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Abstract

We introduce Infinigen, a procedural generator of photo-
realistic 3D scenes of the natural world. Infinigen is entirely
procedural: every asset, from shape to texture, is generated
from scratch via randomized mathematical rules, using no
external source and allowing infinite variation and composi-
tion. Infinigen offers broad coverage of objects and scenes
in the natural world including plants, animals, terrains, and
natural phenomena such as fire, cloud, rain, and snow. In-
finigen can be used to generate unlimited, diverse training
data for a wide range of computer vision tasks including
object detection, semantic segmentation, optical flow, and
3D reconstruction. We expect Infinigen to be a useful re-
source for computer vision research and beyond. Please visit
infinigen.org for videos, code and pre-generated data.

1. Introduction
Data, especially large-scale labeled data, has been a criti-

cal driver of progress in computer vision. At the same time,
data has also been a major challenge, as many important
vision tasks remain starved of high-quality data. This is es-
pecially true for 3D vision, where accurate 3D ground truth
is difficult to acquire for real images.

Synthetic data from computer graphics is a promis-
ing solution to this data challenge. Synthetic data can
be generated in unlimited quantity with high-quality la-
bels. Synthetic data has been used in a wide range of
tasks [10,18,44,46,52,55,65], with notable successes in 3D
vision, where models trained on synthetic data can perform
well on real images zero-shot [31, 51, 75–78, 82].

Despite its great promise, the use of synthetic data in
computer vision remains much less common than real
images. We hypothesize that a key reason is the limited
diversity of 3D assets: for synthetic data to be maximally
useful, it needs to capture the diversity and complexity of the
real world, but existing freely available synthetic datasets
are mostly restricted to a fairly narrow set of objects and
shapes, often driving scenes (e.g. [35, 65]) or human-made
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objects in indoor environments (e.g. [25, 53]).
In this work, we seek to substantially expand the cover-

age of synthetic data, particularly objects and scenes from
the natural world. We introduce Infinigen, a procedural
generator of photorealistic 3D scenes of the natural world.
Compared to existing sources of synthetic data, Infinigen is
unique due to the combination of the following properties:

• Procedural: Infinigen is not a finite collection of 3D
assets or synthetic images; instead, it is a generator
that can create infinitely many distinct shapes, textures,
materials, and scene compositions. Every asset, from
shape to texture, is entirely procedural, generated from
scratch via randomized mathematical rules that allow
infinite variation and composition. This sets it apart
from datasets or dataset generators that rely on external
assets.

• Diverse: Infinigen offers a broad coverage of objects
and scenes in the natural world, including plants,
animals, terrains, and natural phenomena such as fire,
cloud, rain, and snow.

• Photorealistic: Infinigen creates highly photorealistic
3D scenes. It achieves high photorealism by procedu-
rally generating not only coarse structures but also fine
details in geometry and texture.

• Real geometry: unlike in video game assets, which
often use texture maps to fake geometrical details (e.g.
a surface appears rugged but is in fact flat), all geomet-
ric details in Infinigen are real. This ensures accurate
geometric ground truth for 3D reconstruction tasks.

• Free and open-source: Infinigen builds on top of
Blender [17], a free and open-source graphics tool.
Infinigen’s code is released for free under the GPL
license, same as Blender. Anyone can freely use
Infinigen to obtain unlimited assets and renders ‡.

‡The output of GPL code is generally not covered by GPL.
See www . gnu . org / licenses / gpl - faq . en . html #
WhatCaseIsOutputGPL

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Randomly generated, non cherry-picked images produced by our system. From top left to bottom right: Forest, River, Underwater,
Caves, Coast, Desert, Mountain and Plains. See the supplement for larger, higher resolution samples.

Infinigen focuses on the natural world for two reasons.
First, accurate perception of natural objects is demanded
by many applications, including geological survey, drone
navigation, ecological monitoring, rescue robots, agriculture
automation, but existing synthetic datasets have limited cov-
erage of the natural world. Second, we hypothesize that the
natural world alone can be sufficient for pretraining powerful
“foundation models”—the human visual system was evolved
entirely in the natural world; exposure to human-made ob-
jects was likely unnecessary.

Infinigen is useful in many ways. It can serve as a genera-
tor of unlimited training data for a wide range of computer
vision tasks, including object detection, semantic segmen-
tation, pose estimation, 3D reconstruction, view synthesis,
and video generation. Because users have access to all the
procedural rules and parameters underlying each 3D scene,
Infinigen can be easily customized to generate a large variety
of task-specific ground truth. Infinigen can also serve as a
generator of 3D assets, which can be used to build simulated
environments for training physical robots as well as virtual
embodied agents. The same 3D assets are also useful for 3D
printing, game development, virtual reality, film production,
and content creation in general.

We construct Infinigen on top of Blender [17], a graphics
system that provides many useful primitives for procedural
generation. Utilizing these primitives we design and imple-
ment a library of procedural rules to cover a wide range of
natural objects and scenes. In addition, we develop utili-
ties that facilitate creation of procedural rules and enable
all Blender users including non-programmers to contribute;
the utilities include a transpiler that automatically converts

Blender node graphs (intuitive visual representation of pro-
cedural rules often used by Blender artists) to Python code.
We also develop utilities to render synthetic images and ex-
tract common ground truth labels including depth, occlusion
boundaries, surface normals, optical flow, object category,
bounding boxes, and instance segmentation. Constructing
Infinigen involves substantial software engineering: the lat-
est main branch of Infinigen codebase consists of 40,485
lines of code.

In this paper, we provide a detailed description of our
procedural system. We also perform experiments to validate
the quality of the generated synthetic data; our experiments
suggest that data from Infinigen is indeed useful, especially
for bridging gaps in the coverage of natural objects. Finally,
we provide an analysis on computational costs including a
detailed profiling of the generation pipeline.

We expect Infinigen to be a useful resource for computer
vision research and beyond. In future work, we intend to
make Infinigen a living project that, through open-source
collaboration with the whole community, will expand to
cover virtually everything in the visual world.

2. Related Work
Synthetic data from computer graphics have been used in

computer vision for a wide range of tasks [53, 65]. We refer
the reader to [60] for a comprehensive survey. Below we
categorize existing work in terms of application domain, gen-
eration method, and accessibility. Tab. 1 provides detailed
comparisons.
Application Domain. Synthetic datasets or dataset genera-
tors have been developed to cover a variety of domains. The
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Figure 2. For each image (a), we have a high-res mesh (b), which readily yields Depth (c), Surface Normals (d), Occlusion Boundaries (e),
Instance Segmentation masks (f), and 2D / 3D bounding boxes (g/h). From rendering metadata, we obtain Optical Flow (i), and material
parameters such as Albedo (j), Lighting Intensity (k) and Specular Reflection (l).

Synthetic Dataset Domain # Triangles # Scenes # Assets Free Procedural Procedural Provides External Asset SourcePer-Scene in Total in Total Assets Arrangement Assets Procedural Code

GTA-V [65] Driving, Urban - - - No No No N/A Grand Theft Auto
MOTSynth [22] Urban - - - No No No N/A Grand Theft Auto
MVS-Synth [35] Driving, Urban - - - No No No N/A Grand Theft Auto
DeformingThings4D [48] Animals/Humanoids - 2K 2K Yes No No N/A Adobe Mixamo [2]
DeepFurniture [53] Indoor - 20K - No No No N/A Professional Designers
Robotrix [25] Indoor - 16 - No No No N/A UE4Arch, UnrealEngine Marketplace [7]
SUNCG [70] (+ [49, 69, 88]) Indoor - 46K 2.6K No No No N/A Planner5D [6]
TartanAir [83] In/Outdoor, Natural/Urban - 30 - No No No N/A UnrealEngine Marketplace [7]
Hypersim [66] Indoor 100K-11M 461 59K No ($6000) No No N/A Evermotion Architectures [4]
OpenRooms [50] Indoor 1M 1.3K 3K No ($500) No No N/A Scan2CAD [9], ShapeNet [16], Adobe Stock [3]
Sintel [15] Medieval, Natural 300K 27 - No ($11) No No N/A Blender Foundation [17]
Structured3D [89] Indoor - 22K 472K No No No N/A Professional Designers
SceneNet-RGBD [57] Indoor 420K 57 5.1K Yes No No N/A ShapeNet [16], SceneNet [29]
3D-Front [23] Indoor 60K 19K 13K Yes No No N/A 3D-FUTURE [24]
Jiang et al. [39] Indoor - ∞ 54K No Yes No No ShapeNet [16], Planner5D [6]
InteriorNet [47] Indoor - 22M 1M No Yes No No Manufacturers / Kujiale [5]
FaceSynthetics [84] Faces 7.4K - ∞ No N/A Partial No Artist-Created Faces (textures, hair, clothing)
Meta-Sim2 [19] Driving, Urban - ∞ ∞ No Yes Partial No -
Synscapes [80, 85] Driving, Urban - 25K - No Yes Partial No 7D-Labs [1]
ProcSy [41] Driving, Urban - ∞ ∞ Yes Yes Partial No CityEngine, OpenStreetMap [28], Manual Annotation
ProcTHOR [18] Indoor - ∞ 1.6K Yes Yes No Yes AI2-THOR [43], Professional Designers
Kubric [27] Scattered Objects 161K ∞ 52K Yes Yes No Yes ShapeNet [16], Google Scanned Objects [21]

Infinigen (Ours) Natural Dynamic ∞ ∞ Yes Yes Yes Yes None(16M @ 1080p)

Table 1. Comparison to existing synthetic datasets or generators. Ours is entirely procedural, relying on no external assets, and can produce
infinite original assets and scenes. Many existing datasets use external, static asset libraries. Procedural generation is often limited to object
placement or a subset of objects. The vast majority of datasets are also restricted to the built environment, especially indoor scenes. In
terms of accessibility, many do not provide free assets or make code available. Many works do not report average triangles per scene; where
possible, we calculate this using generous assumptions from the numbers they do report. Dashes represent numbers we were not able to
obtain or estimate. In counting the number of assets, we exclude trivial modifications like re-lighting and re-scaling.

built environment has been covered by the largest amount
of existing work [15, 22, 27, 46, 48, 56, 79, 83] especially
indoor scenes [18, 25, 39, 45, 49, 50, 53, 66, 69, 70, 73, 88, 89]
and urban scenes [19, 22, 35, 41, 65, 80, 85]. A significant
source of synthetic data for the built environment comes
from simulated platforms for embodied AI, such as AI2-
THOR [43], Habitat [74], BEHAVIOR [72], SAPIEN [86],
RLBench [37], CARLA [20]. Some datasets, such as
TartanAir [83] and Sintel [15], include a mix of built and

natural environments. There also exist datasets such as
FlyingThings [56], FallingThings [79] and Kubric [27]
that do not render realistic scenes and instead scatter
(mostly artificial) objects against simple backgrounds.
Synthetic humans are another important application domain,
where high-quality synthetic data have been generated for
understanding faces [84], pose [8, 81], and activity [40, 71].
Some datasets focus on objects, not full scenes, to serve
object-centric tasks such as non-rigid reconstruction [48],
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flower.py

# Petal Parameters
Density  = uniform(20,5)
Curl     = uniform(0,50°)
Length   = 
normal(.03,.01)
Wrinkle  = normal(1 -2,2-3)
...

def make_asset (*params):
...

Figure 3. Our Node Transpiler converts artist-friendly Node-Graphs
(left) to procedural code (middle) which produces assets (right).

Fake Geometry Real Geometry

Figure 4. Real-time optimized assets (left) often use low res. ge-
ometry in conjunction with shading tricks and alpha-masked image
textures to give the illusion of geometric detail. Infinigen assets
(right) instead model objects in full geometric detail. Bottom left
triangles show a random color per mesh face.

Figure 5. Examples of a subset of our material generators. Columns
1-4 are for terrain, 5-7 are for creatures, and 8 is miscellaneous.

view synthesis [59], and 6D pose [34].
We focus on natural objects and natural scenes, which

have had limited coverage in existing work. Even though
natural objects do occur in many existing datasets such as
urban driving, they are mostly on the periphery and have
limited diversity.
Generation Method. Most synthetic datasets are con-
structed by using a static library of 3D assets, either ex-
ternally sourced or made in house. The downside of a static
library is that the synthetic data would be easier to overfit.
Procedural generation has been involved in some existing
datasets or generators [18, 27, 32, 39, 47], but is limited in
scope. Procedural generation is only applied to either object
arrangement or a subset of objects, e.g. only buildings and
roads but not cars [41, 85]. In contrast, Infinigen is entirely
procedural, from shape to texture, from macro structures to
micro details, without relying on any external asset.

Asset Type Num. Generators Interpretable DOF

Terrain 26 17
Materials 50 271
Weather, Fluid 19 61
Rocks 4 12
Small Plants 30 258
Trees 3 26
Creatures 39 315
Scattering 11 110

Total 182 1070

Table 2. Approximate degrees of freedom, as a proxy of overall
diversity. We count only distinct human-understandable parameters
with useful ranges of interpolation, with the caveat that this could be
an overestimate as not all parameters are fully independent. Some
asset classes (e.g terrain) are based on physics simulation and have
many more internal degrees of freedom not counted here. See the
supplement for a full list of named parameters.

Accessibility. A synthetic dataset or generator is most
useful if it is maximally accessible, i.e. it provides free
access to assets and code with minimum use restrictions.
However, few existing works are maximally accessible.
Often the rendered images are provided, but underlying
3D assets are unavailable, not free, or have significant use
restrictions. Moreover, the code for procedural generation,
if any, is often unavailable.

Infinigen is maximally accessible. Its code is available
under the GPL license. Anyone can freely use Infinigen to
generate unlimited assets.

3. Method
Procedural Generation. Procedural generation refers to the
creation of data through generalized rules and simulators.
Where an artist might manually create the structure of a sin-
gle tree by eye, a procedural system creates infinite trees by
coding their structure and growth in generality. Developing
procedural rules is a form of world modeling using compact
mathematical language.
Blender Preliminaries. We develop procedural rules pri-
marily using Blender, an open-source 3D modelling software
that provides various primitives and utilities. Blender repre-
sents scenes as a hierarchy of posed objects. Users modify
this representation by transforming objects, adding primi-
tives, and editing meshes. Blender provides import/export
for most common 3D file-formats. Finally, all operations
in Blender can be automated using its Python API, or by
inspecting its open-source code.

For more complex operations, Blender provides an intu-
itive node-graph interface. Rather than directly edit shader
code to define materials, artists edit Shader Nodes to com-
pose primitives into a photo-realistic material. Similarly,
Geometry Nodes define a mesh using nodes representing
operators such as Poisson disk sampling, mesh boolean, ex-
trusion etc. A finalized Geometry Node Tree is a generalized
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Figure 6. Random, non cherry-picked terrain-only scenes. We sample 13 images for various natural scene types. From top left to bottom
right; Mountains, Rainy river, Snowy mountains, Coastal sunrise, Underwater, Arctic icebergs, Desert, Caves, Canyons and Floating islands.
See the supplement for a larger, higher resolution sample.

Figure 7. Random, non cherry-picked images of simulated fire,
smoke, waterfalls, and volcano eruptions.

parametric CAD model, which produces a unique 3D object
for each combination of its input parameters. These tools
are intuitive and widely adopted by 3D artists.

Although we use Blender heavily, not all of our procedu-
ral modeling is done using node-graphs; a significant portion
of our procedural generation is done outside Blender and
only loosely interacts with Blender.
Node Transpiler. As part of Infinigen, we develop a suite of
new tools to speed up our procedural modeling. A notable
example is our Node Transpiler, which automates the process
of converting node-graphs to Python code, as shown in Fig.
3. The resulting code is more general, and allows us to
randomize graph structure not just input parameters. This
tool makes node-graphs more expressive and allows easy

Figure 8. Random, non cherry-picked leaves, flowers, mushrooms
and pinecones.

integration with other procedural rules developed directly in
Python or C++. It also allows non-programmers to contribute
Python code to Infinigen by making node-graphs. See the
supplement for more details.

Generator Subsystems. Infinigen is organized into gener-
ators, which are probabilistic programs each specialized to
produce one subclass of assets (e.g. mountains or fish). Each
has a set of high-level parameters (e.g. the overall height of
a mountain), which reflect the external degrees of freedom
controllable by the user. By default, we randomly sample
these parameters according to distributions tuned to mirror
the natural world, with no input from the user. However,
users can also override any parameter using our Python API
to achieve fine grained control of data generation.
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Figure 9. Random, non cherry-picked procedural trees (left), cacti (top right) and bushes (bottom right).

Figure 10. Random, non cherry-picked underwater objects.

Figure 11. Random, non cherry-picked surface scatters. Dense
coverage with procedural assets turns any surface into a convincing
grassland, sea floor or forest floor environment.

Each probabilistic program involves many additional in-
ternal, low-level degrees of freedom (e.g. the heights of every
point on a mountain). Randomizing over both the internal
and external degrees of freedom leads to a distribution of as-
sets which we sample from for unlimited generation. Tab. 2
summarizes the number of human-interpretable degrees of
freedom in Infinigen, with the caveat that the numbers could
be an over-estimation because not all parameters are fully
independent. Note that it is hard to quantify the internal de-
grees of freedom, so the external degrees of freedom serve as

a lower bound of the total degrees of freedom for our system.
Material Generators. We provide 50 procedural material
generators (Fig. 5). Each is composed of a randomized
shader, specifying color and reflectance, and a local
geometry generator, which generates corresponding fine
geometric details.

The ability to produce accurate ground-truth geometry is
a key feature of our system. This precludes the use of many
common graphics techniques such as Bump Mapping and
Phong Interpolation [13, 64]. Both manipulate face normals
to give the illusion of detailed geometric textures, but do so
in a way that cannot be represented as a mesh. Similarly,
artists often rely on image textures or alpha channel masking
to give the illusion of high res. meshes where none exist. All
such shortcuts are excluded from our system. See Fig. 4 for
an illustrative example of this distinction.
Terrain Generators. We generate terrain (Fig. 6) using SDF
elements derived from fractal noise [63] and simulators [12,
33, 36, 58, 63]. We evaluate these to a mesh using marching
cubes [54]. We generate boulders via repeated extrusion, and
small stones using Blender’s built-in addon. We simulate
dynamic fluids (Fig. 7) using FLIP [14], sun/sky light using
the Nishita sky model [61], and weather with Blender’s
particle system.
Plants & Underwater Object Generators. We model tree
growth with random walks and space colonization [67], re-
sulting in a system with diverse coverage of various trees,
bushes and even some cacti (Fig. 9). We provide generators
for a variety of corals (Fig. 10) using Differential Growth
[62], Laplacian Growth [42], and Reaction-Diffusion [26].
We produce Leaves (Fig. 8), Flowers [38], Seaweed, Kelp,
Mollusks and Jellyfish using geometry node-graphs.
Surface Scatter Generators. Some natural environments
are characterized by a dense coverage of smaller objects.
To this end, we provide several scatter generators, which
combine one or more existing assets in a dense layer (Fig.
11). In the forest floor example, we generate fallen tree logs
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Figure 12. Creature Generation. Our system automatically generates genomes (a), parts (b), assembly (c), materials (d) and animation rigs
(e). On the right, we show random, non cherry-picked samples from our Carnivore, Herbivore, Bird, Beetle, and Fish generators.

(a) (b) (c) (d)

Figure 13. Data Generation Pipeline. We procedurally compose a scene layout (a) with random camera poses. We generate all necessary
assets (b, showing a color per mesh face), and apply procedural materials and displacement (c). Finally, we render a photo-real image (d).

10m 30m 85m

Figure 14. Dynamic Resolution Scaling. We show close-up mesh
visualizations (top) of the same content for three different camera
distances. Despite differing mesh resolution, no changes are visible
in the final images (bottom).

by procedurally fracturing entire trees from our tree system.
Due to space constraints, all specific implementation de-

tails of the above are available in the supplement.
Creature Generators. The genome of each creature is
represented as a tree data-structure (Fig. 12 a). This reflects
the topology of real creatures, whose limbs don’t form closed
loops. Nodes contain part parameters, and edges specify part
attachment. We provide generators for 5 classes of realistic
creature genomes, shown in Fig. 12. We can also combine

creature parts at random, or interpolate similar genomes. See
the supplement for details.

Each part generator is either a transpiled node-graph,
or a non-uniform rational basis spline (NURBS). NURBS
parameter-space is high-dimensional, so we randomize
NURBS parameters under a factorization inspired by lofting,
composed of deviations from a center curve. To tune the
random distribution, we modelled 30 example heads and
bodies, and ensured that our distribution supports them.

Our system produces high-quality animation rigs, and
optionally simulates realistic surface folding, sagging and
motion of creature skin using cloth simulation. For hair, we
use the transpiler to automate the process of grooming hairs,
as usually performed by human character artists.
Dynamic Resolution Scaling. With the camera location
fixed, we evaluate our procedural assets at precisely the level
of detail such that each face is < 1px in size when ren-
dered. This process is visualized in Fig. 14. For most assets,
this entails evaluating a parametric curve at the given pixel
size, or using Blender’s built-in subdivision or re-meshing.
For terrain, we perform Marching Cubes on SDF points in
spherical coordinates. For densely scattered assets (incl. all
assets in Fig. 11) we use instancing - that is, we generate
a fixed number of assets of each type, and reuse them with
random transforms within a scene. Even with this effort in
optimization, the average complete scene has 16M polygons.
Image Rendering & Ground Truth Extraction. We ren-
der images using Cycles, Blender’s physically-based path

12636



(a) Wall Time (Hours) (b) Memory (GB) (c) CPU Hours (d) GPU Hours (e) # Triangles per scene

Figure 15. Resource requirements to create a pair of stereo 1080p images using Infinigen.

Training Dataset Adirondack Jadeplant Motorcycle Piano Pipes Playroom Playtable Recycle Shelves Vintage Avg

FallingThings [79] 8.3 43.3 12.3 18.2 25.3 29.7 50.0 10.4 43.3 45.6 28.6
Sintel-Stereo [15] 35.7 62.9 31.1 24.1 31.9 41.7 60.1 30.8 55.8 76.1 45.0
HR-VS [87] 43.5 43.2 17.0 29.6 32.1 34.6 68.4 24.7 57.4 34.9 38.5
Li et al. [46] 23.9 80.2 40.7 32.0 40.3 49.1 67.5 36.6 51.7 42.3 46.4
SceneFlow [56] 7.4 41.3 14.9 16.2 33.3 18.8 38.6 10.2 39.1 29.9 25.0
TartanAir [83] 15.5 45.1 18.1 12.9 28.4 25.6 51.0 20.9 49.1 28.2 29.5
InStereo2K [11] 17.1 59.7 21.3 23.8 35.8 33.9 36.4 20.0 33.4 44.1 32.5
Ours (Infinigen 30K) 7.4 35.2 15.2 20.7 24.7 29.3 50.0 12.6 55.1 46.9 29.7

Table 3. Bad 3.0 (%) ↓ error on the Middlebury [68] validation
set. Infinigen generalizes well to natural objects (e.g. Jadeplant).
However, natural objects contain very few planar or textureless
surfaces; models trained exclusively on natural objects generalize
less well on Middlebury’s indoor scenes.

tracing renderer. We provide code to extract ground truth for
common tasks, visualized in Fig. 2.

Cycles individually traces photons of light to accurately
simulate diffuse and specular reflection, transparent refrac-
tion and volumetric effects. We render at 1920× 1080 res-
olution using 10, 000 random samples per-pixel, which is
standard for blender artists and ensures almost no sampling
noise in the final image.

Prior datasets [15,27,30,32,46] rely on blender’s built-in
render-passes to obtain dense ground truth. However, these
rendering passes are a byproduct of the rendering pipeline
and not intended for training neural networks. Specifically,
they are often incorrect due to translucent surfaces, volumet-
ric effects, motion blur, focus blur or sampling noise. See
the supplement for examples of these issues.

Instead, we provide OpenGL code to extract surface nor-
mals, depth and occlusion boundaries from the mesh directly
without relying on blender. This solution has many benefits
in addition to its accuracy. Users can exclude objects not
relevant to their task (e.g. water, clouds, or any other object)
independently of whether they are rendered. Many annota-
tions like occlusion boundaries are also plainly not supported
by Blender. Finally, our implementation is modular, and we
anticipate that users will generate task-specific ground truth
not covered above via simple extensions to our codebase.

Runtime. We benchmark our Infinigen on 2 Intel(R) Xeon(R)
Silver 4114 @ 2.20GHz CPUs and 1 NVidia-GPU across
1000 independent trials. The wall time to produce a pair of
1080p images is 3.5 hours. Statistics are shown in Fig. 15.

Image Ours Li et al. [46] Sceneflow [56] TartanAir [83] FallingThings [79]

Figure 16. Qualitative results on the Plant and Australia Mid-
dlebury [68] test images. RAFT-Stereo trained using Infinigen
generalizes well to images with natural objects.

4. Experiments

To evaluate Infinigen, we produced 30K image pairs with
ground truth for rectified stereo matching. We train RAFT-
Stereo [51] on these images from scratch and compare results
on the Middlebury validation (Tab. 3) and test sets (Fig. 16).
See the supplement for high resolution qualitative results on
in-the-wild natural photographs.
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[34] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
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