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Abstract

Recent advances in image captioning have focused on
scaling the data and model size, substantially increasing
the cost of pre-training and finetuning. As an alternative
to large models, we present SMALLCAP, which generates a
caption conditioned on an input image and related captions
retrieved from a datastore. Our model is lightweight and
fast to train, as the only learned parameters are in newly in-
troduced cross-attention layers between a pre-trained CLIP
encoder and GPT-2 decoder. SMALLCAP can transfer to
new domains without additional finetuning and can exploit
large-scale data in a training-free fashion since the contents
of the datastore can be readily replaced. Our experiments
show that SMALLCAP, trained only on COCO, has com-
petitive performance on this benchmark, and also trans-
fers to other domains without retraining, solely through re-
trieval from target-domain data. Further improvement is
achieved through the training-free exploitation of diverse
human-labeled and web data, which proves to be effective
for a range of domains, including the nocaps benchmark,
designed to test generalization to unseen visual concepts.1

1. Introduction
The state-of-the-art in image captioning is defined by in-

creasingly large-scale models trained on increasingly large-
scale datasets [11, 18, 39, 42]. Scaling up leads to higher
computational demands for model pre-training and finetun-
ing on downstream tasks. This becomes especially relevant
when numerous model versions may be needed for different
visual domains [1] and end-users in practical applications,
e.g. image captioning for the visually impaired [10].

Some efforts have been made recently to reduce the cost
of model training, e.g., ClipCap [25] and I-Tuning [22].

1Code: https://github.com/RitaRamo/smallcap.
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Figure 1. SMALLCAP’s performance on the COCO dataset and
on the out-of-domain split of the nocaps dataset, compared to
other approaches in terms of number of trainable parameters. We
can control the number of trainable parameters through the dimen-
sionality of the cross-attention (d = dv = dk) and the size of the
decoder. SMALLCAP is competitive to other lightweight models
on COCO, and outperforms much larger models on nocaps.

These models use an off-the-shelf pre-trained vision en-
coder and language decoder. The parameters of these pre-
trained components are frozen and only a mapping between
the two is trained for the task of image captioning. This
results in a highly reduced number of trainable parameters
(⇠43M in each case) and faster training time. While these
models operate on a much more manageable scale from
a research perspective, they can still be unsuitable for the
aforementioned practical applications, as both models re-
quire separate training for every use-case.

This work presents SMALLCAP, an image captioning
model, prompted with captions retrieved from an external
datastore of text, based on the input image. This formula-
tion of image captioning enables a range of desirable prop-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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erties: lightweight training, training-free domain transfer,
and exploitation of large data in a training-free fashion.

SMALLCAP is both light to train and highly effective
(see Figure 1).2 It uses a pre-trained CLIP vision encoder
[29] and GPT-2 language model [31], which are frozen and
linked through new cross-attention layers amounting to 7
million trainable parameters. Through retrieval, the model
leverages external data and therefore has to store less in-
formation within its weights (as demonstrated in Figure 6).
Trained on the common COCO benchmark [7], SMALLCAP
performs on par with other lightweight-training models, de-
spite an 83% reduction in number of trainable parameters.

SMALLCAP can also leverage data in a training-free
manner. Once the model is trained, we can replace the
datastore with either (i) captions from a new domain or
(ii) a large and diverse collection of captions. In the first
case, which presents an alternative to finetuning, SMALL-
CAP gains access to the style and concepts that charac-
terize the new domain and can generate captions accord-
ingly. In the second case, which presents an alternative to
generalized pre-training, SMALLCAP gains access to gen-
eral knowledge that it can apply to any domain. Our ex-
periments show that SMALLCAP effectively leverages new
knowledge accessed through a retrieval-based prompt, im-
proving its performance on different datasets. This includes
the challenging VizWiz dataset, where images are captioned
for the visually impaired [10], and the nocaps challenge
dataset with rarely-seen and unseen visual concepts [1].

SMALLCAP competes with other lightweight-training
models on in-domain evaluations and outperforms them by
a large margin out-of-domain. It overcomes a key limita-
tion of previous models, which require explicit finetuning
to adapt to new domains, and in this way attests to the po-
tential of retrieval augmentation for multimodal tasks.

2. Related Work
2.1. Image Captioning Models

Current approaches to image captioning employ
encoder-decoder methods, where an input image is passed
to a visual encoder and a caption is generated by an auto-
regressive language decoder [4, 46]. The state-of-the-art
is currently held by general purpose vision-and-language
(V&L) models [11, 18, 19, 42]. These large-scale models
are pre-trained on large amounts of image-text pairs to
learn generic multimodal features, after which they can be
finetuned to a downstream task such as image captioning,
with a separately-optimized model needed for each image
captioning dataset. As such, these models require excessive
resources for training and deployment.

2The nocaps results shown in the figure include only models that fol-
low the challenge guidelines, by training on the COCO dataset only.

2.2. Freezing Image Captioning Models
Components of the image captioning model can be ini-

tialized with pre-trained weights, frozen in part or com-
pletely [2], as a way to prevent catastrophic forgetting [24],
i.e. to maintain good generalization. As frozen model
parameters require no gradient updates, training becomes
faster and occupies less GPU memory. ClipCap and I-
Tuning [22, 25] are two lightweight-training image cap-
tioning models which use a pre-trained vision encoder,
CLIP [29], and language decoder, GPT-2 [31], as frozen
model components. To map between these two indepen-
dently trained components, ClipCap employs prefix-tuning,
mapping a fixed-length CLIP embedding of the image into
the GPT-2 language space. I-Tuning extracts visual memory
embeddings from CLIP and uses those to adjust the output
hidden states of GPT-2. In SMALLCAP, we also use CLIP
and GPT-2, instead connected through a set of trainable
cross-attention layers. The novelty here is that SMALLCAP
uses retrieval augmentation to maintain performance while
substantially reducing the number of trainable parameters.

2.3. Retrieval-Augmented Generation
Retrieval-augmented language generation consists of

conditioning generation on additional information that is re-
trieved from an external datastore [16]. Retrieval augmen-
tation has been gaining traction in other tasks [12, 17], but
remains largely unexplored in image captioning. Some rel-
evant works in image captioning include [32–34, 44, 49].
Closest to our work, Sarto et al. [34] and Ramos et al. [32]
recently proposed retrieval-augmented transformer-based
captioning models that perform cross-attention over the en-
coded retrieved captions. Our work differs from previous
work in two main ways. We employ a simple prompt-based
conditioning method, wherein retrieved captions are used as
a prompt to a generative language model. Moreover, we are
the first to leverage retrieval augmentation for training-free
domain transfer and generalization in image captioning.

2.4. Prompting Text Generation
Prompts have become a common way to pass addi-

tional instructions and task demonstrations to a pre-trained
language model [30]. In vision-and-language learning,
prompts have been used to instruct a model to perform one
of multiple tasks it was trained for [18], or to apply it to a
new task in a zero-shot fashion [13, 36]. We use prompts
with a task demonstration tailored to the specific input im-
age, as a means towards retrieval augmentation.

3. Proposed Approach
3.1. Model

SMALLCAP is a lightweight-training image captioning
model augmented with retrieved captions through the use of
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Figure 2. The SMALLCAP approach to image captioning. (a) SMALLCAP generates a caption conditioned on the encoded input image,
as well as a set of k retrieved captions which are used as a task demonstration, input to the decoder as a prompt. (b) The k captions are
retrieved from a datastore of N captions via image-to-text retrieval.

a prompt. SMALLCAP combines powerful pre-trained uni-
modal models in an encoder-decoder architecture, as shown
in Figure 2 (a). As encoder we use CLIP [29], which pro-
duces a sequence of patch embeddings. As decoder we
use GPT-2 [31]. These two models operate in different
vector spaces, so we connect them with multi-head cross-
attention, through which each layer of the decoder attends
to the encoder outputs [37]. In order to reduce the com-
pute requirements for training and to preserve their general-
ization capabilities, we freeze the encoder and decoder and
only train the randomly-initialized cross-attention layers be-
tween them. We further control the number of trainable pa-
rameters through the dimensionality of the projection matri-
ces in the cross-attention layers, which we denote as d. For
GPT-2, a model with dmodel = 768 hidden dimensions and
h = 12 cross-attention heads, d defaults to 64 (dmodel/h),
as per Vaswani et al. [37], but can be arbitrarily set to any
value (see Appendix A for more details).

Similarly to retrieval-augmented models for other
tasks [12, 16, 17, 40], SMALLCAP does not need to store
all necessary information within its parameters, because it
has access to external knowledge from a datastore of text.

3.2. Prompting with Retrieved Captions

Instead of the image-to-image retrieval methods used in
recent work [34], which are limited to image captioning
data in the datastore, we employ image-to-text retrieval, as
shown in Figure 2 (b). In this way, SMALLCAP can make
use of a datastore containing any type of text that is consid-
ered useful for describing images, be that image captions,
video captions, audio captions, etc. Here, we exploit the
full CLIP model, with its vision and text encoders, which
map the two modalities into a shared vector space. We en-

code an input image and the contents of the datastore, and
use nearest neighbor search based on cosine similarity to
retrieve the k text items from the datastore most similar to
the image. The retrieved text is used to fill the slots in a
fixed prompt template of the following form: Similar
images show {caption1}...{captionk}. This
image shows .3 The last sentence of the prompt is
similar to the simple, fixed prompts used in other stud-
ies [18], but here this cue is preceded by a demonstration of
the captioning task, tailored to the input image. The decoder
receives this prompt as input tokens and then generates a
caption conditioned on the image features V and the task
demonstration X. The weights in the cross-attention layers
(✓) are trained by minimizing the cross-entropy loss of pre-
dicting the M tokens in the reference y1, . . . , yM :

L✓ = �
MX

i=1

logP✓(yi|y<i,X,V; ✓). (1)

The datastore used to train SMALLCAP can change from
training to inference, depending on the application. For ex-
ample, additional data can be added to enable better gener-
alization, or the datastore can be entirely swapped for new
data at inference time to enable domain transfer without the
need for retraining, as shown in Section 5.

4. Main Experiments
4.1. Experimental Setup

SMALLCAP’s encoder and decoder are initialized re-
spectively from CLIP-ViT-B/32 and GPT-2Base, as available

3See Appendix C for more information on the prompt template.
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Model |✓| B@4 M CIDEr S

Large Models with V&L pre-training

LEMONHuge [11] 675 41.5 30.8 139.1 24.1
SimVLMHuge [42] 632 40.6 33.7 143.3 25.4
OSCARLarge [19] 338 37.4 30.7 127.8 23.5
BLIPCapFilt-L [18] 224 39.7 - 133.3 -

Lightweight-training models

I-TuningLarge [22] 95 34.8 29.3 119.4 22.4
CaMEL [5] 76 39.1 29.4 125.7 22.2
I-TuningMedium [22] 44 35.5 28.8 120.0 22.0
ClipCap [25] 43 33.5 27.5 113.1 21.1
I-TuningBase [22] 14 34.8 28.3 116.7 21.8
SMALLCAP 7 37.0 27.9 119.7 21.3

SMALLCAPd=16, Large 47 37.2 28.3 121.8 21.5
SMALLCAPd=16, Med 22 36.5 28.1 120.7 21.6
SMALLCAPd=8, Base 3.6 36.7 27.8 119.1 21.1
SMALLCAPd=4, Base 1.8 36.0 27.4 117.4 21.0

Table 1. Results on the COCO test set with cross-entropy training.
|✓|: number of trainable parameters in the model (in millions).

on HuggingFace [43]. The encoder and decoder are not up-
dated and only the cross-attention layers between them are
trained. A 12-head cross-attention layer is added to each
of the 12 layers of GPT-2. To achieve a low number of
trainable parameters, we vary the dimensionality of the pro-
jection matrices in the cross-attention layers, d, by scaling
from the default size of 64 down to 16, 8 and 4, which re-
sults in model variants with 7M, 3.6M and 1.8M trainable
parameters, respectively. Our main model, SMALLCAP, has
7M trainable parameters and a total of 218M parameters (in-
cluding the frozen CLIP encoder and GPT-2 decoder).

The cross-attention layers are trained on the COCO
dataset [7] using the standard Karpathy splits [15]. The
models are trained to minimize the cross-entropy loss using
an AdamW optimizer [21] with an initial learning rate of
1e-4 and a batch size of 64. Training runs for 10 epochs and
we use the epoch checkpoint with the best CIDEr score on
the validation set. Training takes up to 8 hours on a single
NVIDIA A100 GPU, using 16 GB of the available memory.

During training, the model is prompted with a set of
k = 4 captions per image, retrieved from a datastore of the
training captions from COCO. Retrieval is based on CLIP-
ResNet-50x644 representations of input images and cap-
tions in the datastore, the latter being precomputed offline
and indexed with FAISS [14] for efficient nearest neighbor
searching.5 During inference, the model generates a caption
using beam search decoding with a beam size of 3. Infer-
ence, including retrieval and prompting, takes 0.22 seconds

4Downloaded from https://github.com/openai/CLIP
5We use an inner product index (IndexFlatIP) without any training

and normalize the representations to search based on cosine similarity.

Model In Near Out Entire

OSCARLarge
⇧ 84.8 82.1 73.8 80.9

CaMEL? 88.1 79.1 54.6 75.9
ClipCap? 74.5 65.6 47.1 63.4
SMALLCAP 83.3 77.1 65.0 75.8
SMALLCAP+W+H 87.9 84.6 84.4 85.0

Table 2. CIDEr results on the nocaps test set. ⇧: Results copied
from the respective publications. ?: Results computed by us.
+W+H: datastore with additional Web and Human-labeled data.

on average across 1,000 randomly sampled images, com-
pared to 0.19 seconds without retrieval. For more details on
design choices and hyperparameters, see Appendix B.

For evaluation, we compute the standard metrics:
BLEU-4 (B@4) [27], METEOR (M) [8], CIDEr [38], and
SPICE (S) [3], using the COCO evaluation package.6

4.2. Benchmark Results
Here, we report results on COCO [7], as well as on

nocaps [1], a challenge dataset for evaluating the general-
ization capabilities of models trained on COCO.

COCO: In Table 1 we benchmark our approach on the
COCO dataset. In the top half of the table, we acknowledge
the strong performance of large-scale pre-trained models,
ranging in size from 224M to 675M trainable parameters.
We also note that these models are pre-trained on 4M–1.8B
image-caption pairs, i.e., much more than the COCO data.

In the lower half of the table we see how our approach
compares to other lightweight-training models. With only
7M parameters, SMALLCAP performs better or on par with
ClipCap and I-Tuning. In this in-domain setting, it is
only outperformed by CaMEL, which is trained end-to-end
with eleven times as many trainable parameters. Reduc-
ing the number of trainable parameters to 3.6M, SMALL-
CAPd=8, Base still yields competitive performance, and even
with just 1.8M trainable parameters, SMALLCAPd=4, Base is
better than the substantially larger models ClipCap and I-
TuningBase. We also experiment with Medium and Large
GPT-2 decoders (SMALLCAPMedium and SMALLCAPLarge in
Table 1), and find that performance scales: by one CIDEr
point from Base to Medium and by another point from
Medium to Large.7 Despite its small size, SMALLCAP
shows competitive performance on COCO, the dataset it
was trained on. In contrast to previous lightweight-training
models, SMALLCAP further has the ability to generalize
and transfer out-of-domain without retraining, as shown in
subsequent experiments.

6https://github.com/tylin/coco-caption
7See Appendix E for more results regarding scaling the decoder.

2843



nocaps: Results on the nocaps test set are reported
in Table 2.8,9,10. SMALLCAP clearly outperforms other
lightweight methods Out-of-domain and achieves competi-
tive performance In-domain and Near-domain. The model’s
strong generalization capabilities point to it being less prone
to over-fitting as it does not need to memorize its training
data, available also through retrieval. Our model can fur-
ther improve when additional data is placed in the datas-
tore, as seen in SMALLCAP+W+H. In this variant, described
in more detail in Section 5.2, the COCO datastore is aug-
mented with diverse web (W) and human-labeled (H) data.
SMALLCAP+W+H shows impressive generalization capabili-
ties, outperforming the much larger OSCARLarge by over 10
points in the Out-of-domain setting. Next, we further ex-
plore SMALLCAP’s ability for training-free transfer to new
domains on diverse datasets.

5. Training-Free Use of Data
In this section, we study SMALLCAP’s ability to lever-

age new data in its datastore in a training-free manner, i.e.
all experiments presented here constitute changes made to
the datastore at inference time, while the model, trained
on COCO, remains fixed. The focus is on out-of-domain
performance as measured on a diverse set of captioning
datasets: Flick30k [47], VizWiz [10] and MSR-VTT [45].
The latter is in fact a video captioning dataset, which we
adapt by converting video clips into an image of four 4
frames, sampled at 0, 25, 50 and 100% of the clip dura-
tion (see the MSR-VTT example in Figure 5). We start by
exploring different configurations of the datastore, with the
results in Table 3 reported on validation data.

5.1. In-domain Data
In the top of Table 3, we show how SMALLCAP performs

when its datastore is populated with the training data asso-
ciated with each respective dataset (In-domain). In com-
parison to using COCO captions in the datastore (COCO),
the model performance substantially increases for all three
datasets. This shows that SMALLCAP adapts to the re-
trieved information to achieve domain transfer. The im-
provement is most notable for VizWiz, likely because the
nature of this dataset is very distinct from COCO, and thus
there is a larger domain gap to be closed.

5.2. Augmenting the Datastore
In Table 3 (Datastore augmentation), we augment the in-

domain datastore with additional large-scale data in an ef-
8OSCARLarge results with COCO-only training. CaMEL results with

CLIP-ResNet-50×16, �kd = 0.1, no mesh connectivity, and a cross-
entropy objective (checkpoint obtained through personal communication).

9We only include results from models which follow the nocaps guide-
lines to not train on image-caption pairs beyond COCO [1]. As we use only
captions for retrieval, our method is also in line with these guidelines.

10We also include results on the validation set in Appendix D.

SMALLCAP datastore F30K VW MV

COCO 52.2 34.5 23.3
In-domain 55.4 47.7 29.2

Datastore augmentation

In-domain + Web 58.6 48.0 29.8
In-domain + Human-labeled 57.6 47.5 30.9
In-domain + W + H 57.9 48.0 30.7

Domain-agnostic

Web 58.4 42.4 27.6
Human-labeled 56.6 36.4 29.0
Web + Human-labeled 57.8 42.2 29.9

Table 3. Exploration of the training-free use of data. Validation
performance of SMALLCAP measured in CIDEr score, with differ-
ent contents of the datastore, without any finetuning on Flickr30k
(F30K), VizWiz (VW), and MSR-VTT (MV). The best number
per section is underlined; the best number overall is in bold.

fort to improve generalization. We experiment with diverse
web data (which is large-scale but automatically labeled)
and human-labeled data (smaller-scale but clean).11

+ Web Data: We first consider large-scale data from the
web, expanding the datastore with text from three web
datasets [18] (Conceptual Captions [35], Conceptual 12M
[6], and SBU captions [26]).12 The results with In-domain
+ Web in Table 3 show that performance improves for
all three datasets. We can see a bigger improvement on
Flickr30K and MSR-VTT when using a large and diverse
datastore compared to just using in-domain data. Improve-
ment on VizWiz, on the other hand, remains low, in line
with the earlier observation that this dataset has a distinct
distribution that is not easily matched by other data.

+ Human-labeled Data: We also consider smaller-scale
but clean human-labeled data. As discussed in Section 3.2,
the datastore can contain any type of text that can be use-
ful to describe images, thus not being constrained by the
assumption of image-caption pairs. As such, we consider
text not only from image captions (COCO [7], Flickr30k
[47], VizWiz [10]), but also from video captions (MSR-
VTT [45], VATEX [41], TGIF [20]), audio captions (Clotho
[9]), and localized narratives (LN ADE20k, LN COCO, LN
Flickr30k, LN OpenImages [28]).

As seen in In-domain + Human-labeled, adding human-
labeled data to the datastore leads to an improvement over
using in-domain data only for Flickr30k and MSR-VTT but
not for VizWiz. In comparison to In-domain + Web, this

11Data size and further details can be found in Appendix F.
12We use a trained FAISS index (IndexIVFFlat) for faster search.
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Flickr30K VizWiz MSR-VTT

ClipCap 41.2 28.3 12.5
CaMEL 55.2 37.6 20.7
SMALLCAP 60.6 55.0 28.4

Pre-training & finetuning

SOTA 79.6 [23] 120.8 [39] 75.9 [39]

Table 4. Out-of-domain performance without additional training,
measured in CIDEr score on the test data. Flickr30K and VizWiz
results with In-domain + Web, and MSR-VTT result with In-
domain + Human-labeled. We include SOTA results from large-
scale pre-trained models, finetuned on the respective datasets.

improvement is smaller for Flickr30k, but larger for MSR-
VTT. Although smaller than web data, human-labeled data
benefits MSR-VTT more, because it contains text from dif-
ferent tasks, including video captioning.

+ Web + Human-labeled Data: Seeing that SMALLCAP
can benefit both from Web and from Human-labeled data as
augmentations over in-domain data alone, we also consider
a combination of the two, to determine whether their contri-
butions are complementary or overlapping. The results for
In-domain + W + H in Table 3 show that combining the two
sources of data is not beneficial for any of the three datasets.

5.3. Domain-agnostic Datastore
In this section, we study whether SMALLCAP could still

perform well without access to in-domain data and report
results under the heading Domain-agnostic in Table 3. We
find that the patterns observed above with in-domain data
largely hold without it as well. With the large and diverse
Web datastore, SMALLCAP performs close to or even bet-
ter than with In-domain data. Human-labeled data is again
seen to benefit MSR-VTT the most, the optimal configura-
tion for this dataset being Web + Human-labeled.

From the exploration presented above, we conclude that
SMALLCAP’s image captioning capabilities can transfer
with access to web data in addition to or in place of in-
domain data. The model can also leverage human-labeled
data beyond image-captioning pairs in solving tasks other
than image captioning, such as video captioning.

5.4. Results with the Best Configuration
Having explored different datastore configurations for

each of the three datasets, we use the best configuration
for each to compare zero-shot performance against ClipCap
and CaMEL, both models also trained only on COCO. In
Table 4 we show test set performance (in CIDEr score) with
a datastore consisting of In-domain + Web for Flickr30k
and VizWiz, and In-domain + Human-labeled for MSR-

Ɣ D�FORVHXS�RI�D�SHUVRQ�LQ�EHG�XQGHU�FRYHUV
Ɣ D� FDW� SHHULQJ� IURP� XQGHU� VRPH� FORWKHV� RU�

EODQNHWV�RQ�D�EHG
Ɣ D� FDW� SHHNLQJ� RXW� RI� WKH� FRPIRUWHU� RQ� D� ODUJH�

EHG
Ɣ D�WDEE\�FDW�OD\LQJ�LQ�EHG�XQGHU�D�FRYHU

Ɣ D� PDQ� LQ� D� UHVSLUDWRU� VDQGV� D� VXUIERDUG� LQ�
SURJUHVV

Ɣ D�PDQ�LQ�D�JDUDJH�ZLWK�D�PDVN�VDQGLQJ�D�ERDUG
Ɣ PDQ� ZHDULQJ� DLU� PDVN� VDQGLQJ� GRZQ� D�

VXUIERDUG�IRUP
Ɣ D�PDQ�ZLWK�UHVSLUDWRU�ZRUNV�RQ�D�VXUI�ERDUG

䕪 D�FDW�SHHNLQJ�RXW�IURP�XQGHU�D�EODQNHW

䕪 D�PDQ�ZHDULQJ�D�PDVN�VDQGLQJ�D�VXUIERDUG

Figure 3. Examples generated by SMALLCAP, together with the
retrieved predictions from the COCO datastore. • denotes the re-
trieved captions, highlighted as green or red to indicate correct and
mismatch captions, respectively. I denotes the generated caption.

VTT. SMALLCAP outperforms both ClipCap and CaMEL
by a large margin on all three datasets. In comparison
to CaMEL, the stronger baseline of the two, we see a
5.4 point improvement on Flickr30k, a noteworthy 17.4
point improvement on VizWiz and an increase of 7.7 points
on MSR-VTT. The large improvement on VizWiz demon-
strates SMALLCAP’s ability to transfer to domains very dis-
tinct from the training data, i.e., COCO. The improvement
on MSR-VTT, on the other hand, shows our approach has
potential not only for other domains but for other tasks
as well. These results show that while other lightweight-
training models lack out-of-domain generalization without
finetuning, our model can transfer across domains by only
swapping the datastore contents. In the bottom of the table,
we provide state-of-the-art results for context, which were
achieved by large-scale pre-trained V&L models, finetuned
specifically on the respective datasets.

6. Discussion
6.1. Qualitative Examples

Figure 3 shows examples of the retrieved and generated
captions for two images from the COCO dataset. In first ex-
ample, we observe that the retrieved captions are highly rel-
evant to the input image and the generated captions are se-
mantically similar to them. As seen in the second example,
SMALLCAP can also be robust to misleading information
from retrieval. Figure 5 shows examples of captions gener-
ated for Flickr30k, VizWiz, and MSR-VTT, with a datastore
populated with COCO or with in-domain data. These quali-
tative results show how SMALLCAP adapts to new domains:
with the help of the retrieved captions, it correctly refers to
the concepts tutu, the Swanson brand name, and Pokemon.
The first two concepts are not present in the COCO training
data at all, while the last is seen just six times.
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Figure 4. Percentage of the retrieved captions that come from each
data source, when testing the model on the different benchmarks
of nocaps , Flickr30k, VizWiz and MSR-VTT.

6.2. Analysis of the Retrieved Captions
In Section 5.3, we demonstrated the ability of SMALL-

CAP to exploit large data in a training-free fashion. Here,
we inspect the distribution of retrieved captions in the In-
domain + Web + Human-labeled setting, in order to under-
stand the individual impact of each dataset. As can be seen
in Figure 4, most text is retrieved from web data, especially
in the presence of unseen visual concepts, as is the case for
nocaps. Besides web data, the model tends to retrieve text
from the corresponding dataset or from a similar domain;
for instance, MSR-VTT retrieval also relies on other video
datasets. Due to its unique distribution, VizWiz stands out
as the case with the highest rate of in-domain retrieval.

Seeing that text from all types of human-labeled data is
retrieved, we measure the actual impact of each type on per-
formance. In Table 5, we report performance on Flickr30k,
VizWiz, and MSR-VTT, with an in-domain datastore aug-
mented with either Image captions, Video captions, local-
ized Narratives, or Audio captions. We see that SMALLCAP
can indeed benefit from data beyond image captions. For in-
stance, video captions help not only for MSR-VTT, but also
for Flickr30k and VizWiz. Flickr30k benefits the most from
localized narratives since this dataset contains narratives for
the Flickr30k images. Audio captions are beneficial for both
Flickr30k and MSR-VTT. Considering the distinct nature of
the audio and visual modalities, this finding demonstrates
the potential of leveraging data which has previously seen
limited application to image captioning.

6.3. The Impact of Retrieval
In Figure 6, we show validation performance with 1.8,

3.6, 7, 14 and 28 million trainable parameters with and
without retrieval augmentation.13 For variants with retrieval
augmentation, performance is stable across the range of

13The model sizes correspond to d = 4, 8, 16, 32 and 64.

Flickr30K VizWiz MSR-VTT

In-domain 52.2 47.7 29.2
+ Image 56.7 47.8 29.8
+ Video 57.0 47.8 31.1
+ Narratives 57.1 47.2 28.7
+ Audio 55.4 47.7 29.4

Table 5. SMALLCAP performance with retrieval from the different
sources of the Human-labeled data. The model can benefit from
having access to text that is not only from image captioning tasks,
but also from other tasks such as audio captioning.

Decoder |✓| B@4 M CIDEr S

GPT2-Based=16 7 37.0 27.9 119.7 21.3
OPT-125Md=16 7 37.6 28.4 122.0 21.7

GPT2-Mediumd=16 22 36.5 28.1 120.7 21.6
OPT-350Md=16 22 37.5 28.7 122.7 22.0

Table 6. Results with different decoders on the COCO test set.

model sizes considered. Reducing the number of trainable
parameters by a factor of four, from 28M to 7M, leads to a
slight drop of 0.6 CIDEr points. This indicates that SMALL-
CAP has a close-to-optimal size to performance trade-off.

Next, we ablate the retrieval augmentation to quantify
its impact. We train models without retrieval augmenta-
tion, prompting them with just the phrase This image
shows. As seen in Figure 6, without the aid of retrieved
captions, there is a notable drop in performance compared
to results with retrieval. Moreover, model performance de-
grades at a higher rate: while performance at the two ex-
tremes of model sizes differs by just 1.7 CIDEr points with
retrieval, without it the difference is 4.3 points.14

In order to confirm that SMALLCAP is not simply para-
phrasing the retrieved captions without attending to the vi-
sual input, we experiment with ablating the visual modality.
For this, we train a model on “blank” input images, setting
the visual features from the encoder to zero. This yields
a much lower CIDEr score of 90.1 on the validation set,
showing that SMALLCAP indeed uses the visual input.

6.4. Alternative Decoders

At the request of the anonymous reviewers, we include
additional experiments with some more recent language
models: OPT-125M and OPT-350M [48], equivalent in size
to GPT2-Base and GPT2-Medium.15 The results in Table 6
show that our approach performs well with these stronger

14See Appendix H for qualitative examples with and without retrieval.
15There is no OPT variant equivalent in size to GPT2-Large.
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Figure 5. Examples of captions generated for Flickr30k, VizWiz and MSR-VTT, with retrieval either from COCO or in-domain data. The
captions use words retrieved from the in-domain datastores which were rarely seen in the COCO training data (tutu, swanson, pokemon).
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Figure 6. CIDEr scores on the COCO validation set, with and
without retrieval, across different cross-attention sizes.

language models and is therefore model agnostic.16,17

7. Conclusion
In this paper, we propose SMALLCAP, an image cap-

tioning model augmented with retrieval, which is light to
train and can be transferred across domains without retrain-
ing. Results on the COCO dataset show that SMALLCAP
is competitive to other lightweight-training models despite

16See Appendix E for OPT results without retrieval.
17Due to our academic computing budget, we only repeat the experi-

ments from Table 1. Future work can experiment further in this direction.

having substantially less trainable parameters, instead lever-
aging non-parametric information from a datastore of text.
Out-of-domain evaluations show that SMALLCAP can also
perform training-free domain transfer when given access to
a datastore with target-domain data. Our model further ben-
efits from diverse web and human-labeled data in addition
to or in place of target-domain data. We find that SMALL-
CAP benefits not just from access to image captions, but
also to video and audio captions (resources neglected in im-
age captioning work in the past).

SMALLCAP’s small size and impressive performance in
out-of-domain settings attest to the potential of retrieval
augmentation as an alternative to the expensive training
found in large pre-trained vision-and-language models and
the costly finetuning that even previous lightweight-training
models require in order to adapt to different image caption-
ing datasets. Future work can apply our retrieval augmen-
tation approach to a wider range of multimodal tasks, and
further explore the scalability of the data used for retrieval.
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scale similarity search with gpus. arXiv preprint
arXiv:1702.08734, 2017. 4

[15] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3128–3137, 2015. 4

[16] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
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