptive
feature consolidation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16071–16080, 2022. 1

[15] Alex Kriszhevsky. Learning multiple layers of features from
tiny images. In Technical report, 2009. 6

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting.
Transactions on Pattern Analysis and Machine Intelligence,
40(12):2935–2947, 2018. 1, 6, 7

[17] Chengzhi Mao, Kevin Xia, James Wang, Hao Wang, Jun-
feng Yang, Elias Bareinboim, and Carl Vondrick. Causal
transportability for visual recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7521–7531, 2022. 3

[18] Michael McCloskey and Neal J. Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation, vol-
ume 24, pages 109–165. Academic Press, 1989. 1

[19] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. A survey on bias and fairness
in machine learning. ACM Computing Surveys, 54(6):1–35,
2021. 2

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-
perative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.
6

[21] Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell.
Causal Inference In Statistics: A primer. Wiley, 2016. 3,
4

[22] Sylvestre Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. iCaRL: Incremental
classifier and representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5533–5542, 2017. 1, 2, 6, 7

[23] Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi
Feng, Philip H. S. Torr, Song Bai, and Vincent Y. F. Tan.
Mimicking the oracle: An initial phase decorrelation ap-
proach for class incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16722–16731, 2022. 2, 6, 7

[24] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On
learning the geodesic path for incremental learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1591–1600, 2021. 2, 6, 7

[25] Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang
Wan. Exploring example influence in continual learning. In
Advances in Neural Information Processing Systems, 2022.
2

16024

[26] Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and
Pradeep Shenoy. GCR: Gradient coreset based replay buffer
selection for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 99–108, 2022. 2

[27] Gido M van de Ven and Andreas S Tolias. Three scenarios
for continual learning. In arXiv: 1904.07734, 2019. 1, 2, 3

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, page 5999–6009, 2017. 2,
5

[29] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru
Sun. Visual commonsense R-CNN. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020. 2

[30] Max Welling. Herding dynamical weights to learn. In Inter-
national Conference on Machine Learning, 2009. 2

[31] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
374–382, 2019. 1, 2, 6, 7

[32] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel,
and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In International
Conference on Machine Learning, pages 2048–2057, 2015.
5

[33] Shipeng Yan, Jiangwei Xie, and Xuming He. DER: Dynam-
ically expandable representation for class incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3013–3022,
2021. 1

[34] Xu Yang, Hanwang Zhang, and Jianfei Cai. Deconfounded
image captioning: A causal retrospect. Transactions on Pat-
tern Analysis and Machine Intelligence, 2021. 3

[35] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13205–13214, 2020. 1, 2

16025

