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Abstract

Reconstructing dynamic 3D garment surfaces with open

boundaries from monocular videos is an important problem

as it provides a practical and low-cost solution for clothes

digitization. Recent neural rendering methods achieve

high-quality dynamic clothed human reconstruction results

from monocular video, but these methods cannot separate

the garment surface from the body. Moreover, despite ex-

isting garment reconstruction methods based on feature

curve representation demonstrating impressive results for

garment reconstruction from a single image, they struggle

to generate temporally consistent surfaces for the video in-

put. To address the above limitations, in this paper, we for-

mulate this task as an optimization problem of 3D garment

feature curves and surface reconstruction from monocular

video. We introduce a novel approach, called REC-MV, to

jointly optimize the explicit feature curves and the implicit

signed distance field (SDF) of the garments. Then the open

garment meshes can be extracted via garment template reg-

istration in the canonical space. Experiments on multiple

casually captured datasets show that our approach outper-

forms existing methods and can produce high-quality dy-

namic garment surfaces. The source code is available at

https://github.com/GAP-LAB-CUHK-SZ/REC-MV.

1. Introduction

High-fidelity clothes digitization plays an essential role

in various human-related vision applications such as vir-

tual shopping, film, and gaming. In our daily life, hu-

mans are always in a moving status, driving their clothes

to move together. To realize this very common scenario, it

is indispensable to gain dynamic garments in real applica-

tions. Thanks to the rapid development of mobile devices

in terms of digital cameras, processors, and storage, shoot-

ing a monocular video in the wild becomes highly conve-

nient and accessible for general customers. In this paper,
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Figure 1. Can we extract dynamic 3D garments from monocu-

lar videos? The answer is Yes! By jointly optimizing the dynamic

feature curves and garment surface followed by non-rigid template

registration, our method can reconstruct high-fidelity and tempo-

rally consistent garment meshes with open boundaries.

our goal is definite – extracting dynamic 3D garments from

monocular videos, which is significantly meaningful and

valuable for practical applications, but is yet an uncultivated

land with many challenges.

We attempt to seek a new solution to this open prob-

lem and start by revisiting existing works from two main-

streams. i) Leveraging the success of neural rendering

methods [35, 37, 57], several works are able to recon-

struct dynamic clothed humans from monocular videos

[8, 19, 29, 47, 49], by representing the body surface with

an implicit function in the canonical space and apply skin-

ning based deformation for motion modeling. One naive

way to achieve our goal is: first to get the clothed human

through these methods and separate the garments from hu-

man bodies. However, such a separation job requires la-

borious and non-trivial processing by professional artists,

which is neither straightforward nor feasible for general

application scenarios. ii) As for garment reconstruction,

many methods [5, 10, 20, 61, 62] make it possible to recon-

struct high-quality garment meshes from single-view im-

ages in the wild. Specifically, ReEF [62] estimates 3D fea-
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ture curves* and an implicit surface field [34] for non-rigid

garment template registration. Nonetheless, these meth-

ods struggle to produce temporally consistent surfaces when

taking videos as inputs.

The above discussion motivates us to combine the mer-

its of both the dynamic surface modeling in recent neu-

ral rendering methods and the explicit curve representation

for garment modeling. To this end, we try to delineate

a new path towards our goal: optimizing dynamic explicit

feature curves and implicit garment surface from monocu-

lar videos, to extract temporally consistent garment meshes

with open boundaries. We represent the explicit curves and

implicit surface in the canonical space with skinning-based

motion modeling, and optimize them by 2D supervision au-

tomatically extracted from the video (e.g., image intensities,

garment masks, and visible feature curves). After that, the

open garment meshes can be extracted by a garment tem-

plate registration in the canonical space (see Fig. 1).

We strive to probe this path as follows: (1) As a feature

curve is a point set whose deformation has a high degree

of freedom, directly optimizing the per-point offsets often

leads to undesired self-intersection and spike artifacts. To

better regularize the deformation of curves, we introduce

an intersection-free curve deformation method to maintain

the order of feature curves. (2) We optimize the 3D fea-

ture curves using 2D projection loss measured by the esti-

mated 2D visible curves, where the key challenge is to ac-

curately compute the visibility of curves. To address this

problem, we propose a surface-aware curve visibility esti-

mation method based on the implicit garment surface and

z-buffer. (3) To ensure the accuracy of curve visibility es-

timation during the optimization process, the curves should

always be right on the garment surface. We therefore in-

troduce a progressive curve and surface evolution strategy

to jointly update the curves and surface while imposing the

on-surface regularization for curves.

To summarize, the main contributions of this work are:

• We introduce REC-MV, to our best knowledge, the

first method to reconstruct dynamic and open loose

garments from the monocular video.

• We propose a new approach for joint optimization

of explicit feature curves and implicit garment sur-

face from monocular video, based on carefully de-

signed intersection-free curve deformation, surface-

aware curve visibility estimation, and progressive

curve and surface evolution methods.

• Extensive evaluations on casually captured monocular

videos demonstrate that our method outperforms exist-

ing methods.

* feature curves of the garment (e.g., necklines, hemlines) can provide criti-

cal cues for determining the shape contours of the garment.

2. Related Work

Human Reconstruction from Single-view Image. Tradi-

tional methods for human reconstruction often adopt a para-

metric human model (e.g., SMPL [32] or SCAPE [4]) and

can only recover a naked 3D body [23, 24]. To increase the

surface details, free-form deformations can be applied to the

mesh vertices to model small geometry variations caused by

the clothing [2, 3, 26, 43, 52].

Recent methods propose to utilize implicit surface repre-

sentations [34,38] to reconstruct 3D clothed human with an

arbitrary topology. Specifically, PIFu and PIFuhd [44, 45]

extract pixel-aligned spatial features from images as the in-

put for implicit surface function for occupancy prediction.

Follow-up methods then integrates 3D-aligned features to

improve the results [6, 15–18, 56, 58]. As these methods

only consider single-image reconstruction, they cannot pro-

duce temporally consistent results for video input.

Human Reconstruction from Monocular Video. Inspired

by the success of neural rendering methods [35, 37, 57] in

scene reconstruction, many methods have been proposed to

reconstruct 3D human from sparse-view [31, 41, 53, 55, 60]

or monocular [19, 47, 49] videos.

Anim-NeRF [8], Neuman [21] and HumanNeRF [49] in-

troduce methods based on neural radiance field (NeRF) [35]

to reconstruct an animatable avatar from monocular video.

These methods transform a 3D point in the observation

space to the canonical space by inverse-skinning, and then

perform volume rendering in the canonical space. A-

NeRF [47] additionally adopt a skeleton-relative encod-

ing strategy. AvatarCap [29] proposes a monocular human

volumetric capture method, but requires reconstructing an

avatar from multiple 3D scans in advance.

Garment Reconstruction from Images. Reconstructing

garment mesh from images enables many applications like

virtual try-on and content creation. Existing methods re-

construct the clothing as a separate layer on top of the

body [7, 22, 25, 42, 48, 51]. Among them, several meth-

ods address the challenging problem of garment recon-

struction from single-view image [5, 10, 20, 36, 61, 62].

MGN [5] learns a per-category parametric model from a

large-scale clothing dataset. BCNet [20] first reconstructs

a coarse template and then refines the surface details with

a displacement network. AnchorUDF [59] adopts the un-

signed distance field (UDF) [9] to represent the open sur-

face mesh. SMPlicit [10] proposes a generative model to

reconstruct layered garments from a single image. Deep-

Fasion3D [61] reconstructs the surface with occupancy net-

work [34] and applys non-rigid ICP to register the clothing

template. ReEF [62] registers explicit clothing template to

the implicit field learned from pixel-aligned implicit func-

tion. However, as these single-image methods do not con-

sider clothing motion, they are not suitable for dynamic gar-
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Figure 2. Overview of the proposed REC-MV. (a) Starting from a surface template, we initialize the canonical curves by solving Eq. (3),

and apply a handle-based deformation to initialize the canonical implicit surface. (b) Given an i-th frame, canonical curves are deformed to

the camera view space to compute the projection loss based on the surface-aware visibility estimation. (c) Similarly, the canonical surface

is deform to the camera view to compute the photometric loss by differentiable rendering. The curves and surface are jointly optimized to

enable a progressive co-evolution. (d) Last, the open garment meshes can be extracted by template registration in the canonical space.

ment reconstruction.

Among methods related to garment reconstruction from

videos, Li et al. [28] introduce a method to learn physics-

aware clothing deformation from monocular videos, but as-

sumes the template scans for the body and clothing are pro-

vided [13]. Garment Avatar [14] proposes a multi-view

patterned cloth tracking algorithm, requiring the subject to

wear clothing with specific patterns. SCARF represents

the layered clothing using radiance field [11] on top of the

SMPL-X model [40] from monocular video. In contrast,

our method first reconstructs the explicit 3D garment curves

and surfaces, and then extracts the garment mesh via tem-

plate registration.

3. Method

Given a monocular video with Ni frames depicting a

moving person {It|t = 1, . . . , Ni}, REC-MV aims to re-

construct high-fidelity and space-time coherent open gar-

ment meshes. This is a challenging problem as it requires a

method to simultaneously capture the shape contours, local

surface details, and the motion of the garment.

Observing that feature curves (e.g., necklines, hemlines)

provide critical cues for determining the shape contours of

garment [61] and implicit signed distance function (SDF)

can well represent a detailed closed surface [19], we pro-

pose to first optimize the explicit 3D feature curves and

implicit garment surfaces from the video, and then apply

non-rigid clothing template registration to extract the open

garment meshes (see Fig. 2).

Preprocessing. We generate the initial shape parameter β,

camera intrinsic π, and per-frame SMPL [32] pose param-

eters {θt|t = 1, . . . , Ni} using Videoavatar [3]. To iden-

tify the garment regions in 2D images, we apply the exist-

ing garment parsing method [27] to estimate the garment

masks. Our method also requires 2D visible curves ζ =
{ζl,t|l = 1, . . . Nl, t = 1, . . . , Ni} for 3D curve recov-

ery, where Nl denotes the number of curves. Note that the

2D visible curves can be automatically produced by parsing

boundaries of the garment mask (more details in the supple-

mentary material).

Overview. To utilize the information that exists in the en-

tire video for dynamic garment reconstruction, we repre-

sent the explicit feature curve and implicit garment sur-

face in the canonical space (Sec. 3.1). For a specific time

step, we adopt the skeleton-based skinning and non-rigid

deformation modeling to map the canonical curves and sur-

faces to the camera view space (Sec. 3.2). As the given 2D

curves only contain visible points, to optimize the 3D fea-

ture curves from 2D projection error, we propose a surface-

aware approach to compute the visibility of the 3D feature

curve based on z-buffer (Sec. 3.3). In terms of implicit sur-

face optimization, we minimize the photometric loss be-

tween the rendered and input image based on the differ-

entiable surface rendering technique (Sec. 3.4). Then the

adopted loss functions for joint optimization of curves and

surfaces are described (Sec. 3.5). Last, the open garment

meshes can be extracted by registering an explicit garment

template to the recovered curves and implicit surfaces in

the canonical space (more details in the supplementary ma-

terial). Then the garment meshes can be deformed based on

the SMPL poses.
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3.1. Feature Curve and Surface Representation

Explicit Surface Template. Following DeepFash-

ion3D [61], we employ several surface templates, each con-

tains a pre-defined set of 3D feature curves L = {Li|i =
1, . . . , Nl} extracted from the garment boundaries, where

Nl is the number of feature curves (see our supplementary

materials for more details). The surface templates will be

used for garment surface initialization and the pre-defined

feature curves will be used for curve initialization†.

Intersection-free Curve Deformation. A straightforward

idea is to represent a feature curve as a discrete point set,

and directly estimate the 3D deformation offset for each

point during optimization. However, this unstructured curve

representation struggles to maintain the order of the points

and often generate spike artifacts due to the high degree of

freedom of the deformation.

To address this issue, we introduce a novel intersection-

free curve deformation method, in which the point’s defor-

mation at each step is controlled by the curve center and two

orthogonal directions (see Fig. 3 for illustration). Formally,

given a curve C ofNp points with center pc, the updated po-

sition of i-th point C(i) is defined as

C′(i) = pc + Sd
i n

d
i + Sc

in
c, (1)

where nd
i is the direction from the curve center to the cur-

rent point C(i), and nc = 1
Np−1

∑Np

i=1(n
d
i × nd

i−1) is the

direction perpendicular to the current feature curve plane.

Sd
i ∈ R and Sc

i ∈ R are learnable parameters specifying

the step size of the deformation.

The proposed intersection-free curve deformation can

well preserve the order of points in the curve, which largely

reduced the difficulty of optimization compared to the direct

offset estimation approach.

Implicit SDF in Canonical Space. Unsigned distance

field (UDF) [9] is an implicit function that can represent

an open surface. However, as UDF is not differentiable at

points close to the surface, it is non-trivial to integrate UDF

with differentiable surface rendering to take advantage of

supervision from 2D photometric loss. We therefore adopt

the SDF to represent a closed garment surface for surface

geometry recovery, followed by garment template registra-

tion to extract the open surface.

It is common to represent the whole surface with a single

SDF for human reconstruction [19]. However, as our goal is

to reconstruct separate clothes, using a single SDF to repre-

sent both the upper clothes and bottom clothes (e.g., skirt)

increases the difficulty of template registration (i.e., split-

ting the upper and bottom clothes requires highly accurate

waist curves).

† including templates for uppers, dresses, coats, pants, and skirts.

𝑝i−1
𝑝i𝑝c 𝑛i𝑑𝑛𝑐 𝑆𝑖𝑑

𝐶′ 𝑖𝑆𝑖𝑐
𝑛i−1𝑑

Figure 3. Illustration of the intersection-free curve deformation.

To enable better template registration, we consider

three different surface types (i.e., upper-clothing, bottom-

clothing, and upper-bottom) according to the garment types,

and represent each surface type as the zero-isosurface of an

independent SDF in the canonical space. The SDF is ex-

pressed by an MLP f with learnable weights η:

S(η) = {p ∈ R
3|f(p; η) = 0}.

For the sake of simplicity and without loss of generality,

we illustrate our method in reconstructing a single surface

type later in this section.

3.2. Skinning Based Motion Modeling

We model large body motions by linear blend skinning

(LBS) transformation based on the SMPL [32] model, and

utilize a non-rigid deformation field to account for fine-

grained deformations.

Skinning Transformation. Given a SMPL body with

shape parameter β and a pose parameter θi in i-th frame,

a point p on the body surface in canonical space with skin-

ning weights w(p) can be warped to camera view space via

skinning transformation W .

Notably, the skinning weights w(p) are only defined for

points on the SMPL surface. To warp arbitrary points in

the canonical space to camera view, we use the diffused

skinning strategy [30] to propagate the skinning weights of

SMPL body vertices to the entire canonical space, and store

the weights in a voxel grid of size 256×256×256. Then we

can obtain the skinning weights by trilinear interpolation.

Non-rigid Deformation. Skinning deformation enables the

garment surface to deform in a way consistent with the

body’s large-scale motion [16]. However, the motion of

details and garment parts that are far away from body can-

not be fully represented by skinning transformation [19].

Hence, a non-rigid deformation MLP is used to model these

fine-grained changes. Specifically, we design an MLP D
with learnable parameters φ to model garment surface’s

non-rigid deformation:

p′ = D(p,h, E(p);φ), (2)

where p′ is the deformed point of the input point p in the

canonical space, h is the latent code of the current frame,
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and E(p) of p is the position encoding [35] to represent the

high-frequency information of spatial points.

Finally, combining D with skinning transformation field

W , we could define a deformation field Φ(·) = W(D(·)) to

warp any points in the canonical space to the camera view.

3.3. 3D Feature Curves from 2D Projections

The 3D feature curve will be optimized by minimizing

the distance between its 2D projection on the image plane

and the provided 2D visible curves. The key challenge here

is how to compute the visibility of the 3D curves in the cam-

era view. We first introduce a curve initialization strategy

based on rigid transformation, and then propose a surface-

aware curve visibility estimation method to support accu-

rate non-rigid curves optimization.

Feature Curve Initialization. We start from the predefined

feature curve sets L = {Li|i = 1, . . . , Nl} provided in the

garment template. To reduce the difficulty of curve opti-

mization, we perform a rigid curve initialization by directly

minimizing the Chamfer Distance (CD) between the pro-

jected curves on the camera view space and the correspond-

ing visible 2D curves ζ as

s, t,R = argmin
s,t,R

CD
(

Π
(

W(L̄i)
)

, ζi
)

, (3)

L̄i = sR(Li) + t, (4)

where Π is the projection matrix, L̄i is the transformed fea-

ture curve. t ∈ R
3, R ∈ SO(3), and s ∈ R are the opti-

mized translation, rotation, and scaling parameters, respec-

tively.

In our implementation, we execute 150 gradient descent

iterations to solve the rigid transformation parameters. Af-

ter rigid optimization, we set L̄ as the initial position for

the feature curve sets {Ci|i = 1, . . . , Nl} for later non-rigid

optimization.

Surface-aware Curve Visibility Estimation. As the 2D

feature curve ζ only contains visible points, it is essential

to identify the visible points of the 3D curve C in camera

space. A naive solution is to consider a point C(i) as visi-

ble if the cosine similarity between the view direction v and

nd
i (i.e., the direction from curve center to the i-th point) in

view-pose is less than 0. However, this approach will pro-

duce wrong judgments when a curve is occluded by other

body parts.

To tackle this problem, a surface-aware curve visibility

estimation method is proposed. Specifically, we generate

an explicit mesh Ts from implicit surface S(η) in canoni-

cal space via marching cube [33]. Next, we deform Ts to

camera view space via the deformation field Φ(Ts). Then,

we can check if a feature curve point Φ(C(i)) is occluded

by the explicit mesh in view space based on z-buffer:

VC(i) = zbuffer test(Φ(C(i)),Φ(Ts)). (5)

However, we find that the 3D curve C might sometimes

move outside or have a scale larger than the explicit mesh

Ts, there will be some errors if only depending on the z-

buffer testing between C(i) and Ts. We therefore make use

of the SMPL surface to improve the visibility estimation, by

checking if the nearest point of C(i) on the SMPL body is

occluded in the camera view space in a similar way. Note

that this is feasible as in our intersection-free curve defor-

mation, the correspondences between C(i) and its nearest

vertice in the SMPL body are almost unchanged during op-

timization. Then a curve point is considered as visible if it

passes both visibility checks.

3.4. Progressive Curve and Surface Co­evolution.

The surface of the garment is represented by the implicit

SDF. As the feature curve visibility estimation depends on

the garment surface, the curves and surface have to evolve

consistently. To ensure the accuracy of curve visibility dur-

ing the optimization process, we jointly optimize the curves

and surface while imposing a regularization that the curves

lie on the zero-isosurface of the SDF. The implicit surface is

minimized by the photometric loss based on differentiable

surface rendering.

Curve-aware Surface Initialization. A good initialization

for the implicit SDF S(η) can reduce the optimization diffi-

culty and improve the performance, especially for the long

skirt and dress. Thanks to our curve-aware garment rep-

resentation, we can utilize the initialized feature curve L̄

computed in Eq. (4) to enable a better shape initialization.

Specifically, we apply a handle-based deformation [46] to

deform a surface template such that its feature curves are

aligned with L̄. Then, we apply IGR [12] to initialize the

implicit surface S(η) by fitting the deformed template.

Differentiable Surface Rendering. To reconstruct high-

fidelity geometry, following the SelfRecon [19], we find the

intersection points p on the surface and make them differ-

entiable (more details can be found in supplementary).

After obtaining the intersection points p, we compute its

gradient np = ∇f(p; η) and transform the camera view

to canonical space as vp by the Jacobian matrix of the de-

formed point Φ(p) (more details can be found in supple-

mentary). To better account for the changes in the illumina-

tion, we also take a per-frame latent code z as input to the

color rendering network fc. Then, the surface color Cp of

point p can be computed as

Cp = fc(p,np, vp, z, E(p);ψ). (6)

3.5. Loss Function

The overall loss function consists of two parts, one part

is for the feature curves optimization and the other is for

garment surfaces optimization.
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3.5.1 Explicit Feature Curve Loss

The optimization of feature curves relies on the 2D pro-

jection loss, a curve slope regularization loss, and an on-

surface regularization loss that ensures the feature curves

are on the garment surface.

Feature Curve Projection Loss. Given SMPL pose pa-

rameter θi and the camera projection matrix Π, we warp

predicted feature curve C to camera view space via defor-

mation field Φ, and compute project loss Lproj measured

by 2D visible curves ζ using Chamfer Distance (CD):

Lproj = CD(VC ⊗Π(Φ(C)), ζ) (7)

where VC is the visibility mask of curves, and symbol ⊗
indicates the mask selection operator.

Feature Curve Slope Regularization. To maintain the cur-

vature of 3D curve C, we design a slope loss Lslop to regu-

larize that the slope is consistent between adjacent points

Lslop =

Np
∑

i=1

(1− cos < si+1, si >) (8)

where si = C(i + 1) − C(i), Np is the point number in the

curve, and cos <> is the cosine similarity function.

On-surface Regularization. In addition, the feature curves

are required to be on the corresponding garment surface.

Hence, we introduce an as near as possible loss Lanap as:

Lanap =

Np
∑

i=1

|f(C(i); η)| (9)

The overall explicit feature curve loss can be written as:

Lcurve = λprojLproj + λslopLslop + λanapLanap (10)

where λproj , λslop and λanap are loss weights.

3.5.2 Garment Surface Loss

For a monocular video with Ni frames, the learnable pa-

rameter in implicit surface reconstruction is denoted as Θ:

Θ = {η, φ, ψ} ∪ {hi, zi|i = 1, . . . , Ni} (11)

Surface Rendering Loss. For a pixel within the garment

mask, we compute the ray’s intersection point p on the

canonical surface S(η) and apply surface rendering network

to predict the color Cp (see Eq. (6)). Then the photometric

loss can be computed as

LRGB =
1

|R|

∑

p∈R

|Cp(Θ)− Ip|, (12)

where R is the sample point set, Ip is the corresponding

ground-truth pixel color from the input images.

Mask-guided Implicit Consistency Loss. To better opti-

mize implicit surface, following SelfRecon [19], we period-

ically extract explicit surface meshes Ts in canonical space

from SDF f and use a differentiable renderer [50] to itera-

tively optimize Ts by a mask loss using the surface mask.

Then the updated explicit surface T̂s will be used to super-

vise the implicit SDF f as

Lmcons =
1

|T̂s|

∑

p∈T̂s

|f(p; η)|. (13)

Curve-guided Implicit Consistency Loss. We find that the

explicit mesh T̂s updated by the mask loss might contain

holes or even collapse in some surface areas, which will

harm the learning of implicit surface (see in Fig. 9). To

address this issue, we design an explicit curve and surface

consistency loss. Specifically, for a specific feature curve C
that belongs to two implicit surfaces (e.g., waist curve be-

longs to both the upper-clothing and bottom-clothing), we

generate its closed surface TC and then sample Na points

from TC to constrain the implicit SDF f as

Lccons =
1

|TC |

∑

p∈TC

|f(p; η)|. (14)

Common Implicit Loss. Eikonal loss Leik [12] is in-

cluded to make the implicit function the signed distance

function. To avoid distortion of non-rigid transformation,

a rigid loss [39] Larap is computed to constrain the non-

rigid deformation. We also compute normal loss Lnorm in

canonical space to further refine the surface [19]. Moreover,

we compute the skeleton smoothness loss [54] to reduce the

high-frequency jitter of SMPL poses among frames (more

details can be found in supplementary).

The overall implicit surface loss can be written as:

Lims = LRGB + λmconsLmcons + λcconsLccons

λarapLarap + λeikLeik + λnormLnorm,
(15)

where λarap, λmcons, λccons, λeik, and λnorm are the loss

weights.

4. Experiments

Since there is no existing method for open garment

meshes reconstruction from monocular videos, we compare

with three state-of-the-art single-image methods, namely

BCNet [20], ClothWild [36], and ReEF [62].

4.1. Evaluation on Synthetic Dataset

Since there is no public real dataset for evaluating dy-

namic garment reconstruction, we adopt four video se-

quences from the synthetic data generated by SelfRe-

con [19] for quantitative evaluation.
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Figure 4. Qualitative comparison on the synthetic dataset. From left to right in each example: the ground-truth mesh, results of BCNet [20],

ClothedWild [36], ReEF [62], and Ours.

Input BCNet ClothWild ReEF Input BCNet ClothWild ReEFOurs Ours

Figure 5. Qualitative comparison on real datasets between BCNet [20], ClothWild [36], ReEF [62], and our method. Upper clothes are

visualized in red color, while bottom clothes and dresses are visualized in blue color. Note that BCNet and ClothWild cannot model dresses.

We first employ Blender [1] to extract the ground-truth

garment mesh from the provided clothed human mesh of the

first frame. To measure the accuracy of the reconstructed

meshes, we compute the Chamfer distance (CD) between

the ground-truth and estimated meshes. To evaluate the

temporal consistency of the reconstructed meshes for the

video sequence, we measure the consistency of correspond-

ing vertices (CCV), which is the root mean square error of

the corresponding vertices distances in adjacent frames.

We test our method and the baseline methods on these

four video sequences. Table 1 shows that our method

achieves the best results in the metrics of CD and CCV

on all four videos, demonstrating the effectiveness of our

method in reconstructing accurate and temporally consis-

tent dynamic garment meshes. From the results of high er-

rors in the CCV, we can clearly see that single-image meth-

ods fail to maintain the consistency of the reconstruction

for the video input. Figure 4 compares the visual results, in

which our method produces detailed and accurate garments

that are mostly close to the ground-truth surfaces.

4.2. Evaluation on Real­world Videos

We then qualitatively evaluate our method on the Peo-

pleSnapshot [3] and a dataset captured by ourselves. These

testing videos include a diverse variety of garments cate-

gories, including upper-cloth, dress, coats, pants, and skirts.

Table 1. Quantitative results on four synthetic sequences. We com-

pare the Chamfer distance (CD) between the ground-truth and re-

constructed surfaces (in cm), as well as the consistency of corre-

sponding vertices (CCV) between adjacent frames.

Female1 Female3 Male1 Male2

Method CD CCV CD CCV CD CCV CD CCV

BCNet [20] 3.184 7.201 3.447 6.186 2.929 8.604 5.234 7.128

ClothedWild [36] 2.424 - 2.075 - 2.782 - 3.980 -

ReEF [62] 1.810 3.782 1.924 4.322 2.005 6.794 2.865 3.579

Ours 1.804 0.597 1.641 1.064 1.736 0.484 1.812 0.433

Figure 5 shows the visual comparisons. The results of

the baseline methods are predicted using a single image as

input. Our method can faithfully reconstruct the layouts and

surface details of the garments. In contrast, BCNet [20]

and ClothWild [36] cannot accurately predict the garment

layouts and produce over-smooth surfaces.

We also demonstrate our dynamic reconstruction results

in Fig. 6. We can see that our method can produce space-

time coherent results for different garment types (including

the challenging dresses) from monocular videos, which is

difficult to achieve with single-image methods.

4.3. Ablation Study

We next conduct ablation study for different components

of our method (more results in our supplementary material).

Curve Visibility Estimation. As shown in Fig. 7, sim-
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Figure 6. Dynamic garment reconstruction results of our method. Each row shows the reconstruction of four frames in a monocular video.

(a) Curve Normal (b) w/o Implicit Surface (c) w/o SMPL (d) Surface-aware

Figure 7. Ablation study of curve visibility estimation method.

ply using normal direction for visibility estimation leads to

worse results, while using both the implicit SDF and SMPL

surfaces for z-buffer testing produces the best result.

Explicit Curve Losses. Figure 8 (a) shows that without

the curve slop loss Lslop, the optimized curves will contain

noise and artifacts. As shown in Fig. 8 (b), the proposed on-

surface regularization (i.e., Lanap) can well constrain the

curves to be on the surface and produce much more accurate

fitting results, demonstrating the implicit surface helps the

optimization of curves.

Curve-guided Consistency Loss. To improve the opti-

mization of the implicit surface, we use curves to regularize

the surface. Figure 9 shows that this regularization effec-

tively improves the surface geometry, verifying that curves

benefit the optimization of surfaces.

5. Conclusion

We have presented a new framework for dynamic gar-

ment reconstruction from monocular videos, by formulating

this task as an optimization problem of dynamic 3D curves

and surface recovery, followed by garment template regis-

tration. To solve this problem, we introduce a novel ap-

proach, called REC-MV, to jointly optimize the curves and

surface from 2D supervision in a progressive co-evolution

manner. Experimental results show that our method can re-

construct high-fidelity dynamic garments meshes with open

boundaries, significantly outperforming existing methods.

Limitations. Our method can only reconstruct common

garment categories whose contours can be represented by

(a) w/o Lslop (b) w/o Lanap (c) Both

Figure 8. Ablation study of the explicit curve losses.

w/o Lccons w/ Lccons w/o Lccons w/ Lccons

Figure 9. Results of w/o and w/ the curve-guided consistency loss.

feature curves. Additionally, our method requires the mov-

ing person to be observed from different angles.
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