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Abstract

This paper proposes a new visual reasoning formula-
tion that aims at discovering changes between image pairs
and their temporal orders. Recognizing scene dynamics and
their chronological orders is a fundamental aspect of human
cognition. The aforementioned abilities make it possible to
follow step-by-step instructions, reason about and analyze
events, recognize abnormal dynamics, and restore scenes
to their previous states. However, it remains unclear how
well current Al systems perform in these capabilities. Al-
though a series of studies have focused on identifying and
describing changes from image pairs, they mainly consider
those changes that occur synchronously, thus neglecting po-
tential orders within those changes. To address the above
issue, we first propose a visual transformation graph struc-
ture for conveying order-aware changes. Then, we bench-
marked previous methods on our newly generated dataset
and identified the issues of existing methods for change order
recognition. Finally, we show a significant improvement in
order-aware change recognition by introducing a new model
that explicitly associates different changes and then identi-
fies changes and their orders in a graph representation.

1. Introduction

The Only Constant in Life Is Change.
- Heraclitus

Humans conduct numerous reasoning processes beyond
object and motion recognition. Through these processes, we
can capture a wide range of information with just a glimpse
of a scenario. To achieve human-level visual understanding,
various studies have recently focused on different aspects of
visual reasoning, such as compositional [ 1—4], causal [5, 6],
abstract [7-9], abductive [10, 1 1], and commonsense visual
reasoning [12, 13]. Due to the ever-changing visual sur-
rounding, perceiving and reasoning over scene dynamics are
essential. However, most existing visual reasoning studies
focus on scenes in fixed periods of time. Therefore, this
study focuses on a new formulation of visual reasoning for
identifying scene dynamics.
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Figure 1. Overview of the proposed order-aware change recog-
nition model VTGen (top). From an image pair observed before
and after multiple synchronous and asynchronous changes, VTGen
generates a visual transformation graph (bottom) where nodes in-
dicate change contents (including type, object attributes, original
position described by what is underneath it, and new position, and
directed edges indicate temporal orders of changes.

Due to variations in the spatial positions of objects and
the temporal order of human activities, changes within a
pair of observations could occur simultaneously or asyn-
chronously. Several recent studies have already discussed
recognizing and describing synchronous changes from a pair
of images via natural language texts [14—16] while neglect-
ing the potential orders between changes. However, iden-
tifying temporal orders is an integral aspect of revealing
how scene dynamics occur in time, making it possible to
restore scenes to their previous states. Temporal orders are
also critical in a variety of applications, such as room rear-
rangement [ | 7], assembly operation [ 18, 19], and instruction
following [20,21]. Change order recognition presents new
challenges as it requires reasoning over underlying tempo-
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ral events, and it also complicates single change recognition
due to entangled appearances and localization. However,
despite its complexity, humans exhibit high performance in
finding multiple changes and determining their temporal or-
ders from a pair of images. For example, even human chil-
dren under age five can perform assembly operations with
toys in games like LEGO building blocks. Therefore, in this
work, we are particularly interested in how well the current
Al methods perform in order-aware change recognition.

Similar to discovering dynamics and orders from a pair of
scene observations, there is a group of works that discusses
the step-by-step assembly of objects from their component
parts [18, ]. Such part assembly studies tend to focus
on recovering the sequence steps for rebuilding objects and
are thus highly useful in robotic applications used for as-
sembly operations or instruction following. However, part
assembly operations focus on the reconstruction of objects
from their parts, and not finding the differences between two
discrete scene observations. Moreover, instead of directly
recovering all steps from two single observations, existing
part assembly methods require additional information, such
as language instructions or demonstration videos, for their
step generation processes.

As shown in Figure 1, this study proposes a new task to
identify order-aware changes directly from a pair of images.
Most existing studies generate a single sentence [14, 15],
paragraph [ 16], or triplets [25] for describing changes. How-
ever, sentences are lengthy and less suitable for simultane-
ously indicating change contents and their orders, and make
model analysis and evaluation opaque. Hence, we propose
the use of an order-aware transformation graph (Figure 1|
bottom). Change contents are represented by nodes and their
chronological orders by directed edges. To diagnose model
performance, we generated a dataset, named order-aware vi-
sual transformation (OVT), consisting of asynchronous and
synchronous changes between scene observations.

We then conducted benchmark experiments using ex-
isting methods and found they showed seriously degraded
performance in terms of order-aware change recognition.
Although neglected by existing methods, associations be-
tween changes, and disentangled representations of change
contents and orders are useful in identifying order-aware
changes. Therefore, we propose a novel method called vi-
sual transformation graph generator (VTGen) that explicitly
associates different changes and generates a graph that de-
scribes change contents and their orders in a disentangled
manner. VTGen achieved state-of-the-art performance in
the OVT dataset and an existing benchmark CLEVR-Multi-
Change [16], and outperformed existing methods by large
margins. However, we also found a significant performance
gap between the best-performing model and humans. We
hope our research and OVT dataset can contribute to achiev-
ing human-level visual reasoning in scene dynamics.

Our contributions are three-fold: i. We propose a novel
task and a dataset named OVT for order-aware visual trans-
formation. ii. We report on benchmark evaluations of ex-
isting change recognition methods in order-aware change
recognition and discuss their shortcomings. iii. We propose
a novel method VTGen that achieves state-of-the-art perfor-
mance in the OVT dataset and an existing change recogni-
tion benchmark.

2. Related Work
2.1. Change Recognition

Change detection, which aims to identify changed re-
gions from a pair of images or point clouds, has been dis-
cussed extensively for use in various scenarios, such as
robotics [26, 27] and street scenes [28, 29]. However, the
methods discussed in those studies were limited to identi-
fying the changed regions and were unable to recognize the
details of the scene changes.

More recently, the change captioning task has been pro-
posed for describing scene changes from a pair of images
[14-16], or 3D data [30]. The CLEVR-Change dataset [15]
is constructed based on the CLEVR engine [1] for describ-
ing a single change between two images, while the CLEVR-
Multi-Change dataset [16] deals with scenes with multi-
ple object changes. Despite its importance, none of the
above datasets deal with changes occurring in specific or-
ders. More similar to our work, the authors of the TRANCE
dataset [25] also discussed change orders. However, they
used triplet (objects, change types, and contents) lists that
only represent changes in a specific order. Instead, we pro-
pose using graph representation to identify changes and their
orders explicitly. Additionally, the TRANCE dataset only
considers potential temporal orders between two changes,
whereas our dataset extensively examines various change or-
der patterns within four changes.

Jhamtani and Berg-kirkpatrick [14] proposed the use of
pixel-level image differences to identify changes. Park et
al. [15] instead proposed the use of feature-level differences
for enhancing robustness to camera pose changes. Hong et
al. [25] proposed an encoder-decoder structure and evalu-
ated a range of model choices to boost performance. Qiu et
al. [16] proposed a transformer structure to associate image
patches and words in sentences to identify and describe mul-
tiple changes. These aforementioned methods mainly gener-
ate a sequence to describe changes without explicitly consid-
ering the associations between changes. To better recognize
entangled changes and identify their orders, we propose a
method to associate changes explicitly and then generate a
graph structure for describing changes.
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Figure 2. Illustration of different change patterns used in the OVT dataset. The dataset consists of image pairs containing synchronous and
asynchronous changes and visual transformation graphs where nodes and edges indicate changes (contents are omitted here) and orders.

2.2. Structured Scene Representation

Recently, a group of studies with the aim of recovering
graph [31-33] or program-like descriptions [34—36] from an
input image were conducted. Johnson et al. first proposed
scene graphs to represent images [3 1], which now have been
used in many tasks. Cong used an encoder-decoder struc-
ture to generate subject-predicate-object triplets from in-
put queries [32]. Li reduced computation cost by propos-
ing an equivalent bipartite graph generation process [33].
Ellis et al. introduced a CNN-based method [34] that de-
scribes hand-drawn primitive shapes, such as groups of cir-
cles or triangles, in programs, and then transfers programs
into LaTeX-style figures. Liu et al. [35] further proposed
a dataset with various 3D shapes and distribution patterns
of shapes and achieved the dataset with photorealistic im-
ages. Liu et al. also proposed a novel method that consists
of an object parser, a group recognizer, and a program syn-
thesizer to generate image-describing programs hierarchi-
cally. Wu et al. proposed an encoder-decoder-based method
that first recovers the physical world representations from
images and then applies a graphical engine for re-rendering
the input scene [36]. Different from these above studies that
describe an image with structured representations, we focus
on the structured representation of changed parts in image
pairs instead from a single image.

2.3. Part Assembly

Part assembly has been long discussed in robotics and
computer vision studies [18,22-24]. Chen et al. proposed
the neural shape mating task to identify 6-DoF poses to as-
semble two object parts into a whole, and a method that in-
tegrates pose estimation and implicit shape reconstruction
structures [18]. Similarly, Willis et al. also tackled assem-
bling two object parts together, and they achieved this by es-
timating the possible connections between the joints of two
object parts using a graph neural network (GNN) [22].

Unlike studies in which only assembling a shape from
two parts is considered, Li et al. proposed a novel task -

single-image-guided 3D part assembly along with a dataset
consisting of multiple 3D parts of various types of furni-
ture [23]. They also proposed a model which uses the cor-
respondences between 3D parts shapes and its 2D projected
images for part assembly. Similarly, Zhang et al. tackled the
3D part assembly task and focused on one of its subprob-
lems, predicting 6-DoF poses for object parts [24]. More
specifically, they proposed a GNN-based method to reason
over parts and the whole object and then to optimize the
parts’ poses in a coarse-to-fine manner.

Similar to our work, these studies also recover a sequence
of actions from images or 3D shapes. However, instead of
assembling an object from its parts, we focus on identifying
changes and their temporal orders from two images. Huang
et al. proposed neural task graphs to predict a sequence of
robotic grasping by watching a demonstration video [19].
They also considered the transformation between discrete
scene observations, but their process appears to require ad-
ditional videos for action sequence prediction.

3. Order-aware Visual Transformation (OVT)
dataset

Change order recognition remains less discussed in previ-
ous change detection [26—29] and captioning [14—16] stud-
ies. Recognizing the temporal order of changes can be bene-
ficial in providing a better understanding of how the changes
happened, and that the process requires various visual rea-
soning abilities. We created a dataset that includes both
asynchronous and synchronous changes and introduced a
graph representation of changes to reveal how well existing
methods comprehend order-aware changes and to facilitate
models with this critical visual reasoning ability.

3.1. Dataset Generation

To achieve large-scale dataset generation with lower la-
beling cost, similar to the existing change captioning dataset
CLEVR-Change [15] and CLEVR-Multi-Change [16], we
also use the CLEVR-Engine [ 1] for dataset generation. The
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Split ‘Total scenes Change num. Change layer Add Delete Move

Train 120,000 3.26 2.13 135  0.76 1.15
Test 30,000 3.26 2.13 1.35  0.75 1.16

Table 1. OVT dataset statistics. Change num. stands for number
of changes. The averages of the change number and layer, along
with the number of add, delete, and move changes are recorded.

CLEVR-Engine allows generation of photo-realistic scenes
with various objects. Hence, we can generate scene changes
by replacing the objects in a scene.

We use three atomic change types: “add”, “delete”, and
“move”, in order to create image pairs with changes. Im-
portantly, we focus on order-aware change recognition. To
create changes with specific orders, we record the loca-
tion of each change and randomly add futher changes to
these recorded change locations. To precisely represent the
changes and their orders, we introduce an visual transforma-
tion graph (Figure 1, bottom), in which we record change
contents, including the change type, changed objects, orig-
inal position (Pos0), and new positions (Posl) in the nodes
and directed edges. Several examples of asynchronous and
synchronous changes are shown in Figure 2. Similar to ex-
isting datasets [15, 16], we also introduce random illumina-
tion and camera angle changes between each set of paired
images. Here, it should be noted that to alleviate the ambi-
guity in change orders, we also add a restriction that ensures
every object has a unique combination of attributes, and that
each object has a maximum of one change.

3.2. Dataset Statistics

Following the generation process mentioned above, we
generated the OVT dataset, using objects with random at-
tributes, including three shape types (cube, cylinder, and
sphere), eight colors (red, yellow, cyan, gray, green, blue,
purple, and brown), and two materials (rubber and metal).
We placed six to eight objects randomly in a scene, and ran-
domly adopted changes. The maximum number of changes
and change layers (depths of transformation graphs) were
both set to four. Additionally, we used 15 types of change
order patterns, including asynchronous and synchronous
changes. All the change patterns are provided in the sup-
plementary material. The dataset statistics are summarized
in Table 1. The dataset generation process allows for incor-
porating various change patterns.

4. Approach

In this paper, we focus on a novel task of recognizing
order-aware visual transformation by simultaneously distin-
guishing changes and their temporal orders between images.
This task requires models to recognize correlations of image
patches from image pairs to identify changes. Due to the ex-
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Figure 3. Overview of our proposed method VTGen. Position em-
bedding, change embedding, and classification heads are omitted
in the figure. [;] denotes the concatenation operation.

istence of asynchronous changes, the change regions have
spatial intersections. Thus, to precisely distinguish changes
from the others, and determine their temporal orders, the
correlations between different changes are critical.

Most existing change recognition methods generate a sin-
gle sentence [14, 15] or a paragraph [16] for describing
change contents without disentangling change contents and
orders and neglecting the correlations between changes. On
the contrary, we propose a graph structure for describing
order-aware visual transformation instead of language text.
We also propose the VTGen model, which first coarsely
identifies changes from images and then recognizes the de-
tailed change contents and their orders based on the corre-
lations between changes.

4.1. Problem Formulation

Given two images I;.; and ¢, of the same scene observed
at two different times, we generate a visual transformation
graph G to describe the changes and their temporal orders.
The transformation graph G = {V, E}, where V' denotes the
change contents, and E describes the orders of the changes.

In detail, the nodes V' = {v{, v, ..., v, } describe change
contents, where n denotes the number of changes. Each
node describes a combination of change content as v, =
{c,,0,,5,.d,}, where c,0,s,d denotes the change types,
the attributes of the changed objects, and the before- and
after-change positions of the changed objects, respectively.
The edges E = {e5,€] 3, .., €; js s €1, }iz; describe the
temporal orders of the changes, where e; ; = 1 only when
change v; happened just after v;.

4.2. Transformation Graph Generation

Given image pairs I, and Iz, we use an encoder-
decoder structure VTGen (Figure 3) to recognize changes
in images and then generate a visual transformation graph
G consisting of nodes V' (changes) and edges E (temporal
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orders).

Transformation Encoder. Identifying associations be-
tween images and inner-image patches is crucial in discern-
ing changes. Similar to MCCFormers [16], we use a trans-
former [37] structure for finding correlations between image
regions from two images. More specifically, we first intro-
duce a CNN structure to encode the input image and then
spatially divide each image in}o m patches, which results in
Ler = {ill)ef’iﬁef’ o lpge b and L, = {i;ft’izft’ Lo}, Where

m ,im € RP. We also introduce position embedding for

L e
ebliéoalifilg a patch index in a D—dimensional feature using
a linear layer and then sum up the image features with the
patch features and concatenate the two image features to-
gether, resulting in I € R2™P_ Finally, we use transformer
self-attention to obtain the correlations between patches, as
1" = Attention (I,1,1).

Transformation Graph Generator. We obtain I
through the encoder structure, which contains image fea-
tures for identifying changes. Here, we correlate image fea-
tures with the contents of each change to identify individual
changes. After that, we use a change content decoder and an
order decoder to generate transformation graphs. In detail,
we first use transformer structure to correlate change con-
tents with image features 1. To embed changes, we adapt a
linear and a transformer self-attention layer to change con-
tents {c,,0,,S,,d,} to obtain a D—dimensional feature for
each detailed change content. Then we sum up all contents
belonging to one change, which results in the change query
0 = {q;.9,....9,}, where g € RP. After that, we use a
transformer structure to obtain correlations between I” and
O by Attention (Q, IN, IN), thereby resulting in Q/ € R™D,

To recognize order-aware changes, the correlations be-
tween changes are critical in distinguishing each change
from the others. Hence, we further correlate each ¢’ in Q’
using a change content decoder (node) as shown in Fig-
ure 3, resulting in change content features {v;, vy, ..., U, }.
To determine pairwise temporal orders, we first concate-
nate each pair of change features in 0, resulting in n X
(n — 1) pairs of features with R>*? —dimension. Next, we
introduce a change order decoder (edges) to find the rela-
tionships between edges, resulting in change order features
{e10.€135n€,_1, ). Finally, we add classification heads
over obtained change content and order features for predict-
ing detailed changes and their binary temporal orders.

During the experiments, we used two structures, a trans-
former and a graph convolutional network (GCN) [38], in
the implementation of change content and order decoders.
Same to other transformers used in our model, the trans-
former node decoder conducts self-attention operations over
features. Similar to [39,40], we implemented a GCN using
the MLP structure. For each layer, we first concatenate fea-
tures of each pair of nodes (or edges) and process features
by an MLP layer. Then updated node (or edge) features are

obtained by summing up all features containing that node
(or edge). Please refer [39,40] for more details.

Loss Function. Since there are synchronous changes in
OVT where change orders are arbitrary, inspired by [41],
we adopted a graph matching loss for change content recog-
nition to find the correspondence of n elements ¢ € ©,),
which minimizes the loss between predicted results v and
ground truth v&" with the following equation, where L
is cross-entropy loss.

match

n
6 = arg min 2 Laren(Vis vit(i)) ()
UE@n i=1

For computing edge losses, we first re-arrange edges with
the order of the correspondence obtained above and then
adopt a cross-entropy loss. We sum up node and edge losses
for model training.

5. Experiments

To evaluate the proposed order-aware visual transforma-
tion recognition, we conducted comparison experiments on
the proposed OVT dataset. We also report results on an
existing CLEVR-Multi-Change dataset [16]. We compared
the proposed method VTGen with state-of-the-art methods,
which generate representations, such as captions [ 15, 6], or
triplets [25], for describing changes directly from the input
of image pairs without additional object detectors.

5.1. Experimental Setups

Existing Methods. In order to facilitate existing change
captioning methods DUDA [15], MCCFormers-D, and
MCCFormers-S [16] on the OVT dataset, we transfer trans-
formation graphs in our dataset OVT to sentences by listing
all change information, including change type, changed ob-
ject, original position, and new position one-by-one. We
separate each individual change that can happen simulta-
neously with “;”. We successively list changes with spe-
cific temporal orders and separate them with “,”. We add a
“:” after a change with two following changes where these
two changes could happen simultaneously. In this manner,
the change graph given in Figure 1 (bottom) is “move gray
metal sphere ground blue rubber sphere; move cyan rubber
cube purple rubber sphere ground: add gray rubber cylinder
none cyan rubber cube; add gray rubber cube none purple
rubber sphere ;”. For the change triplet generation method
TranceNet [25], instead of change triplets, we generate each
change set with 11-dimensional information (change con-
tents and its order indicated by “;”, “,” or “:”).

Evaluation Metrics. We evaluate methods on the test
split of the OVT dataset with change recognition accuracy
and recall evaluation metrics. In detail, we adopted per-
scene accuracy where we count predicted results with the
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same change contents (including change type, object attri-
butions, original and new positions, and orders) as 1 and
the predicted result with incorrect change contents as 0, and
we compute correctness over all scenes. We also introduced
per-change accuracy and recall in a with-order manner and
without-order manner. In the with-order manner, a single
change is counted as 1 when all nodes in the sub-graph (con-
nected graph) have correct change contents and temporal
orders. For the without-order manner, a single change is
counted as 1 when it has correct change contents. We also
evaluated per-change-type accuracy to evaluate the model
performance for changes with different change types in the
without-order manner. Additionally, we evaluated change
content accuracy in the without-order manner.

In comparison experiments on the change captioning
dataset CLEVR-Multi-Change, we evaluated sentence gen-
eration performance on evaluation metrics BLEU [42],
CIDER [43], METEOR [44], and SPICE [45]. These eval-
uation metrics evaluate the similarities between generated
sentences and ground truth sentences.

Implementation Details. Similar to the existing meth-
ods DUDA and MCCFormers, the input image features were
obtained using a pre-trained ResNet101 model [46]. We set
the learning rates of both the encoder and decoder to 0.0001.
Detailed training parameters are shown in the supplemen-
tary material.

5.2. Results on OVT Dataset

Ablation study. We first conducted an ablation study
on model designs. More specifically, we conducted experi-
ments on the model structure of the node and edge decoder
(transformer and GCN), loss function (cross-entropy loss
and graph matching loss) for nodes and edges prediction,
and head and layers (ranging from 1 to 2, and 2 to 4, respec-
tively) for models. Here, we implemented GCN consisting
of MLPs and adjusted the layers of the MLP structure.

We then evaluated the performance of all models for
per-change accuracy, both with- and without-order setup
on OVT dataset. The results are summarized in Table 2.
We found that models with transformer-structured decoders
outperformed those with GCN. Additionally, models with
graph matching loss obtained higher accuracy compared
with those that adopted cross-entropy losses. We attribute
this result to the fact that the graph matching loss consid-
ers all possible combinations between ground truth and pre-
dicted results, thus making it possible to choose the best-
matched one for the optimization process. Since the model
that adopted the transformer (one layer and four heads)
and graph matching loss obtained the highest accuracy, we
mainly implemented this model (VTGen (trans)) for model
comparison in the remaining experiments.

Quantitative Comparison. We show the experimental
results of models and humans on the OVT dataset in Table 3.

Decoders Loss | Layers Heads Accuracy
(w) (wlo)
1 2 50.2 785
1 4 496 78.8
cE 2 2 292  60.7
Transformer 2 4 41.1 728
1 2 50.8  79.1
1 4 524 80.5
oM 2 2 36.6 68.6
2 4 411 724
1 - 472 76.8
GCN cE 2 - 26 721
GM 1 - 490 786
2 - 452 757

Table 2. Ablation study on model and loss design. CE and GM
stand for cross-entropy and graph matching loss, respectively.

500 examples were randomly selected for human evaluation.
In terms of per-scene accuracy, which reports the correct-
ness of recognizing all changes from each scene, our pro-
posed method obtained 57.8%, thus outperforming the best
performing previous method MCCFormers-S by +15.7%.
For per-change accuracy, we found that all methods exhib-
ited lower performance in the with-order setup than in the
without-order setup. The proposed method obtained the
highest performance among all per-change evaluations and
achieved a significant performance gap of +15.1% com-
pared to previous methods in with-order setup.

All existing methods directly generate a whole sequence
to represent all changes and their orders. In the OVT dataset,
the models need to classify all changes and their temporal or-
ders from two images. Incorrect recognition of change con-
tents will affect the change order recognition and vice-versa.
The proposed method adopts the graph structure to recog-
nize change contents and determine their orders separately,
making it beneficial in the OVT dataset. Additionally, the
proposed method explicitly considers the associations be-
tween changes, which is critical in distinguishing changes.

We also evaluated per-change type and change content
(combinations of object attributes, positions, and change
types) accuracy. We found that existing methods showed
a relatively significant performance downgrade for add and
move changes, which involve relatively more objects than
delete changes. In contrast, our method obtained nearly the
same levels of accuracy for all three change types, thus in-
dicating that our method is better at distinguishing multiple
changes. For detailed change content, the proposed method
outperformed existing methods in determining the challeng-
ing location recognition while slightly outperforming exist-
ing methods in determining objects and change types.
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Methods Per-scene Per-change (w) Per-change (w/o) | Per-change-type accuracy Change content accuracy
Accuracy | Accuracy Recall | Accuracy Recall | Add Delete Move Object Location Change
DUDA [15] 25.7 272 254 59.4 558 | 541 715 57.8 88.6 69.9 97.2
MCCFormers-D [16] 389 352 338 69.8 67.0 | 642 783 70.7 91.1 77.5 97.7
MCCFormers-S [16] 42.1 37.3 36.2 722 699 | 677 803 71.9 91.5 79.5 97.9
TranceNet [25] 30.0 30.6 28.4 64.9 603 | 598 738 64.8 89.7 73.9 97.0
VTGen (trans) 57.8 524 51.0 80.5 780 | 791 82.0 81.1 92.0 86.3 98.2
VTGen (GCN) 53.7 49.0 47.6 78.6 762 | 79.0 81.6 76.5 91.0 84.3 97.6
Human | 766 | 70.1 709 | 919 93.0 | 894  90.0 927 | 977 96.5 98.2

Table 3. Model and human performance on the OVT dataset.
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Figure 4. Average per-change accuracy for scenes with different
change numbers on the OVT dataset.

Notably, there is still a huge performance gap between
models and humans, especially in asynchronous changes
and location prediction, indicating the existence of unsolved
questions in this visual reasoning in scene dynamics.

Detailed Analysis on Transformation Steps. Next, we
further evaluated model performance for scenes with differ-
ent change numbers in Figure 4. Similar to results in Ta-
ble 3, all methods obtained lower accuracy for the challeng-
ing with-order setup compared to the without-order setup.
All methods obtained degraded performance for scenes with
multiple changes, while our method maintained over 40%
accuracy for four-change scenes in the with-order setup, out-
performing existing methods by nearly 20%. In the without-
order setup, our method obtained very similar results, hav-
ing nearly 80% of accuracy for scenes with different change
numbers in the without-order setups, thereby indicating its
ability to distinguish multiple changes.

Qualitative Results. We show four result exam-
ples (with four changes each) of MCCFormers-S and
MCCFormers-D [16] and VTGen (trans) in Figure 5. All
three methods obtained correct results in example (a). In (a),
all four changes could happen simultaneously, making it rel-
atively less complicated to distinguish each change from the
others. In examples (b,c,d), where there are specific tempo-

Methods ‘ BLEU CIDER METEOR SPICE
DUDA [15] 76.1 480.1 47.4 66.6
M-VAM [47] 62.9 338.1 41.3 55.9
MCCFormers-D [16] 82.3 539.3 52.1 71.7
MCCFormers-S [16] 83.3 523.3 51.5 70.0
VTGen (trans) ‘ 85.2 584.9 54.0 81.3

Table 4. Results on CLEVR-Multi-Change dataset [16].

ral orders between changes, all methods obtained relatively
lower performance in determining change contents, includ-
ing object attributes and change locations. We also found
that existing methods struggled in (c,d) by mistaking change
numbers or change orders. On the contrary, our proposed
method correctly predicted change orders in all four exam-
ples despite having incorrect object attribute prediction.

5.3. Results on CLEVR-Multi-Change Dataset

To compare the proposed method with previous meth-
ods in the existing dataset, we evaluated our method in the
CLEVR-Multi-Change dataset [16]. The dataset consists
of scene pairs and sentences describing the changes within
scene pairs. The CLEVR-Multi-Change dataset deals with
multiple changes where all changes happen simultaneously
without specific temporal orders. Because there are no tem-
poral orders, we implemented our model without using the
edge prediction part. Also, we facilitated sentence genera-
tion in our model by instantiating sentences from predicted
change contents and sentence templates.

As shown in Table 4, the proposed method outperformed
existing methods in all evaluation metrics. All these meth-
ods do not explicitly consider the relationships between dif-
ferent changes, making it challenging to distinguish changes
from each other in scenes containing multiple changes. On
the contrary, our proposed method explicitly determines dif-
ferent changes after correlating different changes, which is
also beneficial in the CLEVR-Multi-Change dataset.
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Figure 5. Experimental results on the OVT dataset. Incorrect and omitted predictions are marked in red and red dashed lines, respectively.

5.4. Analysis

The OVT dataset deals with both asynchronous and
synchronous changes. Change content and order recogni-
tion affect each other mutually, and the associations be-
tween changes are critical in distinguishing one change from
among many. Existing methods generate a sequence to
represent the whole scene and neglect the change relation-
ships. In contrast, our method adopts a graph representation
for order-aware changes and explicitly associates changes,
therefore enhancing its ability to distinguish changes in both
OVT and an existing dataset. The experimental results show
that the proposed model outperforms existing methods, es-
pecially in complicated situations, such as the with-order
setup, scenes with more changes, challenging add or move
change types, and change location recognition.

Also, the experimental results in Figure 4 and 5 reveal
that there is still room for improvement, especially when the
number of order-aware changes increases. Moreover, there
is still a significant gap between model and human perfor-
mance (Table 3). We plan to enhance model performance
by disentangling change recognition from image pairs with
scene state transformation recognition from textual infor-
mation. Also, we only conducted experiments on synthetic

datasets. We also consider further investigations of real sce-
narios and applications such as robotic manipulation.

6. Conclusion

This paper addresses a novel order-aware visual trans-
formation task. Existing methods mainly focus on changes
that occur synchronously without considering their underly-
ing temporal orders. Change orders, although still less stud-
ied, are indispensable in discovering how changes occur and
restoring scenes to their previous states and are essential in
various applications, such as assembly operations. Hence,
we facilitate the discussion of order-aware visual transfor-
mation by introducing a new dataset. Based on observation
of the lack of understanding of change relationships and the
unsuitable sentence representation used in existing methods,
we proposed a method that explicitly associates changes and
then generates a graph representation for describing order-
aware changes. Our proposed method outperformed exist-
ing methods in both the proposed dataset and an existing
dataset. However, we also found that there is still a signif-
icant performance gap between current models and human
performance. We hope these results can call attention to re-
solving visual reasoning in scene dynamics.
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