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Abstract

Recently, tampered text detection in document image has
attracted increasingly attention due to its essential role on
information security. However, detecting visually consis-
tent tampered text in photographed document images is still
a main challenge. In this paper, we propose a novel frame-
work to capture more fine-grained clues in complex scenar-
ios for tampered text detection, termed as Document Tam-
pering Detector (DTD), which consists of a Frequency Per-
ception Head (FPH) to compensate the deficiencies caused
by the inconspicuous visual features, and a Multi-view It-
erative Decoder (MID) for fully utilizing the information
of features in different scales. In addition, we design a
new training paradigm, termed as Curriculum Learning for
Tampering Detection (CLTD), which can address the con-
fusion during the training procedure and thus to improve
the robustness for image compression and the ability to
generalize. To further facilitate the tampered text detec-
tion in document images, we construct a large-scale docu-
ment image dataset, termed as DocTamper, which contains
170,000 document images of various types. Experiments
demonstrate that our proposed DTD outperforms previous
state-of-the-art by 9.2%, 26.3% and 12.3% in terms of
F-measure on the DocTamper testing set, and the cross-
domain testing sets of DocTamper-FCD and DocTamper-
SCD, respectively. Codes and dataset will be available at
https://github.com/qcf-568/DocTamper.

1. Introduction

Document images are one of the most essential media
for information transmission in modern society, which con-
tains amounts of sensitive and privacy information such
as telephone numbers. As the rapid development of the
image editing technologies, such sensitive text informa-
tion can be more easily to be tampered for malicious pur-

Figure 1. Tampered text in document images usually have rela-
tively small areas and few visual tampering clue.

poses such as defraud, causing serious information security
risks [33,42,48,50]. Therefore, detecting tampering in doc-
ument images has become an important research topic in re-
cent years [18,47]. It is crucial to develop effective methods
to examine whether a document image is modified, mean-
while identifying the exact location of the tampered text.

Most text tamper methods in documents images can be
generally categorized into three types: (1) Splicing, which
copies regions from one image and paste to other images;
(2) Copy-move, which shifts the spatial locations of objects
within images; (3) Generation, which replaces regions of
images with visually plausible but different contents, As
shown in Fig. 1. Though tampering detection in natural
images has been studied for years [14, 49], it differs a lot
from that in document images. For natural images, tam-
pering detection mainly relies on the relatively obvious vi-
sual tampered clues on edge or surface of the object, which
hardly exist in documents, especially for copy-move and
splicing [1, 47]. This is because document images mostly
have the same background color, and text within clusters
usually has the same font and size. Therefore, the tampered
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text regions can not be effectively detected based only on vi-
sual clues. To this end, in this paper we propose to incorpo-
rate both visual and frequency clues to improve the ability
on identifying the tampered text regions in documents.

Recently, some promising methods have been proposed
for tampered text detection [8,18,47] by analysing the text’s
appearance on scanned documents. Though significant pro-
gresses have been achieved on simple and clean documents,
detecting elaborately tampered text regions in various pho-
tographed documents is still an open challenge.

In this paper, we propose a multi-modality Transformer-
based method, termed as Document Tampering Detector
(DTD), for Document Image Tampering Detection (DITD).
The proposed model utilizes features from both visual do-
main and frequency domain. The former one are extracted
from Visual Perception Head with the original image as in-
put. For the latter one, different from the previous work [43]
that leveraged the high-pass filtered results of RGB images,
we utilize the DCT coefficients as the input of our model’s
Frequency Perception Head to obtain the corresponding em-
bedding. Through a fusion module with a concatenation op-
eration and an attention module, the features in these two
modules are incorporated effectively and then fed into a
Swin-Transformer [27] based encoder. Finally, we intro-
duce a new Multi-view Iterative Decoder to progressively
perceive the tampered text regions.

From our experiments, we find image compression can
cover up some of tampering clues and models usually lack
robustness to it at start. Training in randomly compressed
images will bring confusion to models and they couldn’t
work well on the challenging DITD tasks. Therefore, we
further propose a new training paradigm, termed as Curricu-
lum Learning for Tampering Detection (CLTD), to train the
models in an easy-to-hard manner. In such way, the model
can firstly learn how to spot tampering clues accurately and
then gradually gain the robustness to image compression.

As there lack large-scale tampered document dataset, We
introduce a new method to create realistic tampered text
data and construct a large-scale dataset, termed as DocTam-
per, with 170k tampered document images of diverse types.

We conduct sufficient experiments on both our proposed
DocTamper and the T-SROIE dataset [47]. Both the qualita-
tive and quantitative results demonstrate that our DTD can
significantly outperform previous state-of-the-art methods.

In summary, our main contributions are as follows:

• We introduce DTD, a powerful multi-modality model
for tampered text detection in document images.

• We propose CLTD, a new training paradigm to en-
hance the generalization ability and robustness of the
proposed tampering detection model

• We propose a novel data synthetic method to gener-
ate realistic tampered documents efficiently with only

unlabeled document images.

• We construct a comprehensive large-scale dataset with
various scenarios and tampering methods to further fa-
cilitate the research on tampered text detection task.

2. Related Works
2.1. Natural Image Manipulation Detection

Early studies on natural image manipulation detection
mainly focused on detecting a specific type of manipula-
tion [12, 13]. Gradually, the rapid development of neu-
ral networks boosts the general manipulation detection re-
search considerably [4, 17, 49]. Zhou et al. [51] introduced
to add SRM kernel [15] to Faster-RCNN [31] and located
forgeries with bounding boxes. Bappy et al. [4] proposed to
use SRM kernel [15] as long as constrained convolution [6]
in feature extraction and detected manipulations in pixel-
wise manner. Kwon et al. [19] utilized HRNet [39] to local-
ize tampered regions in both RGB domain and frequency
domain. Dong et al. [14] extracted features with a two-
stream CNN and constrained convolution [6], they intro-
duced Edge-Supervised Branch to enhance the feature maps
and used Dual Attention Module to fuse the output of the
two-stream CNN. Liu et al. [26] introduced a novel atten-
tion mechanism to improve performance. Wang et al. [43]
used both images and their high-pass filter results as the in-
put of their two-stream CNN and introduced a set of queries
to help the model localize manipulation in object-level. Al-
though the above methods achieved significant progress,
they may not work very well in document image tampering
detection as the tampered text regions usually have much
more visual consistency with the authentic regions.

2.2. Document Image Tampering Detection

Early document image tampering detection was mainly
achieved by printer classification [20, 30, 36] or template
matching [2]. Some works [5,8,53] used font features to dis-
tinguish between real texts and tampered texts. Beusekom
et al. [41] analyzed whether the position of a text line in the
document image is aligned with other text lines to determine
whether a text line has been tampered. James et al. [18]
used graph neural network (GNN) to detect tampered re-
gions in document images with the help of the graph at-
tention mechanism. The above methods only work well on
very clear and neat documents, such as scanned documents.
Abramova et.al. [1] detected copy-move tampering in doc-
ument images based on double quantization artifacts, which
doesn’t works well when document images are compressed
more than once after tampering. Wang et al. [47] used a
two-stream Faster-RCNN [31] network to capture the high
frequency clues the SRNet [48] left. However, this type
of tampering clues mostly exists on generative tampering
and could hardly be find on careful copy-paste tampering.
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Figure 2. We collect 50562 document images in various types from public websites and public datasets. We apply copy-move, splicing,
and generation to create tampered patches and construct the DocTamper dataset.

Figure 3. The pipeline of the proposed data synthesis method. We
first record size, foreground color and background color of each
text and then do selective synthesis based on that.

The above methods have made promising progress, but they
are mostly designed for some specific scenarios. Therefore,
they lack enough robustness and cross-domain generaliza-
tion ability when encountering some complex scenarios on
various photographed documents.

3. DocTamper Dataset

In this section, we propose a novel data synthesis ap-
proach to generate realistic tampered document images ef-
ficiently with only unlabeled document images. With this

method, we construct a comprehensive large-scale dataset
to promote the research of the tampered text detection task.

3.1. Proposed data synthesis method

Selective Tampering Synthesis In traditional image ma-
nipulation detection task, copy-move and splicing data are
synthesised by copying objects from images and pasting
them to random target regions [29, 43, 51]. In the field of
tampered text detection in document images, however, ran-
dom copy-paste will generate obvious visual inconsistency,
which will cause a huge gap between the synthetic data and
real-world text tampering. Therefore, we propose selec-
tive tampering synthesis to generate realistic tampered doc-
ument images. It contains selective copy-paste and selec-
tive generation. The former obtains text groups with similar
styles and does copy-paste within the grouped text instances
to generate tampered text. The latter first erases their orig-
inal text contents with OpenCV [9] or G’MIC [40], then
prints new text with the pre-set similar style and font. As
we can’t directly access the exact text font of the document
images in various scenarios, we propose to represent them
with the size (including height and width), foreground color
and background color of these text.
Overall Pipeline As shown in Fig. 3, the proposed data
synthesis pipeline for text tampering can be described as
follows: (1) We get the bounding boxes of the words and
characters with powerful open-source OCR tools, such as
Paddle-OCR [21] and TesseractOCR [37]. (2) We separate
the foreground of the document images from their back-
ground using SAUVOLA algorithm [35] and record the
foreground color and background color for each text. (3)
We apply both selective copy-paste and selective generation
to obtain the tampered document images. (4) Finally, post
processing is also applied to improve visual consistency.
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Table 1. Comparison between DocTamper and other public tampered text detection datasets. ‘G‘ denotes Generative tampering, ‘C‘
denotes Copy-move, and ‘S‘ denotes Splicing.

Dataset Year Scenario Language Number of images Tampering Method
T-SROIE [47] 2022 Receipts English 986 G
T-IC13* [46] 2022 Scene Text English 462 G
DocTamper 2022 Contracts, Invoices, Receipts, etc. English+Chinese 170,000 C S G

*Although T-IC13 is a tampered dataset for scene text rather than document text, we still list it here for reference to the community.

Table 2. Basic configuration about the DocTamper Dataset,
‘DocTamper-FCD‘ denotes the first cross-domain subset,
‘DocTamper-SCD‘ denotes the second cross-domain subset.

DocTamper Number of images

Language English 95,000
Chinese 75,000

Tampering Type
Copy-move 60,000

Splicing 50,000
Generation 60,000

Data Split

Training set 120,000
Testing set 30,000

DocTamper-FCD 2,000
DocTamper-SCD 18,000

3.2. Proposed Dataset

Considering the small-scale of the existing datasets [46,
47], we construct a large-scale dataset for tampered text de-
tection task, termed as DocTamper.

Dataset Description As shown in Table 2, DocTamper
has a total number of 170k tampered document images, in-
cluding both Chinese and English. Copy-move, splicing
and generation are all included and applied approximately
uniform in out dataset. Moreover, we split the dataset into
four subsets: a training set with 120k samples; a general
testing set of 30k samples, and two cross-domain testing
sets of 2k and 18k samples, respectively. All of the tam-
pered images are stored without compression, thus they
could be trained or tested with customized compression
configurations. For all the images, we provide pixel-level
annotations denoting the tampered text regions.

Cross-domain Testing Sets Most of the previous works
[14,19,26,49] tested their models in a cross-domain manner,
by which the image source and style of testing sets are dif-
ferent from training sets. Such cross-domain evaluation can
further evaluate the generalization ability of the methods.
It motivates us to introduce two cross-domain testing sets.
The image source of our first cross-domain (FCD) testing
set is from the Noisy Office Dataset [10], while the image
source of the second cross-domain (SCD) testing set is from
HUAWEI Cloud [11]. Compared to the common testing set,
the images in cross-domain testing sets will be much differ-

ent from the training set in texture and document styles.
The main features of the proposed DocTamper dataset

can be summarized as follows:

• Large Scale. As shown in Table 1, the public datasets
in previous works only have less than 1k images, while
DocTamper has total 170k images. Such a large scale
dataset is more likely to be a better benchmark for the
DITD task.

• Board Diversity. As shown in Fig. 2, to build the Doc-
Tamper Dataset, we collect 50,562 document images
from various publicly available websites and document
image datasets [10, 16, 23, 38]. Various bilingual real-
world document images including contracts, invoices,
receipts, etc., are included in the source images of our
dataset (Some representative source images of Doc-
Tamper are shown in appendix). It’s worth mentioning
that the previous datasets contains only one scenario
respectively, as shown in Table 1.

• Comprehensiveness. All the three commonly used
text tampering methods are included in our dataset to
imitate the real-world applications. In Addition, we in-
troduce two cross-domain testing subsets to fully eval-
uate the generalization ability of different methods.

4. Proposed Model
In this section, we propose Document Tampering Detec-

tor (DTD), a novel model for document image tampering
detection. The overall architecture is shown in Fig. 4. It
consists of four modules: (1) Visual Perception Head to ex-
tract visual features from the original images; (2) Frequency
Perception Head to convert the Discrete Cosine Transform
(DCT) coefficients of the images to frequency domain fea-
ture embeddings; (3) a Multi-Modality Encoder and (4) a
Multi-view Iterative Decoder for final prediction.

4.1. Visual Perception Head

We apply seven stacked convolution blocks as our Visual
Perception Head (VPH) to extract visual features. Given
an input image I ∈ RH×W×3, we first extract two visual
feature embeddings of I , including Ff0 ∈ RH

4 ×W
4 ×C0 and

Fv ∈ RH
8 ×W

8 ×Cv through the VPH.
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Figure 4. The overall architecture of our model. We extract visual domain features from image with Visual Perception Head and extract
frequency domain features from DCT coefficients with Frequency Perception Head. Then fuse them and extract multi-modality features
by multi-modality Transformer. At last, we utilize Multi-view Iterative Decoder to get predictions with encoder’s output features.

4.2. Frequency Perception Head

During the process that images are captured by digital
devices such as cameras and smart phones, they will be
patched and compressed by quantifying their DCT coeffi-
cients, which will cause Block Artifact Grids (BAG) [22].
Tampering on images will mostly disturb the original distri-
bution of their DCT coefficients, causing the BAG’s discon-
tinuities between tampered regions and authentic regions.
Therefore, DCT coefficients’ features are good at captur-
ing the BAG’s discontinuities and can serve as another im-
portant clue for locating the tampered regions and make up
for the deficiencies caused by the inconspicuous visual fea-
tures. Accordingly, we design Frequency Perception Head
(FPH) to capture tampering clues in frequency domain. Our
DTD benefits a lot in identifying the tampered texts that
have few visual tampering trace from the proposed FPH.

As shown in Fig. 5, the structure of the proposed FPH
follows a dual-head design. Given an input image I ∈
RH×W×3, we first convert it to YCrCb color space and
compute its Y channel DCT coefficient map of size H×W .
Then the first head embeds the DCT coefficient map us-
ing a set of orthonormal basis before obtaining features
Fp1 ∈ RH×W×Cp1 with two stacked convolution layers.
For the second head, we first extract Y -channel quantiza-
tion table from the image I . Subsequently, we expand the
quantization table to match the DCT coefficients and then
embed them using a set of learnable parameters. Then
we multiply the quantization table embeddings with Fp1

and get Fp2 ∈ RH×W×Cp2 . With Fp1 and Fp2, we di-
rectly concatenate them together and down-sample them to
Fp3 ∈ RH

8 ×W
8 ×Cp3 using a convolution layer with stride 8.

In this way, each pixel of Fp3 can represent each 8×8 block
from the original DCT coefficients, matching the BAG of

Figure 5. The structure of our Frequency Perception Head. It
takes DCT coefficients with the quantization table of the image I
as input, and outputs frequency feature embeddings.

the input image. Additionally, we apply position embed-
ding on Fp3 by CoordConv [25] to enhance their position
information, for their better alignment with visual features.
Then three MoblieConv Layers [34], which effectively en-
large the receptive field and enhance the features, are ap-
plied on Fp3 to obtain the frequency feature embedding Fd.

4.3. Multi-Modality Modeling

We propose to fuse the features of frequency domain and
visual domain by multi-modality Transformer. As shown in
Fig. 4, given the visual perception head’s output Fv and Fre-
quency Perception Head’s output Fd, we concatenate and
incorporate them together by a scSE module [32]. Then a
1 × 1 convolution layer is applied for dimension reduction
to get Ff1 ∈ RH

8 ×W
8 ×C1 . Through several Swin Trans-

former [27] blocks, two higher level multi-modality fea-
tures, Ff2 ∈ RH

16×
W
16×C2 and Ff3 ∈ RH

32×
W
32×C3 , are ex-

tracted for the decoder.
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4.4. Multi-view Iterative Decoder

When people analyze whether a small region on an im-
age is abnormal, they always zoom it in an out over and over
again, combining multi-view of information iteratively to
get a final conclusion. To mimic the human perception way,
we propose a new decoder framework termed Multi-view
Iterative Decoder (MID) to make the best use of the differ-
ent features in sizes so that to predict more accurate results.
The structure of our MID is shown in Fig. 6. Given the en-
coder’s output features Ff0, Ff1, Ff2, Ff3, we calculate the
decoder features D0,n for n = 0, 1, 2, 3 by four cascaded
iteration operations. Finally, the D0,n for n = 0, 1, 2, 3 are
concatenated together to predict the final results Mp. The
process can be formulated by eq. (1) and (2):

D0,n = MID(Ffn), n = 0, 1, 2, 3 (1)

Mp = Project(Cat(D0,0, D0,1, D0,2, D0,3)) (2)

where Cat(.) means concatenate operation and
Project(.) denotes a convolution layer to get the final
predictions.

4.5. Loss Function

Given a prediction mask Mp of an input image I, whose
ground-truth mask is Mg . We train our model with the fol-
lowing loss function: L = Lce(Mp,Mg) + Llov(Mp,Mg),
where Lce means Cross-Entropy Loss and Llov means Lo-
vasz Loss [7].

4.6. Curriculum Learning for Tampering Detection

Curriculum learning (CL) is a training strategy that trains
a machine learning model from easier data to harder data,
which imitates the meaningful learning order in human
curricula [44]. In the section, we design a new training
paradigm, termed as Curriculum Learning for Tampering
Detection (CLTD) to train tampered text detection models
in such an easy-to-hard manner by controlling the quality of
image compression augmentation dynamically. We find that
it could significantly boost the model’s robustness regrad-
ing to different image compression and its cross-domain
generalization ability. In the concrete implement, we dy-
namically choose random JPEG compression quality fac-
tors from range (B1, 100), where B1 is randomly and dy-
namically chosen from (100-S/T, 100), S is the number of
current training steps and T is a constant manually pre-set.
Compared to uniformly choosing random quality factors
during the whole training process, models with CLTD are
more likely to meet uncompressed images in the beginning.

5. Experiments
We evaluate our models on the testing set of the Doc-

Tamper dataset and the public T-SROIE dataset [47].

Figure 6. The structure of our Multi-view Iterative Decoder. It
mimics the process people do careful analysis and utilizes the en-
coder’s output features in different resolution iteratively to find out
subtle tampering clues.

5.1. Evaluation Metric

Following the previous works in image manipulation de-
tection [14, 19, 26, 49], we model the tampering detection
task as binary semantic segmentation and adopt IoU, Pre-
cision, Recall and F-score as the evaluation metric of our
DocTamper dataset. For the T-SROIE dataset, we use Pre-
cision, Recall and F-score following the previous work [47].

5.2. Implementation Details

We set the input size of our model as 512×512, and uti-
lize the last three stages of the Swin-small [27] for multi-
modality modeling. We use AdamW [28] for optimization
with an initial learning rate of 3e-4. We train our mod-
els 100k iterations with a batch-size of 12, and the learn-
ing rate is decayed to 1e-5 monotonically in a cosine-curve
manner. T is set to 8192 for CLTD. All models are trained
with dynamically JPEG compression to match the testing
sets’ configuration. The quality factors of JPEG compres-
sion are randomly choiced from 75 to 100 and the compres-
sion times are randomly choiced from 1 to 3. Predictions
are binarized with a threshold of 0.5. For the experiment
on T-SROIE dataset [47], we get the inference result in a
sliding-window manner due to the large sizes of the images.

5.3. Ablation Analysis

The Frequency Perception Head (FPH) is designed to
find out tampering clues in frequency domain with DCT co-
efficients, while the Multi-view Iterative Decoder (MID) is
utilized to make full use of the encoder’s output features and
capture subtle tampering clues. The proposed Curriculum
Learning for Tampering Detection (CLTD) is to help model
obtain more robustness and generalization ability. To eval-
uate the effectiveness of FPH, MID and CLTD, we remove
them separately from our DTD and evaluate the tampered
text detection performance on the DocTamper dataset. DTD
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Table 3. Ablation study on DocTamper dataset. All images in the testing sets are compressed randomly one to three times with random
quality factors choiced from 75 to 100 and the same random seed. ‘P‘ denotes precision, ‘R‘ denotes recall and ‘F‘ denotes F-score.

Method Testing set DocTamper-FCD DocTamper-SCD
IoU P R F IoU P R F IoU P R F

Baseline 0.616 0.562 0.495 0.526 0.318 0.565 0.347 0.430 0.481 0.509 0.521 0.515
w/o FPH 0.745 0.697 0.638 0.666 0.528 0.649 0.588 0.617 0.576 0.626 0.653 0.639
w/o MID 0.724 0.708 0.634 0.669 0.710 0.835 0.742 0.786 0.560 0.622 0.621 0.622

w/o CLTD 0.600 0.750 0.689 0.718 0.601 0.813 0.611 0.698 0.620 0.681 0.683 0.682
DTD (Ours) 0.828 0.814 0.771 0.792 0.749 0.849 0.786 0.816 0.691 0.745 0.762 0.754

Table 4. Comparison on DocTamper dataset. All images in the testing sets are compressed randomly one to three times using random
quality factors with a lowest bound 75 and the same random seed. ‘P‘ denotes precision, ‘R‘ denotes recall and ‘F‘ denotes F-score.
‘Params‘ denotes the number of parameters of the models.

Method Testing set DocTamper-FCD DocTamper-SCD ParamsP R F P R F P R F
Mantra-Net [49] 0.123 0.204 0.153 0.175 0.261 0.209 0.124 0.218 0.157 4M
MVSS-Net [14] 0.494 0.383 0.431 0.480 0.381 0.424 0.478 0.366 0.414 143M
PSCC-Net [26] 0.309 0.506 0.384 0.330 0.580 0.420 0.286 0.540 0.374 4M
BEiT-Uper [3] 0.564 0.451 0.501 0.550 0.436 0.487 0.408 0.395 0.402 120M
Swin-Uper [27] 0.671 0.608 0.638 0.642 0.475 0.546 0.541 0.612 0.574 121M
CAT-Net [19] 0.737 0.666 0.700 0.644 0.484 0.553 0.645 0.618 0.631 114M

CAT-Net [19] + CLTD 0.768 0.680 0.721 0.795 0.695 0.741 0.674 0.665 0.670 114M
DTD (Ours) 0.814 0.771 0.792 0.849 0.786 0.816 0.745 0.762 0.754 66M

Table 5. Ablation study on DocTamper dataset with different com-
pression quality. IoU metric is used in all the experiments. ‘Q‘
denotes the lowest compression quality factor. ‘D-FCD’ denotes
DocTamper-FCD, ‘D-SCD‘ denotes DocTamper-SCD.

Method Testing set D-FCD D-SCD
Q75 Q90 Q75 Q90 Q75 Q90

Baseline 0.62 0.67 0.32 0.38 0.48 0.54
w/o FPH 0.75 0.80 0.53 0.61 0.58 0.64
w/o MID 0.72 0.84 0.71 0.81 0.56 0.70

w/o CLTD 0.60 0.70 0.60 0.78 0.62 0.74
DTD (Ours) 0.83 0.89 0.75 0.83 0.69 0.78

Table 6. Comparison on public T-SROIE dataset. ‘P‘ denotes pre-
cision, ‘R‘ denotes recall and ‘F‘ denotes F-score.

Method P R F
EAST [52] 0.9191 0.8960 0.9075
ATRR [45] 0.9471 0.9249 0.9359

Wang et al. [47] 0.9607 0.9755 0.9680
DTD (Ours) 0.9923 0.9930 0.9927

without any of the proposed FPH, MID and CLTD serves as
the baseline model in the ablation studies. The quantitative
results are listed in Table 3. We also conduct ablation ex-
periments on testing sets with different image compression
settings, results are shown in Table 5.

We can observe that without FPH, the model’s perfor-
mance have a significant drop in all the experiments. This
indicates that the frequency domain features extracted by
FPH can greatly help our model capture invisible tampering
traces in document images. Moreover, the model’s cross-
domain generalization ability suffers a much more drop
without the proposed FPH. This explains the proposed FPH
could help model learn the essential feature of tampering
instead of over-fitting specific visual patterns unrelated to
tampering operation.

In the ablation studies about the proposed MID module,
we replace it with a common FPN [24] structure decoder
with comparable parameters. The model also shows a sig-
nificant performance drop in all the experiments. It shows
that the MID could help model capture subtle tampering
traces and distinguish tampering features from unrelated vi-
sual patterns by interacting the features of multi-view in a
thorough and efficient way.

When the dynamic image compression’s quality factors
are choiced uniformly from a random range, instead of us-
ing the proposed CLTD, both the model’s performance and
generalization ability on all dataset tested shows an obvious
degradation. That is because the model are too confused to
learn to extract features well. It is notable that the previous
state-of-the-art model in this dataset, CAT-Net [19], could
also benefit a lot from CLTD, as shown in Table 4, which
showing the promising generalization capability of CLTD.
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Table 7. Comparison on DocTamper dataset with different image compression settings. IoU metric is used in all the experiments. ‘Q‘
denotes the lowest compression quality factor in a series image compression.

Method Testing set DocTamper-FCD DocTamper-SCD
Q 75 Q 80 Q 85 Q 90 Q 75 Q 80 Q 85 Q 90 Q 75 Q 80 Q 85 Q 90

Mantra-Net [49] 0.18 0.18 0.18 0.19 0.17 0.17 0.18 0.18 0.16 0.16 0.16 0.17
MVSS-Net [14] 0.43 0.43 0.44 0.45 0.41 0.41 0.41 0.42 0.40 0.41 0.41 0.42
PSCC-Net [26] 0.17 0.18 0.18 0.18 0.16 0.16 0.17 0.17 0.19 0.20 0.21 0.23
BEiT-Uper [3] 0.59 0.59 0.60 0.60 0.35 0.35 0.35 0.36 0.34 0.34 0.35 0.35
Swin-Uper [27] 0.70 0.71 0.72 0.74 0.41 0.41 0.41 0.44 0.51 0.51 0.52 0.55
CAT-Net [19] 0.74 0.76 0.77 0.78 0.42 0.44 0.43 0.51 0.55 0.56 0.58 0.61

CAT-Net [19] + CLTD 0.71 0.72 0.74 0.76 0.60 0.65 0.66 0.75 0.54 0.57 0.61 0.66
DTD (Ours) 0.83 0.85 0.87 0.89 0.75 0.79 0.80 0.83 0.69 0.72 0.75 0.78

Figure 7. Qualitative results on DocTamper of comparing DTD with state-of-the-art methods. ‘D-FCD‘ denotes the DocTamper-FCD,
‘D-SCD‘ denotes the DocTamper-SCD. ‘GT‘ denotes ground-truth labels. ‘CAT-Net*‘ denotes CAT-Net trained with the proposed CLTD.

5.4. Comparison with state-of-the-art methods
We compare our methods with some state-of-the-art im-

age manipulation detection methods [14, 19, 26, 49] and se-
mantic segmentation methods [3,27] with their officially re-
leased codes, as shown in Table 4. We also implement them
with the same training configuration as ours and choose the
better results as the final results. The results show that our
DTD outperforms all other methods with a significant mar-
gin in both document image tampering detection ability and
cross-domain generalization ability. We also observe that
other models, especially for those pure visual models, are
more likely to over-fit some specific visual patterns in train-
ing data instead of learning the ability to find out tamper-
ing clues. As a result, on the two cross-domain subsets,
they show bad cross-domain generalization ability, which is
crucial in real-world document image tampering detection
applications. The qualitative results for visual comparisons
are illustrated in Fig.7. Moreover, we conduct the experi-
ments using testing sets with different compression config-
urations, as given in Table 7. We find that our method shows
excellent performance, robustness and outstanding general-
ization ability in various scenarios. As shown in Table 6,
our model also outperforms other methods significantly on
the public T-SROIE dataset.

6. Conclusion
In this paper, we propose a novel tampered text detec-

tion framework, termed as the Document Tampering Detec-
tor (DTD). To be specific, DTD designs a Frequency Per-
ception Head for making up for the deficiencies caused by
the inconspicuous visual features. With the incorporation of
visual and frequency features, DTD adopts a Multi-view It-
erative Decoder to progressively perceive the tampered text
regions to predict more accurate results. Besides, to im-
prove the robustness and generalization ability, Curriculum
Learning for Tampering Detection is introduced into DTD’s
optimization process to address the confusion caused by im-
age compression. To facilitate the tampered text detection
in documents, we further propose a novel selective tamper-
ing synthesis method to generate sufficient realistic data and
construct a large-scale dataset, termed as DocTamper, with
170k document images in various types. Extensive experi-
ments demonstrate the superior performance of our model,
which can achieve the state-of-the-art results on both Doc-
Tamper and T-SROIE benchmarks.
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