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Abstract

Visual representation based on covariance matrix has
demonstrates its efficacy for image classification by char-
acterising the pairwise correlation of different channels in
convolutional feature maps. However, pairwise correla-
tion will become misleading once there is another channel
correlating with both channels of interest, resulting in the
“confounding” effect. For this case, “partial correlation”
which removes the confounding effect shall be estimated in-
stead. Nevertheless, reliably estimating partial correlation
requires to solve a symmetric positive definite matrix op-
timisation, known as sparse inverse covariance estimation
(SICE). How to incorporate this process into CNN remains
an open issue. In this work, we formulate SICE as a novel
structured layer of CNN. To ensure end-to-end trainabil-
ity, we develop an iterative method to solve the above ma-
trix optimisation during forward and backward propagation
steps. Our work obtains a partial correlation based deep vi-
sual representation and mitigates the small sample problem
often encountered by covariance matrix estimation in CNN.
Computationally, our model can be effectively trained with
GPU and works well with a large number of channels of
advanced CNNs. Experiments show the efficacy and supe-
rior classification performance of our deep visual represen-
tation compared to covariance matrix based counterparts.

1. Introduction
Learning effective visual representation is a central issue

in computer vision. In the past two decades, describing im-
ages with local features and pooling them to a global rep-
resentation has shown promising performance. As one of
the pooling methods, covariance matrix based pooling has
attracted much attention due to its exploitation of second-
order correlation information of features. A variety of tasks
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Figure 1. Understanding the partial correlation (a 3D toy case).
Unlike the ordinary covariance (pairwise correlation of say x and
y corresponding to channels), partial correlation between variables
x and y removes the influence of the confounding variable z. Let
the number of samples n= 3 and channels d= 3. For the 3D case,
x and y are projected onto a plane perpendicular to z. Then ρxy =

cosφxy (and ρxz and ρyz can be computed by analogy). Projected
“residuals” rx and ry are computed as indicated in the plot, w′x =
arg minw

∑3
i=1(xi−w⊤x zi) where zi = [zi, 1]⊤ (and w′y is computed

by analogy). The green box: for d > 3, the computation of partial
correlation requires covariance inversion [7].

such as fine-grained image classification [27], image seg-
mentation [16], generic image classification [24, 26, 34],
image set classification [44], action recognition [18], few-
shot classification [50] and few-shot detection [52–54] have
benefited from the covariance matrix based representation.
A few pioneering works have integrated covariance ma-
trix as a pooling method within convolutional neural net-
works (CNN) and investigated associated issues such as
matrix function backpropagation [16], matrix normalisa-
tion [23,28,38], compact matrix estimation [11,49] and ker-
nel based extension [9]. The above works further improved
visual representations based on covariance matrix.

Despite the above progress, covariance matrix merely
measures the pairwise correlation (more accurately, covari-
ance) of two variables without taking any other variables
into account. This can be easily verified because its (i, j)-
th entry solely depends on the i-th and j-th variables on a
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Figure 2. Proposed iterative sparse inverse covariance estimation (iSICE) method in a CNN pipeline.

sample set. In Statistics, it is known that such a pairwise
correlation will give misleading results once a third vari-
able is correlated with both variables of interest due to the
“confounding” effect. For this situation, the partial correla-
tion is the right measure to use. It regresses out the effects
of other variables from the two variables and then calculates
the correlation of their residuals instead. Partial correlation
can be conveniently obtained by computing inverse covari-
ance matrix, also known as the precision matrix [7] in the
statistical community. Figure 1 illustrates the geometrical
interpretation of partial correlation.

The above observation motivates us to investigate a vi-
sual representation for image classification based on the in-
verse covariance matrix. After all, it has better theoreti-
cal support on characterising the essential relationship of
variables (e.g., the channels in a convolutional feature map)
when other variables are present. Note that inverse covari-
ance matrix can be used for many vision tasks but in this pa-
per, we investigate it from the perspective of image classifi-
cation. Nevertheless, reliably estimating inverse covariance
matrix from the local descriptors of a CNN feature map is
a challenging task. This is primarily due to the small spa-
tial size of the feature map, i.e., sample size, and a higher
number of channels, i.e., feature dimensions, and this issue
becomes more pronounced for advanced CNN models. An
unreliable estimate of inverse covariance matrix will criti-
cally affect its effectiveness as a visual representation. One
might argue that by increasing the size of input images or
using a dimension reduction layer to reduce the number of
feature channels, such an issue could be resolved. In this
paper, we investigate this issue from the perspective of ro-
bust precision matrix estimation.

To achieve our goal, we explore the use of sparsity prior
for inverse covariance matrix estimation in the literature.
Specifically, the general principle of “bet on sparsity” [12]
is adopted in estimating the structure of high-dimensional
data, and this leads to an established technique called sparse
inverse covariance estimation (SICE) [10]. It solves an op-
timisation in the space of symmetric and positive definite
(SPD) matrix to estimate the inverse covariance matrix by
imposing the sparsity prior on its entries. SICE is designed
to handle small sample problem and it is known for its ex-
cellent effectiveness to that end [10]. An initial attempt

to apply SICE for visual representation is based on hand-
crafted or pre-extracted features of small size and an off-the-
shelf SICE solver, and it does not have the ability to back-
propagate through SICE due to optimisation of the SPD ma-
trix with the imposed non-smooth sparsity term [51].

Our work is the first one that truly integrates SICE into
CNN for end-to-end training. Clearly, such an integration
will fully take advantage of the feature learning capability
of CNN and the partial correlation offered by inverse co-
variance matrix. On the other hand, realising such an inte-
gration is not trivial. Unlike covariance matrix, which is ob-
tained by simple arithmetic operations, SICE is obtained by
solving an SPD matrix based optimisation. How to incorpo-
rate this optimisation process into CNN as a layer is an is-
sue. Furthermore, this SICE optimisation needs to be solved
for each training image during both forward and backward
phases to generate a visual representation. Directly solving
this optimisation within CNN will not be practical even for
a medium-sized SICE problem.

To efficiently integrate SICE into CNN, we propose a fast
end-to-end training method for SICE by taking inspiration
from Newton-Schulz iteration [14]. Our method solves the
SICE optimisation with a smooth convex cost function by
re-parameterising the non-smooth term in the original SICE
cost function (see Eq. (1)), and it can therefore be optimised
with standard optimisation techniques such as gradient de-
scend. Furthermore, we effectively enforce the SPD con-
straint during optimisation so that the obtained SICE solu-
tion remains SPD as desired. Figure 2 shows our “Iterative
Sparse Inverse Covariance Estimation (iSICE)”. In contrast
to SICE, iSICE works with end-to-end trainable deep learn-
ing models. Our iSICE involves simple matrix arithmetic
operations fully compatible with GPU. It can approximately
solve large SICE problems within CNN efficiently.

Our main contributions are summarised as follows.

1. To more precisely characterise the relationship of fea-
tures for visual representation, this paper proposes to
integrate sparse inverse covariance estimation (SICE)
process into CNNs as a novel layer. To achieve this, we
develop a method based on Newton-Schulz iteration
and box constraints for ℓ1 penalty to solve the SICE
optimisation with CNN and maintain the end-to-end
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training efficiency. To the best of our knowledge, our
iSICE is the first end-to-end SICE solution for CNN.

2. Our iSICE method requires a minimal change of net-
work architecture. Therefore, it can readily be inte-
grated with existing works to replace those using deep
network models to learn covariance matrix based vi-
sual representation. The iSICE is fully compatible
with GPU and can be easily implemented with mod-
ern deep learning libraries.

3. As the objective of SICE is a combination of log det
term (may change rapidly) and sparsity (changes
slowly), achieving the balance between both terms dur-
ing optimisation by the gradient descent is hard. To
this end, we propose a minor contribution: a simple
modulating network whose goal is to adapt on-the-fly
learning rate and sparsity penalty.

Experiments on multiple image classification datasets
show the effectiveness of our proposed iSICE method.

2. Related work
Since the advent of covariance representation methods

in deep learning [11, 27], reliable estimation of the covari-
ance matrix from a CNN feature map remains an issue.
The issue is due to the small spatial size of feature map
(corresponding to the number of samples) and the higher
number of feature channels (corresponding to the feature
dimensions), which could cause unreliable estimation and
even matrix singularity due to the so-called “curse of di-
mensionality”. Existing works either append a small posi-
tive constant to the diagonals of covariance matrix [27] or
use matrix normalisation operation [16, 24, 28] to handle
this issue. Matrix normalisation approaches mitigate unbal-
anced spectrum represented by eigenvalues of covariance
matrix [19,20,24,25,55]. Different from the existing meth-
ods, in this paper, we approach the reliable covariance esti-
mation problem in CNN from a perspective of partial cor-
relations that can be efficiently captured by the inverse of
covariance matrix, also known as the precision matrix [7],
when a large number of samples is available for estimation.

Covariance representation strives to capture the underly-
ing structure of CNN feature channels. In the literature of
knowledge representation [22], it is recommended to lever-
age prior knowledge to improve a learning task when suffi-
cient data is not available1. Thus, prior knowledge can be
used to improve the estimation of underlying structure of
high-dimensional data captured by covariance representa-
tion. One common prior knowledge is “structure sparsity”
which leads to the sparse inverse covariance matrix in the
literature of statistical machine learning [10, 15].

1This is indeed the case with CNNs as the spatial size of a CNN feature
map is usually small when compared to the number of its channels.

Structure sparsity cannot be readily applied to covari-
ance representation as it requires the access to partial cor-
relation between feature components. A covariance matrix
captures pairwise correlation of feature components with-
out taking into account the confounding effect of remaining
components. Therefore, it is unlikely that the covariance
matrix will be sparse by nature. To obtain partial corre-
lation, SICE moves from covariance matrix to its inverse.
An inverse covariance matrix captures partial correlation
between feature components by regressing out the effects
of other variables [15]. Once other variables are factored
out, structure sparsity can be effectively enforced in SICE.
In a recent work [51], SICE-based visual representation has
been applied to image classification with handcrafted and
pre-extracted features of small size. However, SICE has
never been integrated into CNN for end-to-end training with
the goal of adapting to such a representation. The existing
solvers for computing SICE also have limited GPU sup-
port [8, 10]. Thus, we propose an end-to-end trainable it-
erative method for solving SICE optimisation with CNNs.

3. Proposed method
In this section, we begin by discussing the background

of SICE. Then we discuss how it can be estimated from
CNN feature descriptors. Finally, we describe our proposed
method which is trainable end-to-end with a CNN.

3.1. The basic idea of SICE

As a representation, the covariance matrix captures the
underlying structure of a feature set. It uses a covari-
ance matrix estimated from samples to capture this struc-
ture. Sparse inverse covariance estimation (SICE) focuses
on the following two issues: (1) instability or singularity
of sample-based covariance matrix estimated from a small
number of high-dimensional feature vectors. This situation
makes it less effective in capturing the underlying struc-
ture of data. As an example, in this case the smaller and
larger eigenvalues of the estimated covariance matrix be-
come poorly estimated. Thus, a suitable regularisation (a
prior) is needed during the estimation to mitigate the bias
of our estimator; (2) rigid estimation of covariance matrix
for high-dimensional feature vectors is not always appropri-
ate as the high-dimensional data usually presents a complex
structure. If there is prior knowledge available, it should
be used to improve the covariance estimation from a small
number of samples.

In terms of prior knowledge of high-dimensional data,
structure sparsity [15] and the “bet on sparsity” principle
[12] are the two common priors used in the literature. Sup-
pose that we have a probabilistic graphical model, where
each node corresponds to a feature and the statistical de-
pendence between two nodes is expressed with an edge
linking two nodes. Structure sparsity would specify how
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sparse such a graph is, e.g., how many edges are presented
in this graph. More generally, even if there is no clear prior
knowledge on structure sparsity available, the “bet on spar-
sity” principle can still be applied to estimate the structure
of the graph by imposing a sparsity prior. Its rationality
is as follows. If the graph is indeed sparse, SICE will es-
timate its underlying structure with a correct prior, and if
the graph is dense, it will not estimate the underlying struc-
ture accurately with such a prior. However, in the latter
case, we will not lose much because we have known that we
do not have enough sample to estimate the dense structure.
The “bet on sparsity” principle has been widely adopted
in high-dimensional data analysis, and also demonstrated
its efficacy on covariance matrix based visual representa-
tion estimated from handcrafted or pre-extracted CNN fea-
tures [51].

SICE strives to improve the covariance estimation with
the use of prior knowledge. To incorporate prior knowl-
edge, SICE switches to the inverse of covariance matrix
from covariance matrix. In principle, the covariance ma-
trix captures the apparent pairwise correlation between fea-
ture components, i.e., indirect correlation. In comparison,
the inverse of covariance matrix is able to characterise the
direct (i.e. partial) correlation between two feature compo-
nents by regressing out the remaining features. Using the
inverse covariance matrix not only helps to interpret the es-
sential relationship between two features, but also allows
the convenient incorporation of the sparsity prior.

3.2. Our SICE estimation with CNN

Suppose, we have the sample-based covariance matrix Σ
computed from a set of CNN local descriptors presented in
a convolutional feature map. Let S denote the correspond-
ing sparse inverse covariance matrix. The off-diagonal en-
tries of S capture the direct correlation between different de-
scriptor components. They are zero if two components are
independent under the removed influence of confounding
variables. In the literature [10], the estimation of S has been
effectively resolved by the maximization of a penalised log-
likelihood of data with an SPD constraint on S and the spar-
sity prior to induce sparse graph connectivity. The optimal
solution of the above problem is known as SICE.

SICE is defined as follows:

S∗ = arg max
S≻0

log det(S) − trace(ΣS) − λ∥S∥1, (1)

where Σ is a sample-based covariance matrix, and det(·),
trace(·) and ∥·∥1 denote the determinant, trace and ℓ1-
norm of a vectorization of matrix, respectively.

To obtain reliable and faithful SICE, the term ∥S∥1 im-
poses the structure sparsity on S. λ controls the trade-off

between the amount of sparsity and the log-likelihood esti-
mation. The problem in Eq. (1) is convex and can be solved
by the off-the-shelf packages such as GLASSO [10] and
CVXPY [8]. However, the objective is non-smooth due to
the ℓ1 penalty. The above optimisation packages cannot be
used with CNN layers to conduct training with backpropa-
gation. A recent extension of CVXPY called CVXPYLAY-
ERS [1] provides differentiable optimisation layers. How-
ever, based on our investigation, it has the following issues:
(1) it cannot efficiently solve large SICE problems, i.e., of
size 128×128 or higher; (2) it relies on multiple CPU based
libraries including CVXPY to solve the optimisation prob-
lem and obtain gradients for backpropagation. This greatly
limits its efficiency due to the lack of GPU support. The
above limitations motivate us to develop an SICE method
suitable for end-to-end training with GPU.

3.3. Proposed end-to-end trainable SICE method

Let J be the objective function of Eq. (1). J can be opti-
mised by taking the gradient with respect to S as follows:

∂J
∂S
=
∂

∂S
log det(S) −

∂

∂S
trace(ΣS) − λ

∂

∂S
∥S∥1

= S−1 − Σ − λ
( ∂
∂S

S+ −
∂

∂S
S−
)

= S−1 − Σ − λ
(
sign(S+) − sign(S−)

)
, (2)

where S+ ≡ max(0,S) and S− ≡ max(0,−S) contain the
positive and negative parts of S, respectively. Eq. (2) can be
optimised with the projected gradient descend which has the
native backpropagation support on GPU and can take ad-
vantage of GPU parallel computing to improve their speed.
Now we discuss how Eq. (2) can be effectively optimised
using a few consecutive structured CNN layers.

The overview of our method is given in Fig. 2. From the
left, we pass an input image to the backbone and process
it till the last convolution layer. We obtain the feature map,
i.e., h×w×d tensor, where h is the height, w is the width, and
d is the number of channels. By reshaping the feature map
to a set of n vectors of length d, where n = wh and stacking
them as column vectors, we can create a d × n data matrix
X. A sample-based covariance matrix Σ estimated from X
is defined as Σ ≡ XĪX⊤, where Ī = 1

n (I − 1
n 11⊤) performs

centering of matrix X, where I and 11⊤ are n×n dimensional
identity matrix and matrix of all-ones, respectively. Below,
we describe key steps of our method.

Estimation of precision matrix S0=Σ
′−1. Newton-Schulz

iteration is popular as it can approximate the matrix square
root2 fast on GPU [23]. In contrast, during the estimation of
S, we use Newton-Schulz iteration [14] for a fast approxi-

2Notice we use Newton-Schulz iteration to obtain the precision matrix
Ω from covariance Σ. We do not propose or use square rooting of Σ, but
we compare our iSICE to this kind of covariance normalisation.
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Algorithm 1 Matrix inverse by Newton-Schulz iterations,
named nsInv(·). It is used to compute “Precision Ω” and is
also used by Alg. 2, whereas YNs (line 4) gives iSQRT.
Input: Covariance matrix Σ, number of iterations Ns.
Output: Inverse covariance matrix Σ−1.

1: Y0=Σ
′=Σ/trace(Σ), Z0=I

2: for i = 1 to Ns do
3: P= 1

2 (3I − Zi−1Yi−1)
4: Yi = Yi−1P and Zi = PZi−1
5: end for
6: Q = ZNs

7: Σ−1 = QQ⊤/trace(Σ) {Inverse covariance matrix}

mate inverse of matrix, which imposes a convergence condi-
tion ∥Σ−I∥2<1 on Algorithm 1. Thus, we normaliseΣ by its
trace and use the trace-normalised Σ′ = Σ/trace(Σ). Then,
the square of the inverse square root Q is post-normalized
by the trace to reverse it, i.e., Σ−1=QQ⊤/trace(Σ).

As Eq. (2) has to start with an initial S0, if Σ′ is invert-
ible, Alg. 1 approximates its inverse3. Although it is an
approximation, we denote it in Alg. 1 as Σ−1 for brevity.
Estimation of sparse inverse covariance S. Given the re-
sult obtained in the last step, S0, we start iterations of iSICE
by applying the projected gradient descend (PGD) to the
gradient of SICE (Eq. (1)), given in Eq. (2).

Following methodology of optimisation by imposing
box constraints (e.g., see an intuitive example by Schiele et
al. [35]), we separate S into its positive and negative parts:

S+i = max(0,Si−1) and S−i = max(0,−Si−1), (3)

and apply the PGD step to each of them separately.
In such a case, the sparsity constraint imposed by the ℓ1

norm simplifies, i.e., the gradient of λS+ can be assumed λ
and the gradient of −λS− can be also assumed λ. Thus, we
firstly rewrite Eq. (2) into two parts:

∇S+i = Si−1 − Σ − λ and − ∇S−i = Si−1 − Σ + λ. (4)

Then we take one PGD step to update S+i and S−i :

S+i := Π(S+i − ηβ∇S+i ) and S−i := Π(S−i − ηβ∇S−i ), (5)

where Π(·) ≡ max(0, ·) ≡ ReLU(·) is the gradient reprojec-
tion function of PGD into the feasible region of each box
constraint (one for the non-negative S+i , and one for non-
positive S−i ). Constant η > 0 is a desired learning rate,
whereas β > 0 controls the decay of learning rate.

Finally, we assemble the current estimate of Si from S+i
and S−i :

Si = Sym(S+i − S−i ), (6)
3Note that the conventional matrix inverse requires matrix eigendecom-

position which is not well supported on GPU [16]. In contrast, Newton-
Schulz iteration [14] is known for fast convergence to Σ−1.

Algorithm 2 Iterative sparse inverse covariance estimation
(iSICE).
Input: Sample-based covariance matrix Σ, sparsity con-
stant λ, learning rate η, number of iterations N, small con-
stant α, i.e., α = 1e-9, regularisation parameter β.
Output: Sparse inverse covariance matrix S′.

1: ∇2=Σ
′=Σ/trace(Σ) {Pre-normalisation using trace}

2: S0=nsInv(Si−1+αI) {Fast approx. inverse (Alg. 1)}
3: ∇1=S0
4: for i = 1 to N do
5: S+i = ReLU(Si−1) and S−i = ReLU(−Si−1)
6: if i , 1
7: ∇1=nsInv(Si−1+αI) {Fast approx. inv. (Alg. 1)}
8: end if
9: ∇12 = ∇1 − ∇2

10: β = 1 − i−1
max(1,N−1) {Decay the learning rate}

11: S+i := Π
(
S+i − ηβ(−∇12 + λ)

)
12: S−i := Π

(
S−i − ηβ(+∇12 + λ)

)
13: Si = Sym(S+i − S−i )
14: end for
15: S∗ = SN/trace(SN)

where Sym(M)= 1
2 (M +M⊤) ensures the matrix M is sym-

metric (and the intermediate estimate of SICE).
Algorithm 2 starts with a dense precision matrix S0. If

N > 0, it loops over iterations i = 1, · · · ,N, applying the
above steps. For ease of tuning the learning rate η, the algo-
rithm starts by the trace normalisation of Σ and it reverses
the trace normalisation when it finishes. Otherwise, η has to
be scaled depending on the value of the largest eigenvalue
of Σ which is somewhat impractical when running CNN
end-to-end over multiple mini-batches.

As S∗ is a symmetric matrix, we only take its upper-
triangular entries (plus the diagonal entries) and process
them by fully connected layers for classification purposes.

Algorithm 2 is implemented with modern deep learning
library, PyTorch, to leverage the full GPU support and au-
tograd package for optimisation. Due to the iterative nature
of solving S, we call our method iterative SICE (iSICE).

4. Experiments
Below, we first describe experimental dataset bench-

marks and then discuss the implementation of our proposed
method. Subsequently, we present our experimental results
and ablation study on key hyper-parameters. Finally, we
compare our proposed method with the existing methods.

4.1. Datasets, Metric, and Implementation

Datasets. We conduct experiments using one scene and five
fine-grained image datasets: the MIT Indoor dataset [33],
Airplane [32], Birds [42], Cars [21], DTD [5] and iNatural-
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ist [40]. We also use ImageNet100 (a subset of ImageNet-
1K dataset) proposed by Tian et al. [39] and mini-ImageNet
[41]. We follow the widely used training and testing pro-
tocols of Bilinear CNN [27]. The details of datasets and
protocols are provided in Appendix A.

Metric for evaluations. For evaluation of different meth-
ods, average classification accuracy is used. This metric is
widely used in literature, e.g., [23, 27].

Implementation details. Our method is implemented us-
ing PyTorch 1.9. We use ImageNet-1K pre-trained back-
bones provided in Torchvision 0.13.0 library. Following
the recent works [23, 24], the number of feature channels
is reduced to 256 with 1 × 1 convolution for efficiency and
fair comparisons. All images are resized to 448 × 448 and
the training is conducted by randomly flipping them hor-
izontally. We fine-tune all backbones for 50-100 epochs
with AdamW optimiser [31] for an initial learning rate of
0.00012, and ConvNext-T CNN and Swin-T with an initial
learning rate 0.00005. For all backbones, we decrease the
learning rate by a factor of 10 at the 15th and 30th epochs.
Depending on the dataset and backbones, our fine-tuning
process lasts for about 3-8 hours on four P100 GPUs. For
ImageNet100, ResNet-50 was trained for 100 epochs with
the initial learning rate 0.01, reduced by 10 at the 15th, 30th
and 45th epochs. Settings are detailed in Appendix B.

4.2. Evaluations

We evaluate the performance of the proposed iSICE and
compare it with its covariance-based competitors. We also
include comparisons with our baseline, the inverse covari-
ance matrix, called precision matrix4 (for simplicity de-
noted as Precision Ω in experiments). In contrast to iSICE
which represents a sparse graph, precision matrix is used as
a baseline as it represents a graph without imposed sparsity.

The covariance representations (denoted with COV) are
widely used in literature [24, 27, 28]. We use the Newton-
Schulz iteration5 for computing the matrix square root nor-
malised covariance (iSQRT-COV) due to efficiency of the
Newton-Schulz iteration with GPUs, as well as good em-
pirical results reported by multiple authors [23, 25].

Backbones. We choose VGG-16 [37] and ResNet-50 [13]
CNNs as our backbones for the majority of experiments (we
also include the VGG-19, ResNet-101, ResNeXt-101 [45],
and latest ConvNext-T [30], Swin-T and Swin-B [29] in the
main table). VGG-16 and ResNet-50 are popular in im-
age classification (including fine-grained benchmarks). We
choose these two backbones in order to better understand

4The use of precision matrix (and partial correlations) as a visual rep-
resentation in place of the sample-based covariance matrix Σ is also our
minor but novel proposition. We obtain it via Alg. 1 from which we re-
cover the inverse square root Q and then Ω=Σ−1=QQ⊤/trace(Σ).

5In contrast to our precision matrix Ω=Σ−1=QQ⊤/trace(Σ) from Alg.
1, iSQRT-COV uses Σ

1
2=YN/

√
trace(Σ) from Alg. 1.

the performance of our methods compared to baselines in
the common testbed (the same backbones and experimental
settings). Given an input image, we obtain a set of fea-
ture channels shaped as a tensor after the 1 × 1 convolu-
tion operation. Using these feature channels, we compute
the iSICE, iSQRT-COV and Precision Ω representations.
Since these representations are symmetric, we only use the
upper-triangular entries (and the diagonal entries) passed to
a fully-connected layer to obtain classification scores.

Hyper-parameters. There are three hyper-parameters as-
sociated with iSICE: sparsity constant λ, learning rate η and
number of iterations N. We experiment with a large range
of values for a better understanding, i.e., λ ∈{1.0, 0.5, 0.1,
0.01, 0.001, 0.0001, 0.00001}, η∈{0.001, 0.01, 0.1, 1.0, 5.0,
10.0, 20.0}, and N ∈{1, 5, 10}. Since the total combination of
hyper-parameters in the table is 147, we choose the median
values of each hyper-parameter range (highlighted in bold)
and keep them throughout experiments on all datasets. Ap-
pendix C studies the impact of hyper-parameters on results.

Overview of results. Table 1 shows the performance of
several COV models (e.g., popular iSQRT-COV), and our
PrecisionΩ and iSICE models. The rightmost column sum-
marizes the average performance over one scene and three
fine-grained image classification benchmarks. It is clear
that on average, iSICE outperforms MPN-COV, iSQRT-
COV, DeepCOV, and DeepKSPD, etc. iSICE also outper-
forms our baseline Precision Ω. This achievement is con-
sistent in all four backbones. It is interesting to see that ex-
cept a few cases, the inverse covariance method, i.e., Preci-
sionΩ, performs slightly better than the covariance method,
i.e., iSQRT-COV. This improved performance highlights the
effectiveness of characterising partial correlations of fea-
tures with inverse covariance instead of pairwise correla-
tions of features based on the sample covariance. Our iSICE
method makes the inverse covariance estimation more ro-
bust and reliable by enforcing sparsity, as demonstrated by
improved performance over Precision Ω baseline. How-
ever, there may be some situations when Precision Ω out-
performs iSICE (e.g., MIT with VGG-16 backbone). No-
tice that iSICE can be considered as sparse precision ma-
trix. When N = 0 in Alg. 2, iSICE reduces to Precision Ω.
In further experiments we show that once the size of matrix
is increased, iSICE does outperform Precision Ω.

Table 2 corroborates that iSICE significantly outper-
forms Precision Ω and iSQRT-COV.
Robustness of iSICE to Hyper-parameters. We have con-
ducted experiments with the hyper-parameter range given
in Section 4.1. Appendix C shows that the performance of
iSICE remains stable across a range of values.

Detailed comparisons with SPD-based SOTA models.
Table 1 compares the performance of iSICE to several
prior works. We first compare our VGG-16 backbone
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Method Backbone MIT Airplane Birds Cars DTD iNatuarlist mini-ImageNet

GAP [37]

VGG-16

– 76.6 70.4 79.8 – – –
NetVLAD [2] – 81.8 81.6 88.6 – – –
NetFV [28] – 79.0 79.9 86.2 – – –
BCNN [27] 77.6 83.9 84.0 90.6 84.0 – –
CBP [11] 76.2 84.1 84.3 91.2 84.0 – –
LRBP [17] – 87.3 84.2 90.9 – – –
KP [6] – 86.9 86.2 92.4 – – –
HIHCA [4] – 88.3 85.3 91.7 – – –
Improved BCNN [25] – 88.5 85.8 92.0 – – –
SMSO [46] 79.5 – 85.0 – – – –
MPN-COV [43] (reproduced) – 86.1 82.9 89.8 – – –
iSQRT-COV [23] (reproduced) 76.1 90.0 84.5 91.2 71.3 56.2 76.2
DeepCOV [9] 79.2 88.7 85.4 91.7 86.3 – –
DeepKSPD [9] 81.0 90.0 84.8 91.6 86.3 – –
RUN [47] 80.5 91.0 85.7 – – – –
FCBN [48] 80.3 90.5 85.5 – – – –
TKPF [49] 80.5 91.4 86.0 – – – –
Precision Ω 80.2 89.4 83.4 92.0 74.0 57.9 74.0
iSICE (ours) 78.7 92.2 86.5 94.0 74.7 59.8 78.7

CBP [11]

ResNet-50

– 81.6 81.6 88.6 – – –
KP [6] – 85.7 84.7 91.1 – – –
SMSO [46] 79.7 – 85.8 – – – –
iSQRT-COV [23] (reproduced) 78.8 90.9 84.3 92.1 73.0 57.7 70.7
DeepCOV-ResNet [34] 83.4 83.9 86.0 85.0 84.6 – –
TKPF [49] 84.1 92.1 85.7 – – – –
Precision Ω 80.8 91.2 84.7 92.0 73.7 59.6 65.6
iSICE (ours) 80.5 92.7 85.9 93.5 60.7 60.7 72.0

iSQRT-COV [23]
VGG-19

76.3 90.3 84.1 91.4 71.8 56.9 75.4
Precision Ω 79.6 91.1 83.2 92.2 74.2 57.3 73.8
iSICE (ours) 80.6 92.5 86.6 93.9 74.9 59.6 77.1

iSQRT-COV [23]
ResNet-101

79.3 91.0 84.4 92.3 73.0 70.6 73.9
Precision Ω 77.9 90.1 83.3 91.4 71.2 69.8 73.0
iSICE (ours) 81.0 92.9 86.6 93.6 75.4 72.0 78.0

iSQRT-COV [23]
ResNeXt-101

81.6 91.3 86.2 92.4 75.7 72.2 76.1
Precision Ω 85.7 90.2 84.6 89.9 76.9 72.3 77.6
iSICE (ours) 86.3 94.6 87.2 94.5 78.7 73.8 81.0

iSQRT-COV [23]
ConvNext-T

77.8 88.1 83.5 89.4 84.7 61.5 82.0
Precision Ω 78.5 81.2 83.7 92.2 83.9 59.3 83.6
iSICE (ours) 85.4 90.4 86.7 93.1 88.9 65.0 85.1

iSQRT-COV [23]
Swin-T

82.1 87.6 85.1 89.7 86.1 58.1 67.7
Precision Ω 82.5 88.2 84.9 90.5 86.5 59.1 65.6
iSICE (ours) 85.9 89.6 86.5 91.3 88.3 61.9 69.1

iSQRT-COV [23]
Swin-B

86.6 91.3 88.0 92.0 79.4 69.7 64.9
Precision Ω 87.0 90.7 87.7 93.1 80.1 67.3 66.4
iSICE (ours) 87.6 92.9 88.3 93.3 79.8 72.4 68.4

Table 1. Comparison between iSICE, Precision Ω and other SPD representations in terms of classification accuracy (%). The performance
of existing SPD representation methods is quoted from the original papers. Precision Ω is given by Alg. 1. iSICE is given by Alg. 2.

Method Backbone Top-1 Top-5

GAP [13]
ResNet-50/

VGG-16

71.0/69.5 90.9/88.9
iSQRT-COV [23] 71.5/70.2 90.5/89.7
Precision Ω 71.1/71.0 90.1/90.1
iSICE 74.8/73.4 92.0/91.8

Table 2. Results on the ImageNet100 dataset.

based iSICE with BCNN, CBP, LRBP, KP, HIHCA, Im-
proved BCNN, SMSO, MPN-COV, iSQRT-COV, Deep-
COV, DeepKSPD, RUN, FCBN and TKPF methods. The
MPN-COV and iSQRT-COV methods use backbones pre-
trained with second-order pooling. For fair comparison with
iSICE, we re-run those methods on our machine with the
same backbone and evaluation protocols as ours. iSICE out-
performs all existing methods on fine-grained datasets. On
MIT dataset, our performance is better than CBP, BCNN
and iSQRT-COV. iSICE could outperform DeepKSPD and

other methods on MIT if a large-dimensional matrix similar
to those is used (see Table 3).

Secondly, we compare our ResNet-50 backbone based
iSICE with CBP, KP, SMO, iSQRT-COV, DeepCOV-
ResNet and TKPF methods. iSICE achieves better perfor-
mance than existing methods on both Airplane and Cars
datasets. DeepCOV-ResNet uses 1024 × 1024-dimensional
matrix which is four times larger than ours. TKPF uses
an advanced feature projection to reduce the CNN feature
channels and we use a simple linear projection with 1 × 1
convolution. However, on average, we are still better than
DeepCOV-ResNet and TKPF.

Thirdly, we integrate iSICE with the popular VGG-19,
ResNet-101, ResNeXt-101, ConvNext-T [30], Swin-T and
Swin-B [29] backbones pre-trained on ImageNet-1K, and
compare their performance with iSQRT-COV and Precision
Ω (Alg. 1). iSICE outperforms iSQRT-COV and Precision
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Method Matrix Dim. MIT Airplane Birds Cars Average
VGG ResNet VGG ResNet VGG ResNet VGG ResNet VGG ResNet

iSQRT-COV 256 × 256 76.1 78.8 90.0 90.9 84.5 84.3 91.2 92.1 85.5 86.5iSQRT-COV 512 × 512 76.9 82.8 91.5 91.1 85.0 84.5 92.2 92.1 86.4 87.6

Precision Ω 256 × 256 80.2 80.8 89.4 91.2 83.4 84.7 92.0 92.0 86.3 87.1Precision Ω 512 × 512 80.7 82.7 90.1 91.5 84.9 84.0 92.5 92.6 87.0 87.7

SICE 128 × 128 71.0 73.1 85.5 86.9 77.3 78.0 87.0 87.9 80.2 81.5SICE 256 × 256 73.7 75.4 87.9 89.2 79.7 80.3 89.5 89.3 82.7 83.6

iSICE 256 × 256 78.7 80.5 92.2 92.7 86.5 85.9 94 93.5 87.9 88.2iSICE 512 × 512 81.1 81.7 92.9 92.6 86.8 86 94.6 93.8 88.9 88.5

Table 3. Performance of iSQRT-COV, Precision Ω, SICE and iSICE on various datasets when different matrix dimensions are used.

Ω methods across all datasets. This highlights that SPD-
based visual representations (1) are still relevant for mod-
ern powerful classification backbones and (2) they improve
results on large-scale datasets.

Ablations on the size of Sparse Inverse Matrix. Table 3
shows results for 512 × 512 vs. 256 × 256 matrix size (we
keep the hyper-parameters fixed). To produce 512 × 512
dim. matrix, (1) from VGG-16, we simply remove the 1× 1
convolution layer to obtain 512 feature channels and (2)
from ResNet-50, we set the output channels of 1× 1 convo-
lution layer to 512. Generally, switching to a larger matrix
improves the performance, e.g., on MIT our iSICE gains
between 1.2 and 2.4% (sparsity helps with a larger matrix).
On average, all methods improved performance by switch-
ing to a larger matrix at the computational expense. See
runtimes in Table 5 and memory consumption in Appendix
E. Finally, Table 3 also shows that iSICE performs much
better than SICE (based on ADMM solver [3]) computed
over pre-extracted features. Table 5 shows that iSICE is 3×
faster. SICE is almost intractable on larger datasets. This
validates our claim that learning sparse inverse covariance
matrix end-to-end produces robust visual representation.

iSICE with learning rate and sparsity modulators. As
iSICE trades between log det(·) (changes rapidly) and the ℓ1
norm (changes linearly), optimizing Eq. (1) with PGD may
struggle with non-optimal learning rates and sparsity. Thus,
we design a simple modulator that updates β in Alg. 2 by
setting β := β·κ in lines 10, where κ=τ+2Sigm

(
FC(X1/n)

)
,

Sigm(·) is a sigmoid, and FC layer is of d × 1 size. We
also add a penalty −γ(κ− 1)2 to the classification loss to
encourage κ to be close to 1 unless classification loss gets
smaller for κ , 1 while incurring the above penalty. We
set γ = 0.0001. We use the above modulator (we do not
claim this is the most optimal design) as a tool akin to Mod-
Grad [36]. τ=0.01 is a small offset to prevent zero learning
rate. Another modulator with the same architecture is used
to adapt sparsity parameter λ. Table 4 shows that modulat-
ing the learning rate and sparsity on-the-fly helps iSICE.

Experiments on dense vs. sparse structure estimation
w.r.t. sample size. Below we randomly generate a dense
or sparse inverse covariance matrix P (size 100×100) and
sample various amount of data from the resulted normal dis-

Method MIT Airplane Birds Cars ImageNet100

iSICE 80.5 92.7 85.9 93.5 74.8
iSCIE+MLP 81.3 93.4 86.1 93.9 76.3

Table 4. Comparison between the classification performance of
iSICE and iSICE+MLP on the ResNet-50 backbone.

GAP iSQRT-COV Precision Ω SICE iSICE iSICE+MLP

Time/batch (sec.) 29.0 32.0 32.8 150.8 44.6 45.8

Time/epoch (min.) 12.6 13.4 13.8 65.3 19.3 19.8

Table 5. Runtimes (256×256 matrix, ImageNet100, ResNet-50).
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Figure 3. Estimation errors on (left) dense & (right) sparse struct.

tribution (via mvnrnd(·) in Matlab) to get its estimate P̂. Fig.
3 (left) shows estimation error ∥P̂−P∥F for dense structure.
Sparse and non-sparse estimation (by SICE and MLE, resp.)
show high errors in low sample regime. For the sparse struc-
ture in Fig. 3 (right), sparse estimation works better.

5. Conclusions
In this paper, we proposed a method for learning sparse

inverse covariance representation with CNN. Our method
estimates SICE within the CNN layers and facilitates back-
propagation for end-to-end training. Our iSICE signifi-
cantly outperforms other covariance representations on sev-
eral datasets. iSICE exploits the sparsity prior to capture
partial correlations under limited number of samples. Our
method is of general purpose and can be readily applied in
existing SPD-based models to improve their performance.
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