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Figure 1. Referential and consistent story visualization. Examples of more natural stories with references for the FlintstonesSV [16]
and MUGEN [19] datasets (bottom text) compared to more typical but less natural story text (top). We extend the MUGEN dataset by
introducing additional two characters (e.g. Lisa and Jhon) and four backgrounds (e.g. Sand, Grass, Stone and Dirt).

Abstract

There has been a recent explosion of impressive gen-
erative models that can produce high quality images (or
videos) conditioned on text descriptions. However, all such
approaches rely on conditional sentences that contain un-
ambiguous descriptions of scenes and main actors in them.
Therefore employing such models for more complex task
of story visualization, where naturally references and co-
references exist, and one requires to reason about when
to maintain consistency of actors and backgrounds across
frames/scenes, and when not to, based on story progression,
remains a challenge. In this work, we address the afore-
mentioned challenges and propose a novel autoregressive
diffusion-based framework with a visual memory module
that implicitly captures the actor and background context
across the generated frames. Sentence-conditioned soft at-
tention over the memories enables effective reference reso-
lution and learns to maintain scene and actor consistency
when needed. To validate the effectiveness of our approach,
we extend the MUGEN dataset [19] and introduce addi-
tional characters, backgrounds and referencing in multi-
sentence storylines. Our experiments for story generation
on the MUGEN, the PororoSV [30] and the FlintstonesSV
[16] dataset show that our method not only outperforms
prior state-of-the-art in generating frames with high visual
quality, which are consistent with the story, but also models
appropriate correspondences between the characters and
the background.

1. Introduction
Multimodal deep learning approaches have pushed the

quality and the breadth of conditional generation tasks such
as image captioning [23, 33, 37, 54, 57] and text-to-image
synthesis [25, 44, 59, 61–63]. Owing to the technical leaps
made in generative models, such as generative adversar-
ial networks (GANs) [14], variational autoencoders (VAEs)
[27] and the more recent diffusion models [21], approaches
for text-to-image synthesis can now generate images with
high visual fidelity representative of the textual descrip-
tions. The captions, however, in such cases, are gener-
ally short self-contained sentences representing the high-
level semantics of a scene. This is rather restrictive in the
real-world applications [8, 30, 31] where fine-grained un-
derstanding of object interactions, motion and background
information described by multiple sentences becomes nec-
essary. One such task is that of story generation or visu-
alization – the goal of which is to generate a sequence of
illustrative image frames with coherent semantics given a
sequence of sentences [30, 35, 36, 60].

Characteristic features of a good visual story is high vi-
sual quality over multiple frames; this includes rendering of
discernible objects, actors, poses and realistic interactions
of those actors with objects and within the scene. More-
over, for text-based story generation it is crucial to maintain
consistency between the generated frames and the multi-
sentence descriptions. Not only the actor context, but also
the background of the generated story should be in-line with
the description demonstrating effortless transition and adap-
tation to the changing environments within the story [34].
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Recent advances on the task of story generation have
made significant advances along these lines, showing high
visual fidelity and character consistency for story sentences
that are self-contained and unambiguous (explicitly men-
tioning characters and the setting each time). While impres-
sive, this setup is fundamentally unrealistic. Realistic story
text is considerably more complex and referential in nature;
requiring ability to resolve ambiguity and references (or co-
references) through reasoning. As shown in Fig. 1, while
the description corresponding to the first frame has an ex-
plicit reference to the character names, the (typical) subse-
quent frame descriptions, provided by human, contain ref-
erences such as “she, he, they”. Moreover, while maintain-
ing character consistency, current approaches are limited in
preserving, or transitioning through, the background infor-
mation in agreement with the text (cf . Fig. 3) [30, 35, 36].

In natural language processing (NLP) co-reference res-
olution in text is an important and core task [3, 26, 38].
While it maybe possible to apply such methods to story
text to first resolve ambiguous references and then gener-
ate corresponding images using existing story generation
approaches, this is sub-optimal. The reason, is that co-
reference resolution in the text domain, at best, would only
allow to resolve references and maintain consistency across
identity of the character. Appearance across frames would
still lack consistency and require some form of visual rea-
soning. As also noted in [47], reference resolution in the
visual domain, or visio-lingual domain, is more powerful.

In this work, for the first time (to our knowledge), we
study co-reference resolution in story generation. Prior
work [35] offers limited performance when faced with
text containing references (see Sec. 5). We address this
by proposing a new autoregressive diffusion-based frame-
work with a visual memory module that implicitly cap-
tures the actor and background context across the generated
frames. Sentence-conditioned soft attention over the mem-
ories enables effective visio-lingual co-reference resolution
and learns to maintain scene and actor consistency when
needed. Further, given the lack of datasets that contain ref-
erences and more complex sentence structure, we extend the
MUGEN dataset [19] and introduce additional characters,
backgrounds and referencing in multi-sentence storylines.

Contributions. Our contributions are three-fold: (i) First,
we introduce a novel autoregressive deep generative frame-
work, Story-LDM, that adopts and extends latent diffusion
models for the task of story generation. As part of Sto-
ry-LDM, we propose a meticulously designed memory-at-
tention mechanism capable of encoding and leveraging con-
textual relevance between the part of the story-line that has
already been generated, and the current frame being gen-
erated based on learned semantic similarity of correspond-
ing sentences. Equipped with this, our sequential diffu-
sion model can generate consistent stories by resolving and

then capturing temporal character and background context.
(ii) Second, to validate our approach for co-reference res-
olution, and character and background consistency in the
visual domain, we extend existing datasets to include more
complex scenarios and, importantly, referential text. Specif-
ically, we extend the MUGEN dataset [19] to include mul-
tiple characters and diverse backgrounds. We also modify
FlintstonesSV [16] and PororoSV [30] dataset to include
character references. These enhancements allow us to in-
crease the complexity of the aforementioned datasets by in-
troducing co-references in the sentences of a story. (iii) Fi-
nally, to evaluate different approaches for foreground (char-
acter) as well as background consistency we propose novel
evaluation metrics. Our results on the MUGEN [19], the
PororoSV [30] and the FlintstonesSV [16] datasets show
that we outperform the prior state-of-the-art on consistency
metrics by a large margin.

2. Related work

Text-to-image synthesis. Deep generative models, partic-
ularly, generative adversarial networks (GANs) [14], varia-
tional autoencoders (VAEs) [27] and normalizing flows [4,
11, 12] have been applied to multimodal tasks at the in-
tersection of vision and language. Typical such tasks in-
clude image captioning [1, 33, 56] and text-to-image syn-
thesis [32,44,51,59,61,63]. Early work on text conditioned
image synthesis built upon the success of GANs [44]. More
recent approaches have utilized multi-stage generators [61]
and normalizing flow-based priors [32] in the latent space
to model the distribution of images given text. Various ap-
proaches have found cross-domain contrastive loss to im-
prove text-to-image generation models [25, 62]. DALL-
E [42] and Cogview [10] harness the power of transformers
[53] and discrete variational autoencoders (VQ-VAE) [43]
yielding very high quality image samples.

More recent are the advances in diffusion models which
have revolutionized the domain of image generation [21].
Diffusion models progressively add noise to the data and
learn a reverse diffusion process to reconstruct it. Nichol
et al. [39] adapted diffusion models for text-to-image gen-
eration and explore CLIP [40] guided generation as well
as classifier-free modeling. Standard diffusion models are
employed directly in the high-dimensional pixel space and
therefore, cannot directly be used for the more complex
task of story generation. Recent work [6, 15, 45] instead
use encodings from pre-trained models as input to the dif-
fusion models, thereby reducing the complexity of the task
by working in a lower-dimensional space. In this work, we
build upon this idea and extend it for sequential story gen-
eration.

Text-to-video synthesis. One of the challenges of text-to-
video synthesis is the smoothness of motion in a video [30].
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Figure 2. Story-Latent Diffusion Models for consistent story generation. (a) The autoregressive conditional generative Story-LDM
model with the proposed memory-attention module. (b) A snapshot of the memory for k frames.

Early work focused on generating short clips [8, 31]. To
effectively learn the motion, various approaches disentan-
gle the motion features from the background information
[18,52,55]. Wu et al. [58] propose a novel two-dimensional
VQ-VAE and sparse attention module for real-world text-
to-video generation. Singer et al. [48] decompose the tem-
poral U-Net [46] and the attention modules to approximate
them in space and time to extend the text-to-image diffu-
sion models to model text-to-video generation. Ligong et
al. [17] propose a transformer framework to jointly model
various modalities.
Story Generation. Li et al. [30] proposed the initial idea
and task of story generation. A two-level StoryGAN frame-
work is applied to ensure image-level consistency between
each sentence and image pair, and a global discriminator
enforces global consistency between the entire image se-
quence and the story. Various approaches have proposed
improvements to the StoryGAN architecture. Zeng et al.
[60] introduce sentence-level alignment and word-based at-
tention to improve relevance. Li et al. [29] further improve
the performance with enhanced discriminators and dilated
convolutions. In [49] foreground-background information
is provided as additional supervision and [34] use video
captioning for semantic alignment between text and frames.
Recently, Chen et al. [5] adopted visual planning and char-
acter token alignment to improve character consistency.

Story Completion. Recently, another task for text-to-story
synthesis referred to as story completion has been proposed
[36]. In this task, in addition to sentences, the first frame of
the story is provided as input. In effect, story completion is
a simplified variant of story generation. StoryDALL-E [36]
leverages models pre-trained for text-to-image synthesis to
perform story completion. Datasets for this task include
CLEVR-SV [30] and Pororo-SV [16] which are derived
from the CLEVR dataset [22], and the Flintstones dataset
for text-to-video synthesis has also been modified for the
task of story visualization [34]. Additionally, to evaluate
the generalization performance, popular DiDeMo dataset
for video captioning [2] is adapted for the task in [36].

Reference Resolution. Co-reference resolution is an im-
portant and well-researched topic in NLP and focuses on
resolving the pronouns and their associated entities. Clas-
sic methods in NLP to co-reference resolution employ deci-
sion trees [3,38], maximum-entropy modeling [26], cluster-
ranking [41] and classification algorithms [50]. More re-
cent approaches [13, 24, 28] leverage neural network archi-
tectures to obtain improved performance with Transform-
ers [9]. Seo et al. [47] proposed visual co-reference res-
olution for the task of Visual Question-Answering (VQA)
dialogs. We take inspiration from [47], but propose a much
more sophisticated memory-attention module that allows us
to perform visio-lingual co-reference resolution (and visual
consistency modeling) for visual story generation.

3. Approach

To generate temporally consistent stories based solely on
the linguistic story-line, we develop a deep generative ap-
proach with autoregressive structure. We build upon the
success of diffusion models in modeling the underlying
data distribution of images to produce high quality sam-
ples, and learn the generative conditional distribution of the
visual story based on the textual descriptions. Given that
the multi-frame stories involve high-dimensional data in-
put, we employ Latent Diffusion Models [45], such that
diffusion models can be applied in a computationally ef-
ficient manner. Besides, to ensure temporal consistency
and smooth story progression, we propose a novel mem-
ory attention mechanism which not only attends to the mul-
timodal representations of the current frame but also takes
into account the already generated semantics of the previous
frames. This module also allows us to resolve ambiguous
references (e.g., he/she, they, etc.) using visual memory and
is the core of our technical contribution. We first provide an
overview of the Diffusion Models and the Latent Diffusion
Models, following which we present our autoregressive la-
tent diffusion model for stories called Story-LDM1.

1https://github.com/ubc-vision/Make-A-Story
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3.1. The Latent Diffusion Model Backbone

Diffusion Models. Diffusion models are a class of gen-
erative models that approximate the underlying data distri-
bution p(x) by denoising a base (Gaussian) distribution in
multiple steps using a reverse process of a fixed Markov
Chain of length T . To estimate p(x), the forward diffusion
process starts from the input data x0 = x and gradually
adds noise to obtain a set of noisy samples x1, . . . ,xT such
that xT ∼ N (0, 1) represents a sample from a Gaussian dis-
tribution. Under the Markov assumption, the probability of
the forward process modeling the distribution q(x0:T | x0)
and the reverse diffusion process estimating probability at
an earlier time-step are formulated as:

q(x1:T | x0) :=

T∏
i=1

N (xt;
√
1− βtxt−1, βtI)

pθ(x0:T ) = pθ(xT )

T∏
i=1

p(xt−1 | xt).

(1)

Here, {βi}Ti=1 is the variance schedule for each time-step
such that xT is nearly a Gaussian. The model parameters θ
are learnt with the following objective,

LDM := Et,x,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
, (2)

where ϵ ∼ N (0, 1) and ϵθ(xt, t), t = 1, . . . , T is a se-
quence of denoising autoencoders with noisy input xt pre-
dicting the noise that was added to the original input x.

Despite yielding state-of-the-art results in various im-
age generation tasks, diffusion models directly operating in
the high-dimensional pixel are computationally expensive
and resource exhaustive. This limits their application to an
even higher-dimensional data such as multi-frame stories or
video datasets, which is the focus of this work.

Diffusion Models in the Latent Space. To broaden the ap-
plicability of the diffusion models to very high-dimensional
data e.g. high-resolution images, Latent Diffusion Models
(LDM) [45] first compress the original image to a lower-
dimensional space using perceptual image compression. An
auto-encoder approach is employed such that the original
spatial structure of the input image is preserved in the la-
tent space. That is, the encoder E(·) maps the input im-
age I ∈ RH×W×3 to a latent representation Z ∈ Rh×w×c,
downsampling the image to a lower spatial dimension. Fol-
lowing this, the diffusion model is applied to the latents
Z, where time-conditioned U-Net ϵθ(Zt, t) is employed to
model the diffusion process. The objective of the diffusion
model from Eq. (2) becomes,

LLDM := Et,E(Z),ϵ

[
∥ϵ− ϵθ(Zt, t)∥22

]
, (3)

During training, a forward diffusion process is applied to
generate Z, which are mapped to the original image space
using a decoder D(·).

Dataset # Ref (avg.) # Chars # Backgrounds

MUGEN [19] None 1 2
Extended MUGEN 3 3 6
FlintstonesSV [16] 3.58 7 323
Extended FlintstonesSV 4.61 7 323
PororoSV [30] 1.01 9 None
Extended PororoSV 1.16 9 None

Table 1. Dataset statistics of the MUGEN, FlintstonesSV and
PororoSV.

3.2. Story-Latent Diffusion Models

Given a textural story, characterized by sequence of M
sentences Stxt = {S0, . . . ,SM}, the goal of story gen-
eration is to produce a sequence of corresponding frames
Simg = {I0, . . . , IM} that visualize the story. We note
that this is a more difficult problem than one of story con-
tinuation [36], where in addition to the textual story Stxt

approaches have access to a source frame I0 for addi-
tional context at inference time. During training it is as-
sumed that we have access to paired dataset of N samples
D = {S(i)

txt,S
(i)
img}Ni=1. We extend latent diffusion models to

this task, by allowing them to generate multi-frame stories
autoregressively, and by introducing rich conditional struc-
ture that takes into account current sentence as well as con-
text from earlier generated frames through visual memory
module. This visual memory allows the model to incorpo-
rate character/background consistency and resolve text ref-
erences when needed, resulting in improved performance.

Given a condition y, LDM utilizes a cross-attention layer
with key (K), query (Q) and value (V) where,

Attention(K,Q,V) = softmax
(
QKT

√
d

)
.V. (4)

Here, Q = WQ.f̂(Z), K = WK .f(y) and V =
WV .f(y), and WQ ∈ Rd×dq , WK ∈ Rd×dk and WV ∈
Rd×dv are learnable parameters, f̂(Z) an intermediate flat-
tened feature representation of Z within the diffusion model
and f(y) the feature representation of the condition y. The
objective in Eq. (3) for conditional generation becomes,

LLDM := Et,E(I),ϵ

[
∥ϵ− ϵθ(Zt, f(y), t)∥22

]
. (5)

Note that the denoising autoencoders ϵθ now additionally
depend on the condition encoding f(y).

For a sample {S(i)
txt,S

(i)
img}, we first project all the M in-

put frames of the story, I0, . . . , IM onto a low-dimensional
space using a frame-encoder E, and obtain the encoded
frames Z0, . . . ,ZM for a single story2. To effectively con-
dition on the corresponding frame, we apply this cross-
attention layer to the intermediate representations of the
neural network for each frame Im and its textual description
Sm using Eq. (4), where the relevance of the description Sm

2We drop the superscript denoting sample i for ease of notation.
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Dataset Method w/ ref. text Char-acc (↑) Char-F1 (↑) BG-acc (↑) BG-F1 (↑) FID (↓)
Fl

in
ts

to
ne

s VLCStoryGAN [34] × 27.73 42.01 4.83 16.49 120.85
LDM [45] × 79.86 92.33 48.02 37.86 61.40
LDM [45] ✓ 57.38 78.68 44.19 28.25 87.39
Story-LDM (Ours) ✓ 69.19 86.59 35.21 28.80 69.49

M
U

G
E

N LDM [45] ✓ 31.39 21.28 15.74 18.66 120.99
Story-LDM (Ours) ✓ 93.40 95.60 92.19 92.37 62.16

Table 2. Quantitative results. Experimental results on the FlintstoneSV and the MUGEN datasets.

is weighted by the similarity between the textual representa-
tion and the encoded frame representation Zm (cf . Fig. 2a).

For sequential generation, the model in addition to the
current state, requires information from all the previous
states. To enable this, the diffusion process for any frame
representation Zm is conditioned on the visual represen-
tations of the previous frames Z0, . . . ,Zm−1 as well as
the sentence descriptions S0, . . . ,Sm. This conditioning is
realized through a novel Memory-attention module which
forms the basis of our autoregressive approach.

Memory-attention Module. To capture the spatio-
temporal interactions across multiple frames and sentences
for a story, in our conditional diffusion model, we condi-
tion the frame Zm not only on the corresponding text Sm

but also on the previous texts Si, for i ∈ {0, . . .m − 1}.
This conditioning is applied throughout the T time-steps
of the diffusion process for Zm. The conditional denois-
ing autoencoder thus models the conditional distribution
p(Zm | Z<m,S≤m). The (conditional) generative process
of our Story-LDM approach over the T steps of the diffusion
process for a single frame is thus given by

p(Zm|Z<m,S≤m) = p(Zm
T |Z<m,S≤m)

T∏
i=1

p(Zm
i−1|Zm

i ,Z<m,S≤m).
(6)

The key motivation for this approach is to propagate the
semantic (visual and textual) features from the already pro-
cessed story-line based on the relevance of the current de-
scription to the previous frames as well as the previous de-
scriptions. We achieve this by implementing a special at-
tention layer, called memory-attention module. Similar to
the cross-attention layer, we utilize the attention mechanism
based on the key, query and value formulation. In this case
Eq. (4) becomes,

Q = WQ.f(S
m),K = WK .f(S<m),

V = WV .f̂(Z
<m),

(7)

where f̂(.) is applied to align the dimensions of the val-
ues, V with the keys, K. In the memory attention module,
the relevance the query Q which depends on the current

sentence Sm and the keys K which represent the previous
sentences S<m is used to weight the feature representations
Z<m. The aggregated representation now contains the in-
formation relevant for the current frame Zm from the al-
ready generated story-line (see Fig. 2b). That is, our mech-
anism based on the similarity of the current sentence to the
previous sentences in the story, identifies the features in
the previous frames which are of importance to the context
of the current frame. This may include recurrence of cer-
tain semantics with-in the story such as characters or back-
grounds. In all, this formulation of the diffusion process
allows us to maintain temporal consistency as we amplify
the visual feature information from the sequence of story
already generated. This allows the model to implicitly cap-
ture temporal dependencies in storylines for resolving am-
biguities in character and background information.

Given the above conditioning, the objective for the story
latent diffusion model for a single frame is formalized as

Lstory−LDM = EZ,ϵ,t

[
∥ϵ− ϵθm(Zm

t ,S≤m,Z<m, t)∥22
]
,

(8)

where ϵθm are the denoising autoencoders for the frame m.
Having formalized the diffusion process for single frame

generation, the generative process for the entire story-line
using Eq. (6) for autoregressive conditional frame genera-
tion, is given by

p(Z0:M | S0:M ) = p(Z0 | S0)

M∏
i=m

p(Zm | Z<m,S≤i).

(9)

Notably, the conditioning is applied to the all states
within the diffusion process i.e., for all Zm

t , t ∈ {1, . . . T}
at each diffusion step, we apply the cross attention as well
as the memory attention module allowing us effectively cap-
ture the temporal context.

Network Architecture. To generate visual storylines, in
our Story-LDM, we first introduce an autoregressive struc-
ture and modify the two-dimensional U-Net in [45] to so
as to process the temporal information in the storyline. As
shown in Fig. 2a, the frame encoder, E equipped with the
positional information of the frame in the sequence, is ap-
plied to get the low-dimensional representation Zm for all
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Lisa moves left then right onto a ladder before dismounting the ladder onto the right of
the top platform. It then jumps twice to the right onto a box then onto a coin before
walking right into a gear being slain in Grass.
She walks to the right and collects a gem and a coin then stutters while walking towards a
ladybug.
She walks to the left. Then it jumps to the right, onto a platform, then it collects a coin.
She collects all coins.
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Jhon runs from left to right.it jumps to collect some coins, and then jumps over a ladybug
in Dirt. 
He jumps on a platform, collects a coin, jumps over a gear, and collects two more coins.
He collects a coin on a bar, jumps up high and collects another coin.
He collects one coin on a boat, climbs a ladder to another boat and collects a second coin.

L
D

M

Figure 3. Story generation result for MUGEN. Here we can compare between our method and LDM [45]. See text for details.

Fred and Barney are having a conversation on the couch in the living room. Fred turns
his head with a disdained look.  
They are sitting in a room. Fred looks angry and sticks his tongue out while he and
Barney are talking.  
The circus performer on the television talks to his audience.  
Fred is on tv in the room wearing a super hero outfit.
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Wilma and Fred are standing in the room. Wilma is talking to Fred. Fred is holding a
suitcase and clothing.   
Fred is standing in a room speaking with an exasperated expression. He is holding a pile
of clothes.  
Wilma is standing in a room, she blinks twice before speaking.   
She is standing in a room, talking to someone. Then, she giggles.

LD
M

Figure 4. Story generation results for FlintstoneSV. Our method is able to generate more consistent characters/backgrounds.

the frames in a datapoint from D. A text-based transformer
is applied to get a suitable representation for the sentence
Sm. The U-Net is then applied to model the diffusion pro-
cess over T time-steps. The layers within the U-Net are
augmented with the cross-attention layer and our memory
attention layer. After each downsampling or upsampling
operation we apply the attention mechanism to reinforce
the conditioning on the already encoded (learned) story-line
up to the previous time-step. For any frame m, the cross-
attention Cattn is given by

Cattn =
∑
i

f̂(Zm)if(S
m)i (10)

where f̂(Zm) and f(Sm) are the representations of the
frame encoding Zm within the neural network and sentence

Sm respectively such that they have same dimensions. Sim-
ilarly, the memory attention Mattn is computed as,

Mattn =

m−1∑
k=1

∑
i

f̂(Zk)if(S
k)if(S

m)i (11)

The output of the attention-module is then computed as the
aggregation, Cattn +Mattn.

Starting from the noise sample Zm
T the output of the re-

verse diffusion process Zm
0 is reconstructed using the frame

decoder D to get the final image. Having outlined the de-
tails of our Story-LDM framework, we show through exten-
sive experiments on the task on story generation, the effec-
tiveness and the benefits of our powerful conditioning based
on memory-attention.
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4. Datasets and Evaluation Metrics
In this paper, we formulate story generation with co-

references to actors and backgrounds across frames.

Datasets. Since reference resolution has not been studied
in story generation, to validate our approach on this much
harder task, we construct the following datasets: (i) We take
an existing story-generation dataset – FlintstonesSV [16],
and modify the sentences by replacing the named entities
(characters) with references where possible; including pro-
nouns such as he, she, or they (cf . Fig. 1). This dataset
contains 20132-training, 2071-validation and 2309-test sto-
ries with 7 main characters and 323 backgrounds. (ii) MU-
GEN [19] is a video dataset collected from the open–
sourced platform game CoinRun [7]. The dataset is divided
into 104, 796-train and 11, 802 test stories with 96 to 602
frames. We extend the MUGEN dataset by introducing
two additional characters Lisa and Jhon (we rename Mu-
gen to Tony). We construct stories of four frames and cor-
responding text, ensuring consistent co-referencing in the
story; each story has 3 such references. Moreover, we aug-
ment the existing two backgrounds (Planet and Snow) with
four additional backgrounds: Sand, Dirt, Grass and Stone.
(iii) We also modify existing PororoSV [30] dataset which
contains 10191/2334/2208 train/val/test set. Similarly, we
reference characters by pro-nouns to generate more natu-
ral story. We show in Fig. 1, example stories from the two
modified datasets and enlist the complete statistics in Tab. 1.
Evaluation Metrics. To measure the consistency of the
characters as well as the backgrounds in the generated sto-
ries, we consider following evaluation metrics: (i) Charac-
ter Classification: Following [34], we consider fine-tuned
Inception-v3 to measure the classification accuracy and
F1-score. Frame accuracy evaluates the character match to
the ground-truth and F1-score measures the quality of gen-
erated characters in the predicted images. (ii) Background
Classification: Similar to character classification, we use
fine-tuned Inception-v3 to measure the correspondence of
the background to the ground-truth and consider F1-score as
a measure of quality. (iii) Frechet Inception Distance (FID):
To assess the quality of images,we consider FID score [20]
which is the distance between feature vectors from real and
generated images.

5. Experiments
In this section, we evaluate our Story-LDM approach for

consistent story generation with reference resolution.
Baselines. We construct a strong baseline with the
LDM3 [45] which contains a cross-attention layer to gen-
erate text-to-image based story, without using our proposed
autoregressive memory modules as our baselines for MU-

3https://github.com/CompVis/latent-diffusion
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Figure 5. Qualitative Comparison on Story Generation. Com-
parison on the FlintstonesSV dataset visual story generation.
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Figure 6. Comparison to Story Continuation. Comparison on
the FlintstonesSV dataset for story continuation. Prior work uses
first frame as additional input to the model; our model does not.

GEN, PororoSV and FlintstonesSV datasets. The parame-
ters of the diffusion model within the Story-LDM are ini-
tialized with the pre-trained LDM [45]. Similarly, for the
textual embedding, we use BERT-tokenizer [9] and use the
pre-trained text-transformer from LDM.
Quantitative Results. Table 2 shows quantitative results
for consistent story generation on the FlintstoneSV dataset.
We compare the performance of our approach (row 4) to
the LDM [45] which we train/test with both original (row
2) as well as the co-referenced (row 3) descriptions. Fur-
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thermore, we include the results of the state-of-art VLCSto-
ryGAN [34] (row 1) with the original text of the dataset4

(i.e. without co-references). We note that VLCStoryGAN
was shown to be better than Duco-StoryGAN [35], CP-
CSV [49] and original StoryGAN [30] (see [34]).

Based on Table 2 we make three observations: (1) Our
LDM baseline is better than VLCStoryGAN on the original
reference-free text (cf . Tab. 2, rows 1 & 2). (2) Reference
resolution makes the task considerably harder. With the ref-
erence text in our modified dataset, we observe a drop in
performance in terms of character and background classi-
fication scores (cf . Tab. 2, rows 2 & 3). (3) Our model,
with memory-attention module, significantly outperforms
the baseline (cf . Tab. 2, rows 3 & 4) both in terms of gen-
erative image quality and character consistency; and out-
performs SoTA of VLCStoryGAN by ∼ 41% percentage
points on character accurary (while performing a more diffi-
cult version of the task). Further, our model, that is required
to conduct reference resolution, comes close to the LDM
trained with original, reference-free, text (cf . Tab. 2, rows 3
& 4), which can be viewed as a sort of an upper bound.

On the MUGEN dataset, our method outperforms the
strong LDM baseline with gains of ∼ 62% on character
accuracy and ∼ 76% on the background accuracy, thereby
showing the advantages of the memory-attention mecha-
nism for consistent story generation. We note that MUGEN
dataset has more references across story scenes. Flintstones
while contains more references per story overall, many of
those references are within scenes as opposed to across
scenes. Meaning that in terms of reference impact on con-
sistency, MUGEN dataset is actually harder. Experimental
results on the PororoSV dataset are provided in the Supple-
mental.
Qualitative Results. Figure 3 illustrates qualitative results
on the MUGEN dataset. Rows 1, 2 & 3 show ground
truth, LDM [45] and our Story-LDM approach, respec-
tively. Here, we see that our method is able to maintain con-
sistency in terms of both character and background. Simi-
larly, in Figure 4 we can show the results on FlintstoneSV
dataset which further validates the strong performance of
our method when generating high-quality, consistent story.
Compared to the LDM, our approach is able to adapt to the
diverse backgrounds in the story descriptions.
Additional Results. We compare the qualitative results of
our method to both story generation [34] and story continu-
ation [36] in Figs. 5 and 6 respectively. The comparative im-
ages are taken directly from respective papers. We note that
story continuation Fig. 6 is solving a different (easier) prob-
lem and with text that contains no-references. This makes
the comparison to our method, which receives fewer inputs,
not very meaningful. Nether-the-less, our approach, that

4Results for [34] were obtained using pretrained model provided by
original authors in private communication.

Fred jumps over a stool
in a room.

He is running across the
room wearing a super

hero costume and jumps
over a chair.

Wilma walks from one
room to another in the

house.

Fred in superhero outfit
and wilma are standing in

the living room. wilma
talks to him while her
arms folded in front. 

Figure 7. Story Diversity. Diverse outputs for a single storyline
obtained with our Story-LDM.
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Figure 8. Branching Storyline. Generating different yet consis-
tent stories by branching the storyline. Frames in the later columns
are generated based on earlier ones and corresponding text.

can resolve references and is solving a harder story gener-
ation task, obtains highly competitive results. Furthermore,
to show that our autoregressive visual memory module can
generate diverse stories conditioned on the current and pre-
vious condition, we create different story-lines starting for
a single sentence. In Fig. 8, we can see for reference ‘they’,
the model can generate both the characters according to the
storyline already parsed. Moreover, in Fig. 7 we show that
our approach can not only generate consistent visual sto-
ries, but also diverse frames for the same text (cf . Fig. 7).
Additional results are provided in the Supplemental.

6. Conclusion
In this paper, we formulate consistent story generation in

a more realistic way by co-referencing actors/backgrounds
in the story descriptions. We develop an autoregressive
Story-LDM approach with memory attention capable of
maintaining consistency across the frames based on the pre-
viously generated frames and their corresponding descrip-
tions. We introduced modified datasets to evaluate the per-
formance for reference resolution. We expect our proposed
formulation and models to be conductive to the real-world
use cases and further the research.
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