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Abstract

Most recent methods formulate the task of human pose
estimation as a heatmap estimation problem, and use the
overall L2 loss computed from the entire heatmap to opti-
mize the heatmap prediction. In this paper, we show that
in bottom-up human pose estimation where each heatmap
often contains multiple body joints, using the overall L2
loss to optimize the heatmap prediction may not be the op-
timal choice. This is because, minimizing the overall L2
loss cannot always lead the model to locate all the body
joints across different sub-regions of the heatmap more ac-
curately. To cope with this problem, from a novel perspec-
tive, we propose a new bottom-up human pose estimation
method that optimizes the heatmap prediction via minimiz-
ing the distance between two characteristic functions re-
spectively constructed from the predicted heatmap and the
groundtruth heatmap. Our analysis presented in this pa-
per indicates that the distance between these two charac-
teristic functions is essentially the upper bound of the L2
losses w.r.t. sub-regions of the predicted heatmap. There-
fore, via minimizing the distance between the two character-
istic functions, we can optimize the model to provide a more
accurate localization result for the body joints in different
sub-regions of the predicted heatmap. We show the effec-
tiveness of our proposed method through extensive exper-
iments on the COCO dataset and the CrowdPose dataset.

1. Introduction
Human pose estimation aims to locate the body joints of

each person in a given RGB image. It is relevant to vari-
ous applications, such as action recognition [7, 43], person
Re-ID [28], and human object interaction [35]. For tack-
ling human pose estimation, most of the recent methods fall
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into two major categories: top-down methods and bottom-
up methods. Top-down methods [24,32,33,39,44] generally
use a human detector to detect all the people in the image,
and then perform single-person pose estimation for each
detected subject separately. In contrast, bottom-up meth-
ods [5,6,16,17,22,23,25,26] usually locate the body joints
of all people in the image at the same time. Hence, bottom-
up methods, the main focus of this paper, are often a more
efficient choice compared to top-down methods, especially
when there are many people in the input image [5].

In existing works, it is common to regard human pose
estimation as a heatmap prediction problem, since this can
preserve the spatial structure of the input image throughout
the encoding and decoding process [12]. During the gen-
eral optimization process, the groundtruth (GT) heatmaps
Hg are first constructed via putting 2D Gaussian blobs cen-
tered at the GT coordinates of the body joints. After that,
these constructed GT heatmaps are used to supervise the
predicted heatmaps Hp via the overall L2 loss Loverall

2 cal-
culated (averaged) over the whole heatmap. Specifically,
denoting the area of the heatmap as A, we have Loverall

2 =
∥Hp−Hg∥2

2

A .
We argue that using the overall L2 loss to supervise the

predicted heatmap may not be the optimal choice in bottom-
up methods where each heatmap often contains multiple
body joints from the multiple people in various sub-regions,
as shown in Fig. 1(b). This is because, a smaller overall L2
loss calculated over the whole heatmap cannot always lead
the model to locate all the body joints across different sub-
regions in the heatmap more accurately. As illustrated in
Fig. 1(a), the predicted heatmap #2 has a smaller overall L2
loss compared to the predicted heatmap #1. However, the
predicted heatmap #2 locates the body joint in the top-
right sub-region wrongly, whereas the predicted heatmap
#1 locates body joints in both the top-right and bottom-
left sub-regions correctly. This is because, while the de-
crease of the overall L2 loss can be achieved when the L2
loss w.r.t. each sub-region either decreases or remains the
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Figure 1. (a) Illustration of heatmaps. The predicted heatmap #2 with a smaller overall L2 loss locates the body joint in the top-right
sub-region wrongly, while the predicted heatmap #1 with a larger overall L2 loss locates body joints in both the top-right and bottom-left
sub-regions correctly. (b) Output of a commonly used bottom-up method, HrHRNet-W32 [6]. As shown, it misses left ankle in the dashed
sub-region of image (i) completely, and misidentifies right knee in the dashed sub-region of image (ii). This indicates that accurately
localizing the body joints of multiple people in a single heatmap is a challenging problem. (Best viewed in color.)

same (e.g., from predicted heatmap #0 to predicted heatmap
#1), it can also be achieved when there is a decrease of L2
loss w.r.t. certain sub-regions and an increase of L2 loss for
some other sub-regions (e.g., from predicted heatmap #1 to
predicted heatmap #2). This indicates that, in bottom-up
methods, the decrease of the overall L2 loss does not al-
ways lead to a more accurate localization result for the body
joints in different sub-regions of the predicted heatmap at
the same time. Besides, we also show some results of a
commonly used bottom-up method, HrHRNet-W32 [6], in
Fig. 1(b). As shown, it may even miss or misidentify certain
body joints when there are a number of people in the input
image. This indicates that it is quite difficult to accurately
locate all body joints of all people in the predicted heatmap.

To tackle the above-mentioned problem in bottom-up
methods, in this paper, rather than using the overall L2 loss
to supervise the whole heatmap, we instead aim to optimize
the body joints over sub-regions of the predicted heatmap at
the same time. To this end, from a new perspective, we ex-
press the predicted and GT heatmaps as characteristic func-
tions, and minimize the difference between these functions,
allowing different sub-regions of the predicted heatmap to
be optimized at the same time.

More specifically, we first construct two distributions re-
spectively from the predicted heatmap and the GT heatmap.
After that, we obtain two characteristic functions of these
two distributions and optimize the heatmap prediction via
minimizing the distance between these two characteristic
functions. We analyze in Sec. 3.3 that the distance between
the two characteristic functions is the upper bound of the

L2 losses w.r.t sub-regions in the predicted heatmap. There-
fore, via minimizing the distance between the two charac-
teristic functions, our method can locate body joints in dif-
ferent sub-regions more accurately at the same time, and
thus achieve superior performance.

The contributions of our work are summarized as fol-
lows. 1) From a new perspective, we supervise the pre-
dicted heatmap using the distance between the character-
istic functions of the predicted and GT heatmaps. 2) We
analyze (in Sec. 3.3) that the L2 losses w.r.t. sub-regions
of the predicted heatmap are upper-bounded by the dis-
tance between the characteristic functions. 3) Our proposed
method achieves state-of-the-art performance on the evalu-
ation benchmarks [19, 21].

2. Related Work
Human Pose Estimation. Due to the wide range of appli-
cations, human pose estimation has received lots of atten-
tion [5, 6, 16, 17, 22–26, 29, 32, 33, 39, 44], and most of the
recent methods fall into two categories: top-down methods
and bottom-up methods. In top-down methods, a human de-
tector is generally used to detect all the people in the image
first, and then single-person pose estimation is conducted
for each detected subject separately. The single-person pose
estimation methods that are commonly used in top-down
methods include Hourglass [24], Simple Baseline [39], HR-
Net [32], and HRFormer [44], etc. Besides top-down meth-
ods, bottom-up methods [5,6,16,17,22,23,25,26] have also
attracted a lot of attention recently due to its efficiency [5].

In bottom-up methods, most methods first detect all
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identity-free body joints over the whole input image, and
then group them into different people. Among these meth-
ods, DeepCut and Person-Lab [14,26,27] incorporate offset
fields into their methods, while Openpose and PifPaf [5,17]
make use of part affinity fields in their methods. From
another perspective, associate embedding [23] teaches the
model to output the group assignments and the localization
results of the body joints at the same time, and HGG [16]
further combines graph neural networks on top of the asso-
ciate embedding. Besides the above methods, there also ex-
ist some bottom-up methods [11,25,45] that directly regress
the coordinates of body joints belonging to the same person.

Existing heatmap-based bottom-up methods often use an
overall L2 loss calculated over the whole heatmap to opti-
mize heatmap prediction. Differently, in this paper, we pro-
pose a new bottom-up method that optimizes the heatmap
prediction via minimizing the difference between the char-
acteristic functions of the predicted and GT heatmaps.
Characteristic Function. The characteristic function, a
concept originally proposed in probability theory and statis-
tics, has been studied in various areas [2, 8, 9, 13, 20, 31, 41]
over the years, such as two-sample testing [8,9,13], genera-
tive adversarial nets [2,20], and few-shot classification [41].
Inspired by these works, in this paper, from a novel per-
spective, we propose to optimize the heatmap prediction
for bottom-up human pose estimation via minimizing the
distance between two characteristic functions. We theoret-
ically analyze that the distance between the two character-
istic functions respectively constructed from the predicted
heatmap and the GT heatmap is the upper bound of the L2
losses w.r.t. sub-regions of the predicted heatmap.

3. Method
In bottom-up human pose estimation, as shown in

Fig. 1(a), minimizing the overall L2 loss between the pre-
dicted heatmap and the GT heatmap cannot always lead
the model to locate all the body joints across different sub-
regions of the heatmap more accurately. In this work, we
aim to optimize the body joints over sub-regions of the pre-
dicted heatmap at the same time. To achieve this, we pro-
pose a new bottom-up method that optimizes the heatmap
prediction via minimizing the distance between two char-
acteristic functions constructed from the predicted and GT
heatmaps.

Below, we first briefly introduce the characteristic func-
tion, and then discuss how we formulate the heatmap opti-
mization process. After that, we show the theoretical anal-
ysis of our proposed method.

3.1. Revisiting Characteristic Function

The characteristic function is generally used in probabil-
ity theory and statistics. Given an N -dimensional distribu-
tion D, its corresponding characteristic function φD can be

written as:

φD(t) = Ex∼D[ei⟨t,x⟩] =

∫
RN

ei⟨t,x⟩ dD (1)

where E represents expectation, i2 = −1, ⟨·, ·⟩ represents
dot product, t is a random N -dimensional vector, and x is an
N -dimensional vector sampled from D. Note that the char-
acteristic function always exists and has a one-to-one corre-
spondence with the distribution. Besides, the characteristic
function is the Fourier transform of the probability density
function if the latter exists as well. Moreover, the character-
istic function is always finite and bounded (|φD(t)| ≤ 1).
This makes calculation of the distance between two charac-
teristic functions always meaningful.

3.2. Proposed Heatmap Optimization Process

Below, we discuss how we formulate the heatmap op-
timization process for bottom-up human pose estimation
via (1) constructing two distributions from the predicted
heatmap and the GT heatmap respectively; (2) calculating
characteristic functions from these two distributions; and
(3) formulating the loss function as the distance between
the two characteristic functions.

Distribution Construction. Given an input image, for
each type of body joints, we denote the corresponding pre-
dicted heatmap as Hp and the corresponding GT heatmap as
Hg . We propose to formulate the two distributions D(Hp)
and D(Hg) from the two heatmaps Hp and Hg with the
following two steps. (1) As distributions cannot hold nega-
tive probabilities, we first pass Hp through a relu activation
function to make it non-negative. Note that Hg is already
non-negative. (2) After that, as the sum of probabilities of
each constructed distribution needs to be 1, we further nor-
malize both the output of step (1) and Hg . Hence, with the
above two steps, we formulate D(Hp) and D(Hg) as:

D(Hp) =
relu(Hp)

∥relu(Hp)∥1
, D(Hg) =

Hg

∥Hg∥1
(2)

Characteristic Function Calculation. For every type of
body joints, after formulating the two distributions D(Hp)
and D(Hg), we follow Eq. 1 to calculate the two character-
istic functions φD(Hp)(t) and φD(Hg)(t) as:

φD(Hp)(t) = Ex∼D(Hp)[e
i⟨t,x⟩],

φD(Hg)(t) = Ex∼D(Hg)[e
i⟨t,x⟩]

(3)

Loss Function Formulation. Above we discuss how
we obtain the two characteristic functions w.r.t. the pre-
dicted heatmap and the GT heatmap for a single type of
body joints. Note that in bottom-up human pose estimation,
multiple types of body joints are required to be located at
the same time. Here, we first discuss how we formulate the
loss function for a single type of body joints, and then in-
troduce the overall loss function for all types of body joints.

To formulate the loss function for the k-th type of body
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joints, given the two characteristic functions φk
D(Hp)

(t) and
φk
D(Hg)

(t), we first write the loss function Lk as the dis-
tance between these two characteristic functions [2]:

Lk =

∫
R2

∥φk
D(Hp)

(t)− φk
D(Hg)

(t)∥22ω(t, η) dt (4)

where ω(t, η) is a weighting function. Here we set ω(t, η) to
be the probability density function of a uniform distribution
in BU , where BU = [−U,U ] × [−U,U ] is a finite prede-
fined range and U is a hyperparameter. This means that,
ω(t, η) = 1

4U2 when t ∈ BU and ω(t, η) = 0 otherwise.
We thus further rewrite Eq. 4 as:

Lk =

∫
BU

∥ 1

2U

(
φk
D(Hp)

(t)− φk
D(Hg)

(t)
)
∥22 dt (5)

Finally, from Eq. 5, we formulate the loss function Lk

as:

Lk =

∫
BU

∥ γ

2U

(
φk
D(Hp)

(t)− φk
D(Hg)

(t)
)
∥22 dt (6)

where γ = U2
√
A

π2 is a constant coefficient and A is the
area of the heatmap. Note that Eq. 6 is equivalent to Eq. 5
during the optimization process, as the efficacy of the added
constant γ can be achieved by adjusting the learning rate.

After getting the loss function for each type of body
joints, we formulate the total loss for all types of joints as:

Ltotal =

K∑
k=1

Lk (7)

where K denotes the total number of body joint types.

3.3. Theoretical Analysis

Below, we perform theoretical analysis to show the ef-
fectiveness of our method for bottom-up human pose esti-
mation. Before going into the theorem, we first introduce a
lemma that can facilitate the proof of the theorem.

Lemma 1. Let φD be the characteristic function
of a 2-dimensional distribution D. Let Rr =
[xlower

1 , xupper
1 ] × [xlower

2 , xupper
2 ] a rectangular re-

gion, Re = {xlower
1 , xupper

1 } × [xlower
2 , xupper

2 ] ∪
[xlower

1 , xupper
1 ]×{xlower

2 , xupper
2 } the edges of this region,

and Rv = {xlower
1 , xupper

1 }×{xlower
2 , xupper

2 } the vertices
of this region. Let BT = [−T, T ] × [−T, T ]. Denote [D]R
the portion of the distribution D in R. [D]Rr can then be
written as:

[D]Rr =

(
lim

T→∞

1

(2π)2

∫
BT

( 2∏
n=1

(
e−itnx

lower
n − e−itnx

upper
n

itn
)

φD(t)
)
dt1dt2

)
+ ϵ([D]Rr )

(8)
where ϵ([D]Rr ) = [D]Re

2 + [D]Rv

4 and dt1dt2 are calculated
based on the Lebesgue measure.

The proof of Lemma 1 is provided in the supplemen-
tary. After introducing this lemma, we analyze our pro-
posed method below.

Theorem 1. Let Rr
sub be a random rectangular sub-region

in the heatmap of the k-th type of body joints where
∥[D(Hp)]Re

sub
− [D(Hg)]Re

sub
∥22 is relatively small com-

pared to ∥[D(Hp)]Rr
sub

− [D(Hg)]Rr
sub

∥22. The relation be-
tween the L2 loss w.r.t. this sub-region and Lk can be writ-
ten as:

∥[D(Hp)]Rr
sub

− [D(Hg)]Rr
sub

∥22
λ(Rr

sub)
≤ Lk (9)

Note that λ(Rr
sub) as the Lebesgue measure represents the

area of Rr
sub.

Proof. To prove Theorem 1, we first reformulate Lemma 1
as:

[D]Rr =

(
lim

T→∞

1

(2π)2

∫
BT

( 2∏
n=1

(
e−itnx

lower
n − e−itnx

upper
n

itn
)

φD(t)
)
dt1dt2

)
+ ϵ([D]Rr )

= lim
T→∞

1

(2π)2

∫
BT

φD(t)
∫
Rr

e−i⟨t,x⟩ dx dt + ϵ([D]Rr )

(10)
where dt = dt1dt2, and both dx and dt are calculated based
on the Lebesgue measure.
After that, we rewrite ∥[D(Hp)]Rr

sub
− [D(Hg)]Rr

sub
∥22 as:

∥[D(Hp)]Rr
sub

− [D(Hg)]Rr
sub

∥22 (11)

≈ ∥[D(Hp)]Rr
sub

− [D(Hg)]Rr
sub

(12)

−
(
ϵ([D(Hp)]Rr

sub
)− ϵ([D(Hg)]Rr

sub
)
)
∥22

= ∥ lim
T→∞

1

(2π)2

∫
BT

φk
D(Hp)

(t)
∫
Rr

sub

e−i⟨t,x⟩ dx dt

(13)

− lim
T→∞

1

(2π)2

∫
BT

φk
D(Hg)

(t)
∫
Rr

sub

e−i⟨t,x⟩ dx dt ∥22

= ∥ lim
T→∞

∫
BT

∫
Rr

sub

φk
D(Hp)

(t)− φk
D(Hg)

(t)
(2π)2

e−i⟨t,x⟩ dx dt ∥22

(14)

≈ ∥
∫
BU

∫
Rr

sub

φk
D(Hp)

(t)− φk
D(Hg)

(t)
(2π)2

e−i⟨t,x⟩ dx dt ∥22

(15)

≤ 4U2A

∫
BU

∫
Rr

sub

∥
φk
D(Hp)

(t)− φk
D(Hg)

(t)
(2π)2

e−i⟨t,x⟩∥22 dx dt

(16)
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Table 1. Comparisons with bottom-up methods on the COCO val2017 set (single-scale testing).

Method Venue Backbone Input size AP AP50 AP75 APM APL

OpenPose [5] CVPR 2017 VGG-19 - 61.0 84.9 67.5 56.3 69.3
HGG [16] ECCV 2020 Hourglass 512 60.4 83.0 66.2 - -
PersonLab [26] ECCV 2018 ResNet-152 1401 66.5 86.2 71.9 62.3 73.2
PifPaf [17] CVPR 2019 ResNet-152 - 67.4 - - - -
PETR [30] CVPR 2022 - 1333 67.4 87.0 74.9 61.7 75.9
DEKR [11] CVPR 2021 HRNet-W48 640 71.0 88.3 77.4 66.7 78.5
PINet [37] NIPS 2021 HRNet-W32 512 67.4 - - - -
CIR&QEM [40] AAAI 2022 HRNet-W48 640 72.4 89.1 - 67.3 80.4
CID [36] CVPR 2022 HRNet-W32 512 66.0 86.7 72.3 59.8 76.0
LOGP-CAP [42] CVPR 2022 HRNet-W48 640 72.2 88.9 78.9 68.1 78.9
SWAHR [22] CVPR 2021 HrHRNet-W32 512 68.9 87.8 74.9 63.0 77.4
SWAHR [22] CVPR 2021 HrHRNet-W48 640 70.8 88.5 76.8 66.3 77.4
CenterAttention [4] ICCV 2021 HrHRNet-W32 512 68.6 87.6 74.1 62.0 78.0
PoseTrans [15] ECCV 2022 HrHRNet-W32 512 68.4 87.1 74.8 62.7 77.1
HrHRNet [6] CVPR 2020 HrHRNet-W32 512 67.1 86.2 73.0 61.5 76.1
+ Ours HrHRNet-W32 512 69.9(↑2.8) 88.1 76.0 64.2 78.1
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 69.9 87.2 76.1 65.4 76.4
+ Ours HrHRNet-W48 640 72.5(↑2.6) 89.3 79.1 68.3 79.0

Table 2. Comparisons with bottom-up methods on the COCO val2017 set (multi-scale testing).

Method Venue Backbone Input size AP AP50 AP75 APM APL

HGG [16] ECCV 2020 Hourglass 512 68.3 86.7 75.8 - -
Point-Set Anchors [38] ECCV 2020 HRNet-W48 640 69.8 88.8 76.3 - -
DEKR [11] CVPR 2021 HRNet-W48 640 72.3 88.3 78.6 68.6 78.6
SWAHR [22] CVPR 2021 HrHRNet-W32 512 71.4 88.9 77.8 66.3 78.9
SWAHR [22] CVPR 2021 HrHRNet-W48 640 73.2 89.8 79.1 69.1 79.3
PoseTrans [15] ECCV 2022 HrHRNet-W32 512 71.2 88.2 77.2 66.5 78.0
HrHRNet [6] CVPR 2020 HrHRNet-W32 512 69.9 87.1 76.0 65.3 77.0
+ Ours HrHRNet-W32 512 71.8(↑1.9) 88.9 78.1 67.3 78.4
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 72.1 88.4 78.2 67.8 78.3
+ Ours HrHRNet-W48 640 73.7(↑1.6) 89.9 79.6 69.6 79.5

≤ 4U2A

∫
BU

∫
Rr

sub

∥
φk
D(Hp)

(t)− φk
D(Hg)

(t)
(2π)2

∥22 dx dt

(17)

= 4U2A

∫
Rr

sub

∫
BU

∥
φk
D(Hp)

(t)− φk
D(Hg)

(t)
(2π)2

∥22 dt dx

(18)

=

∫
Rr

sub

∫
BU

∥ γ

2U

(
φk
D(Hp)

(t)− φk
D(Hg)

(t)
)
∥22 dt dx

(19)

= Lkλ(R
r
sub) (20)

where Eq. 12 holds since ∥[D(Hp)]Re
sub

− [D(Hg)]Re
sub

∥22
is relatively small compared to ∥[D(Hp)]Rr

sub
−

[D(Hg)]Rr
sub

∥22, Eq. 13 holds because of Eq. 10, Eq. 15
holds based on the analysis in the supplementary, Eq. 16
holds due to the continuity of L2 distance and the
Cauchy–Schwarz inequality, Eq. 17 holds due to the fact
that ∥e−i⟨t,x⟩∥22 = 1 and the Cauchy–Schwarz inequality,
Eq. 18 holds due to Fubini’s theorem.

We can then move λ(Rr
sub) on the right hand side of

Eq. 20 to the left hand side to get Theorem 1.

As shown in Theorem 1, for the sub-region Rr
sub, when

the sum of the pixelwise L2 distances between the predicted
and GT heatmaps over this entire sub-region is relatively
large compared to only over its edges, Lk will be the upper
bound of the L2 loss w.r.t. this sub-region. Because of this,
via minimizing Lk, we can enable the L2 losses w.r.t. all
such sub-regions to be smaller. Note that such sub-regions
can be easily found, since the edge of a sub-region typi-
cally contains many less pixels compared to the entire sub-
region in the first place. Furthermore, for sub-regions con-
taining missed or inaccurate body joints in its center, which
are precisely the erroneous predictions that need to be cor-
rected, the sum of the pixelwise L2 distances over the entire
sub-region will then be much larger compared to only over
its edge. Therefore, our method can optimize the model
to provide a more accurate localization result for the body
joints in different sub-regions of the predicted heatmap at
the same time, whereas the existing bottom-up methods,
usually relying on the overall L2 loss, do not hold this prop-
erty. Thus, our method can achieve superior performance
for bottom-up human pose estimation.

Note that during implementation, since Lk itself as an
integral is not tractable, inspired by [2], we define L̂k as a

13013



Table 3. Comparisons with bottom-up methods on the COCO test-dev2017 set (single-scale testing).

Method Venue Backbone Input size AP AP50 AP75 APM APL

OpenPose [5] CVPR 2017 VGG-19 - 61.8 84.9 67.5 57.1 68.2
Hourglass [24] ECCV 2016 Hourglass 512 56.6 81.8 61.8 49.8 67.0
Associative Embedding [23] NIPS 2017 Hourglass 512 56.6 81.8 61.8 49.8 67.0
SPM [25] ICCV 2019 Hourglass - 66.9 88.5 72.9 62.6 73.1
MDN [34] CVPR 2020 Hourglass - 62.9 85.1 69.4 58.8 71.4
PersonLab [26] ECCV 2018 ResNet-152 1401 66.5 88.0 72.6 62.4 72.3
PifPaf [17] CVPR 2019 ResNet-152 - 66.7 - - 62.4 72.9
PETR [30] CVPR 2022 SWin-L 1333 70.5 91.5 78.7 65.2 78.0
DEKR [11] CVPR 2021 HRNet-W48 640 70.0 89.4 77.3 65.7 76.9
PINet [37] NIPS 2021 HRNet-W32 512 66.7 - - - -
CIR&QEM [40] AAAI 2022 HRNet-W48 640 71.0 90.2 78.2 66.2 77.8
CID [36] CVPR 2022 HRNet-W48 640 70.7 90.3 77.9 66.3 77.8
LOGP-CAP [42] CVPR 2022 HRNet-W48 640 70.8 89.7 77.8 66.7 77.0
SWAHR [22] CVPR 2021 HrHRNet-W48 640 70.2 89.9 76.9 65.2 77.0
CenterAttention [4] ICCV 2021 HrHRNet-W48 640 69.6 89.7 76.0 64.9 76.3
PoseTrans [15] ECCV 2022 HrHRNet-W32 512 67.4 88.3 73.9 62.1 75.1
HrHRNet [6] CVPR 2020 HrHRNet-W32 512 66.4 87.5 72.8 61.2 74.2
+ Ours HrHRNet-W32 512 68.9(↑2.5) 89.2 75.7 63.7 76.1
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 68.4 88.2 75.1 64.4 74.2
+ Ours HrHRNet-W48 640 71.1(↑2.7) 90.4 78.2 66.9 77.2

Table 4. Comparisons with bottom-up methods on the COCO test-dev2017 set (multi-scale testing).

Method Venue Backbone Input size AP AP50 AP75 APM APL

Hourglass [24] ECCV 2016 Hourglass 512 63.0 85.7 68.9 58.0 70.4
Associative Embedding [23] NIPS 2017 Hourglass 512 63.0 85.7 68.9 58.0 70.4
HGG [16] ECCV 2020 Hourglass 512 67.6 85.1 73.7 62.7 74.6
SimplePose [18] AAAI 2020 IMHN 512 68.1 - - 66.8 70.5
PersonLab [26] ECCV 2018 - 1401 68.7 89.0 75.4 64.1 75.5
PETR [30] CVPR 2022 SWin-L 1333 71.2 91.4 79.6 66.9 78.0
Point-Set Anchors [38] ECCV 2020 HRNet-W48 640 68.7 89.9 76.3 64.8 75.3
DEKR [11] CVPR 2021 HRNet-W48 640 71.0 89.2 78.0 67.1 76.9
CIR&QEM [40] AAAI 2022 HRNet-W48 640 71.7 90.4 78.7 67.3 78.5
SWAHR [22] CVPR 2021 HrHRNet-W48 640 72.0 90.7 78.8 67.8 77.7
CenterAttention [4] ICCV 2021 HrHRNet-W48 640 71.1 90.5 77.5 66.9 76.7
PoseTrans [15] ECCV 2022 HrHRNet-W32 512 69.9 89.3 77.0 65.2 76.2
HrHRNet [6] CVPR 2020 HrHRNet-W32 512 69.0 89.0 75.8 64.4 75.2
+ Ours HrHRNet-W32 512 70.8(↑1.8) 90.1 77.8 66.0 77.3
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 70.5 89.3 77.2 66.6 75.8
+ Ours HrHRNet-W48 640 72.3(↑1.8) 91.5 79.8 67.9 78.2

tractable alternative of Lk as:

L̂k =

M∑
m=1

∥ γ

2U

(
φk
D(Hp)

(tm)− φk
D(Hg)

(tm)
)
∥22 (21)

where {t1, ..., tM} denotes a set of M vectors randomly
sampled from BU .

The total loss L̂total for all body joint types can then be
written as:

L̂total =

K∑
k=1

L̂k (22)

3.4. Overall Training and Testing

Here we discuss the overall training and testing scheme
of our method. Specifically, during training, we supervise
the predicted heatmaps via the total loss in Eq. 22 instead
of using the commonly used overall L2 loss, and follow-
ing [6, 22, 23], we conduct grouping via associate embed-
ding. During testing, we follow the evaluation procedure of

previous works [6, 22] that conduct bottom-up human pose
estimation. Note that in experiments, it is easy to imple-
ment L̂k in Eq. 21, and we provide more details on how we
implement L̂k in experiments in the supplementary.

4. Experiments

To evaluate the effectiveness of our method for bottom-
up human pose estimation, we conduct experiments on the
COCO dataset [21] and the CrowdPose dataset [19]. Be-
sides, we also test the effectiveness of our method on top-
down methods in the supplementary. We conduct our ex-
periments on RTX 3090 GPUs.

4.1. COCO Keypoint Detection

Dataset & evaluation metric. The COCO dataset [21]
contains over 200k images, and in this dataset, each per-
son instance is annotated with 17 body joints. This dataset
consists of three subsets including COCO training set (57k
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Table 5. Comparisons with bottom-up methods on the CrowdPose testing set.

Method Venue Backbone Input size AP AP50 AP75 APE APM APH

w/ single-scale testing
OpenPose [5] CVPR 2017 VGG-19 - - - - 62.7 48.7 32.3
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 65.9 86.4 70.6 73.3 66.5 57.9
PETR [30] CVPR 2022 - - 72.0 90.9 78.8 78.0 72.5 65.4
DEKR [11] CVPR 2021 HRNet-W48 640 67.3 86.4 72.2 74.6 68.1 58.7
PINet [37] NIPS 2021 HRNet-W32 512 68.9 88.7 74.7 75.4 69.6 61.5
CID [36] CVPR 2022 HRNet-W48 640 72.3 90.8 77.9 78.7 73.0 64.8
SWAHR [22] CVPR 2021 HrHRNet-W48 640 71.6 88.5 77.6 78.9 72.4 63.0
CenterAttention [4] ICCV 2021 HrHRNet-W48 640 67.6 87.7 72.7 73.9 68.2 60.3
Ours HrHRNet-W48 640 72.6 88.8 78.9 79.2 73.1 65.6

w/ multi-scale testing
HrHRNet [6] CVPR 2020 HrHRNet-W48 640 67.6 87.4 72.6 75.8 68.1 58.9
DEKR [11] CVPR 2021 HRNet-W48 640 68.0 85.5 73.4 76.6 68.8 58.4
PINet [37] NIPS 2021 HRNet-W32 512 69.8 89.1 75.6 76.4 70.5 62.2
SWAHR [22] CVPR 2021 HrHRNet-W48 640 73.8 90.5 79.9 81.2 74.7 64.7
CenterAttention [4] ICCV 2021 HrHRNet-W48 640 69.4 88.6 74.6 76.6 70.0 61.5
Ours HrHRNet-W48 640 74.1 90.7 80.2 81.3 74.9 65.1

images), COCO validation set (5k images), and COCO test-
dev set (20k images). Following the train-test split of [22],
we report results on the val2017 set and test-dev2017 set.
Also following [22], we evaluate model performance using
standard average precision (AP) calculated based on Object
Keypoint Similarity (OKS) on this dataset, and report the
following metrics: AP, AP50, AP75, APM, and APL.
Implementation details. Following [4, 22], we use
the HrHRNet [6] as the baseline, and apply our pro-
posed method to the respective two backbones including
HrHRNet-W32 and HrHRNet-W48. For these backbones,
we follow their original training and testing configurations
specified in [6]. Also following [6], we adopt three scales
0.5, 1, and 2 in multi-scale testing. To calculate L̂k follow-
ing Eq. 21, we set the number of samples M to 256 and the
hyperparameter U w.r.t. the finite range BU to 64 in our
experiments.
Results. In Tab. 1 and Tab. 2, we report single-scale test-
ing and multi-scale testing results on the COCO val2017
set. In Tab. 3 and Tab. 4, we report single-scale testing
and multi-scale testing results on the COCO test-dev2017
set. We observe that after applying our method on both
HrHRNet-W32 and HrHRNet-W48, a significant perfor-
mance improvement is achieved, demonstrating the effec-
tiveness of our method. Moreover, we also compare our
method with other state-of-the-art bottom-up human pose
estimation methods. Compared to these methods, our
method consistently achieves the highest AP score, further
demonstrating the effectiveness of our method.

4.2. CrowdPose

Dataset & evaluation metric. The CrowdPose dataset [19]
contains about 20k images and 80k person instances, which
are annotated with 14 body joints. This dataset consists
of three subsets including CrowdPose training set (10k im-
ages), CrowdPose validation set (2k images), and Crowd-

Pose testing set (8k images). Following the train-test split
of [6, 22], we report results on the testing set. Also follow-
ing [6, 22], we evaluate model performance using standard
AP calculated based on OKS on the CrowdPose dataset, and
report the following metrics: AP, AP50, AP75, APE, APM,
and APH.
Implementation details. On the CrowdPose dataset, we
also use the HrHRNet [6] as the baseline, and we use
HrHRNet-W48 as the backbone following [4,6,22]. We fol-
low the original training and testing configurations specified
in [6], and also follow [6] to adopt three scales 0.5, 1, and 2
in multi-scale testing. Besides, same as the experiments on
the COCO dataset, we also set the number of samples M to
256 and the hyperparameter U w.r.t. the finite range BU to
64 on the CrowdPose dataset.
Results. In Tab. 5, we report the single-scale testing and
multi-scale testing results on the CrowdPose testing set. As
shown, our method consistently achieves the highest AP
score, demonstrating the effectiveness of our method.

4.3. Ablation Studies

We conduct ablation studies on the COCO validation set
via applying our proposed method on HrHRNet-W32 [6]
with single-scale testing.
Impact of the number of samples M . To calculate L̂k

following Eq. 21, we need to set the number of samples
M , which we set to 256 in our experiments. We evaluate
other choices of the number of samples M in Tab. 6. As
shown, all variants outperform the baseline method, and af-
ter the number of samples M becomes larger than 256 the
model performance becomes stabilized. Therefore, we set
the number of samples M to be 256 in our experiments.
Impact of the finite range BU with different U . We eval-
uate different choices of U in Tab. 7. As shown, all variants
outperform the baseline method, and after the hyperparam-
eter U becomes larger than 64, the model performance does
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Figure 2. Qualitative results of our method and the baseline HrHRNet-W32 model [6]. As shown, the baseline method misses body joints
(in (a) and (b)) or misidentifies body joints (in (c) and (d)) in some sub-regions of the predicted heatmap (see the sub-regions framed
with dashed lines). Meanwhile, our method provides a more accurate localization result for the body joints of different people in different
sub-regions of the predicted heatmap at the same time. More qualitative results are in the supplementary. (Best viewed in color.)

Table 6. Evaluation on the number of samples M .

Method AP AP50 AP75 APM APL

Baseline(HrHRNet-W32) 67.1 86.2 73.0 61.5 76.1

4 samples 67.9 86.9 73.8 62.4 76.9
16 samples 68.9 87.5 74.8 63.5 77.4
64 samples 69.6 87.9 75.6 63.9 77.8
256 samples 69.9 88.1 76.0 64.2 78.1
1024 samples 69.8 88.2 76.0 64.3 78.0

not enhance anymore. Thus, we set the hyperparameter U
to be 64 in our experiments.
Table 7. Evaluation on the hyperparameter U w.r.t. the finite range
BU .

Method AP AP50 AP75 APM APL

Baseline(HrHRNet-W32) 67.1 86.2 73.0 61.5 76.1

U = 8 67.7 86.7 73.5 62.2 76.5
U = 16 68.6 87.3 74.2 62.9 76.9
U = 32 69.4 87.8 75.4 63.7 77.6
U = 64 69.9 88.1 76.0 64.2 78.1
U = 128 69.8 88.0 75.8 64.0 78.0

Training time. On the COCO dataset, we test the train-
ing time of our method that trains the backbone model
(HrHRNet-W32 [6]) with the loss function in Eq. 22, and
compare it with the training time of the baseline that trains
the same network with the overall L2 loss. As shown in
Tab. 8, though our method achieves much better perfor-
mance, it brings only very little increase of the training time.
Note that as we follow the same evaluation procedure of
previous works [6, 22], the testing time with and without
our proposed method are the same.
Qualitative results. Some qualitative results are shown in
Fig. 2. As shown, the baseline method which uses the over-
all L2 loss to optimize the heatmap prediction can miss or

Table 8. Comparison of the training time.

Method Training time per epoch Performance(AP)
Baseline(HrHRNet-W32) 1.11h 67.1

Baseline + Ours 1.19h 69.9

get inaccurate body joints in some sub-regions of the pre-
dicted heatmap (see the sub-regions framed with dashed
lines). In contrast, our method locates body joints of differ-
ent people in different sub-regions of the predicted heatmap
more accurately at the same time, demonstrating the effec-
tiveness of our method.

5. Conclusion
In this paper, we have proposed a novel bottom-up hu-

man pose estimation method that optimizes the heatmap
prediction via minimizing the distance between two char-
acteristic functions respectively constructed from the pre-
dicted and GT heatmaps. We theoretically analyze that the
distance between the two characteristic functions is the up-
per bound of the L2 losses w.r.t. sub-regions of the pre-
dicted heatmap. Thus, via minimizing the distance between
the two characteristic functions, our method locates body
joints in different sub-regions of the predicted heatmap
more accurately at the same time. Our method achieves
superior performance on the COCO dataset and the Crowd-
Pose dataset. Besides, our method could potentially also
be applied in other tasks such as multi-object 6D pose es-
timation [1], facial landmark extraction [3], and fingerprint
minutiae detection [10]. We leave this as our future work.
Acknowledgement. This work is supported by MOE
AcRF Tier 2 (Proposal ID: T2EP20222-0035), National Re-
search Foundation Singapore under its AI Singapore Pro-
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center of attention: Center-keypoint grouping via attention
for multi-person pose estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 11853–11863, 2021. 5, 6, 7

[5] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 1,
2, 3, 5, 6, 7

[6] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi,
Thomas S Huang, and Lei Zhang. Higherhrnet: Scale-
aware representation learning for bottom-up human pose es-
timation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5386–5395,
2020. 1, 2, 5, 6, 7, 8

[7] Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian
Cheng, and Hanqing Lu. Skeleton-based action recognition
with shift graph convolutional network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 183–192, 2020. 1

[8] Kacper P Chwialkowski, Aaditya Ramdas, Dino Sejdinovic,
and Arthur Gretton. Fast two-sample testing with analytic
representations of probability measures. Advances in Neural
Information Processing Systems, 28, 2015. 3

[9] TW Epps and Kenneth J Singleton. An omnibus test for
the two-sample problem using the empirical characteristic
function. Journal of Statistical Computation and Simulation,
26(3-4):177–203, 1986. 3

[10] Yulin Feng and Ajay Kumar. Detecting locally, patching
globally: An end-to-end framework for high speed and ac-
curate detection of fingerprint minutiae. IEEE Transactions
on Information Forensics and Security, 2023. 8

[11] Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, and Jing-
dong Wang. Bottom-up human pose estimation via disentan-
gled keypoint regression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14676–14686, 2021. 3, 5, 6, 7

[12] Kerui Gu, Linlin Yang, and Angela Yao. Removing the bias
of integral pose regression. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 11067–
11076, 2021. 1

[13] CE Heathcote. A test of goodness of fit for symmetric ran-
dom variables1. Australian Journal of Statistics, 14(2):172–
181, 1972. 3

[14] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,
Mykhaylo Andriluka, and Bernt Schiele. Deepercut: A
deeper, stronger, and faster multi-person pose estimation
model. In European conference on computer vision, pages
34–50. Springer, 2016. 3

[15] Wentao Jiang, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo,
and Si Liu. Posetrans: A simple yet effective pose trans-
formation augmentation for human pose estimation. arXiv
preprint arXiv:2208.07755, 2022. 5, 6

[16] Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen
Qian, Wanli Ouyang, and Ping Luo. Differentiable hierar-
chical graph grouping for multi-person pose estimation. In
European Conference on Computer Vision, pages 718–734.
Springer, 2020. 1, 2, 3, 5, 6

[17] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf:
Composite fields for human pose estimation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11977–11986, 2019. 1, 2, 3, 5, 6

[18] Jia Li, Wen Su, and Zengfu Wang. Simple pose: Rethinking
and improving a bottom-up approach for multi-person pose
estimation. In Proceedings of the AAAI conference on ar-
tificial intelligence, volume 34, pages 11354–11361, 2020.
6

[19] Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu
Fang, and Cewu Lu. Crowdpose: Efficient crowded scenes
pose estimation and a new benchmark. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10863–10872, 2019. 2, 6, 7

[20] Shengxi Li, Zeyang Yu, Min Xiang, and Danilo Mandic. Re-
ciprocal adversarial learning via characteristic functions. Ad-
vances in Neural Information Processing Systems, 33:217–
228, 2020. 3

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2, 6

[22] Zhengxiong Luo, Zhicheng Wang, Yan Huang, Liang Wang,
Tieniu Tan, and Erjin Zhou. Rethinking the heatmap regres-
sion for bottom-up human pose estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13264–13273, 2021. 1, 2, 5, 6, 7,
8

[23] Alejandro Newell, Zhiao Huang, and Jia Deng. Associa-
tive embedding: End-to-end learning for joint detection and
grouping. Advances in neural information processing sys-
tems, 30, 2017. 1, 2, 3, 6

[24] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
1, 2, 6

[25] Xuecheng Nie, Jiashi Feng, Jianfeng Zhang, and Shuicheng
Yan. Single-stage multi-person pose machines. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 6951–6960, 2019. 1, 2, 3, 6

13017



[26] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros
Gidaris, Jonathan Tompson, and Kevin Murphy. Person-
lab: Person pose estimation and instance segmentation with
a bottom-up, part-based, geometric embedding model. In
Proceedings of the European conference on computer vision
(ECCV), pages 269–286, 2018. 1, 2, 3, 5, 6

[27] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern
Andres, Mykhaylo Andriluka, Peter V Gehler, and Bernt
Schiele. Deepcut: Joint subset partition and labeling for
multi person pose estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 4929–4937, 2016. 3

[28] Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie
Qiu, Yang Wu, Yu-Gang Jiang, and Xiangyang Xue. Pose-
normalized image generation for person re-identification. In
Proceedings of the European conference on computer vision
(ECCV), pages 650–667, 2018. 1

[29] Haoxuan Qu, Li Xu, Yujun Cai, Lin Geng Foo, and Jun Liu.
Heatmap distribution matching for human pose estimation.
In Advances in Neural Information Processing Systems. 2

[30] Dahu Shi, Xing Wei, Liangqi Li, Ye Ren, and Wenming Tan.
End-to-end multi-person pose estimation with transformers.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11069–11078, 2022.
5, 6, 7

[31] Weibo Shu, Jia Wan, Kay Chen Tan, Sam Kwong, and An-
toni B Chan. Crowd counting in the frequency domain. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 19618–19627, 2022. 3

[32] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5693–5703,
2019. 1, 2

[33] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph
Bregler. Joint training of a convolutional network and a
graphical model for human pose estimation. Advances in
neural information processing systems, 27, 2014. 1, 2

[34] Ali Varamesh and Tinne Tuytelaars. Mixture dense regres-
sion for object detection and human pose estimation. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13083–13092. IEEE, 2020.
6

[35] Bo Wan, Desen Zhou, Yongfei Liu, Rongjie Li, and Xuming
He. Pose-aware multi-level feature network for human ob-
ject interaction detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9469–
9478, 2019. 1

[36] Dongkai Wang and Shiliang Zhang. Contextual instance de-
coupling for robust multi-person pose estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11060–11068, 2022. 5, 6, 7

[37] Dongkai Wang, Shiliang Zhang, and Gang Hua. Robust pose
estimation in crowded scenes with direct pose-level infer-
ence. Advances in Neural Information Processing Systems,
34:6278–6289, 2021. 5, 6, 7

[38] Fangyun Wei, Xiao Sun, Hongyang Li, Jingdong Wang, and
Stephen Lin. Point-set anchors for object detection, instance

segmentation and pose estimation. In European Conference
on Computer Vision, pages 527–544. Springer, 2020. 5, 6

[39] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In Proceedings of
the European conference on computer vision (ECCV), pages
466–481, 2018. 1, 2

[40] Yabo Xiao, Dongdong Yu, Xiao Juan Wang, Lei Jin, Guoli
Wang, and Qian Zhang. Learning quality-aware represen-
tation for multi-person pose regression. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 2822–2830, 2022. 5, 6

[41] Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, and Pei-
hua Li. Joint distribution matters: Deep brownian distance
covariance for few-shot classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7972–7981, 2022. 3

[42] Nan Xue, Tianfu Wu, Gui-Song Xia, and Liangpei Zhang.
Learning local-global contextual adaptation for multi-person
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
13065–13074, 2022. 5, 6

[43] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Thirty-second AAAI conference on artificial
intelligence, 2018. 1

[44] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao
Zhang, Xilin Chen, and Jingdong Wang. Hrformer: High-
resolution transformer for dense prediction. 2021. 1, 2

[45] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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