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Abstract

Selecting appropriate datasets is critical in modern com-
puter vision. However, no general-purpose tools exist to
evaluate the extent to which two datasets differ. For this, we
propose representing images – and by extension datasets –
using Distributions of Neuron Activations (DNAs). DNAs fit
distributions, such as histograms or Gaussians, to activa-
tions of neurons in a pre-trained feature extractor through
which we pass the image(s) to represent. This extractor is
frozen for all datasets, and we rely on its generally expres-
sive power in feature space. By comparing two DNAs, we
can evaluate the extent to which two datasets differ with
granular control over the comparison attributes of inter-
est, providing the ability to customise the way distances
are measured to suit the requirements of the task at hand.
Furthermore, DNAs are compact, representing datasets of
any size with less than 15 megabytes. We demonstrate the
value of DNAs by evaluating their applicability on several
tasks, including conditional dataset comparison, synthetic
image evaluation, and transfer learning, and across diverse
datasets, ranging from synthetic cat images to celebrity
faces and urban driving scenes.

1. Introduction

Being able to compare datasets and understanding how
they differ is critical for many applications, including de-
ciding which labelled dataset is best to train a model for de-
ployment in an unlabelled application domain, sequencing
curricula with gradually increasing domain gap, evaluating
the quality of synthesised images, and curating images to
mitigate dataset biases.

However, we currently lack such capabilities. For exam-
ple, driving datasets available covering many domains [2,
4, 9, 16, 17, 22, 35, 54, 62, 64] were collected under diverse
conditions typically affecting image appearance (e.g. loca-
tion, sensor configuration, weather conditions, and post-

Project page and code: bramtoula.github.io/vdna

BDD100K

Target domain

KITTIWildDash IDD

…

(a) When deploying a vision model in a new target domain, selecting mod-
els pre-trained on the most relevant datasets can help. However, there are
no methods to measure dataset similarities automatically. A general dis-
tance between datasets would be sensitive to many variation types, but
DNAs provide sufficient granularity to customise the comparison to focus
on features of interest. For example, DNA comparisons can be customised
to ignore weather conditions or focus on semantic content
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(b) The DNA can also be used to compare individual images to datasets
– for example, to measure the realism and semantic consistency of a syn-
thetic image – or pairs of images – for example, to verify the presence of
similar attributes such as smiling or wearing a hat.

Figure 1. Example use-cases of the DNA representation.

processing). Yet, users are limited to coarse or insufficient
meta-information to understand these differences. More-
over, depending on the application, it might be desirable to
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Figure 2. We propose representing images by passing them through a pre-trained frozen feature extractor network and collecting neuron
activations. We then create a descriptor called the Distribution of Neuron Activations (DNA) by fitting a distribution (the histogram in the
illustration) to the activations at each neuron. We can quantitatively measure the similarity of different datasets or images by comparing
their DNAs. Neuron combination strategies that are sensitive to specific attributes can also allow for customised comparisons of DNAs.

compare datasets only on controlled sets of attributes while
ignoring others. For self-driving, these may be weather,
road layout, driving patterns, or other agents’ positions.

We propose representing datasets using their Distribu-
tions of Neuron Activations (DNAs), allowing efficient
and controllable dataset and image comparisons (Fig. 1).
The DNA creation exploits the recent progress in self-
supervised representation learning [13, 18] and extracts im-
age descriptors directly from patterns of neuron activations
in neural networks (NNs). As illustrated in Fig. 2, DNAs
are created by passing images through an off-the-shelf pre-
trained frozen feature extraction model and fitting a distri-
bution (e.g. histogram or Gaussian) to the activations ob-
served at each neuron. This DNA representation contains
multi-granular feature information and can be compared
while controlling attributes of interest, including low-level
and high-level information. Our technique was designed
to make comparisons easy, avoiding high-dimensional fea-
ture spaces, data-specific tuning of processing algorithms,
model training, or any labelling. Moreover, saving DNAs
requires less than 15 megabytes, allowing users to easily in-
spect the DNA of large corpora and compare it to their data
before committing resources to a dataset. We demonstrate
the results of using DNAs on real and synthetic data in mul-
tiple tasks, including comparing images to images, images
to datasets, and datasets to datasets. We also demonstrate its
value in attribute-based comparisons, synthetic image qual-
ity assessment, and cross-dataset generalisation prediction.

2. Related Works

2.1. Studying Image Datasets

Early dataset studies focused on the limitations of the
datasets available at the time. Ponce et al. [43] highlighted
the need for more data, realism, and diversity, focusing on

object recognition and qualitative analysis (e.g. “average”
images for each class). Torralba and Efros [56] found evi-
dence of significant biases in datasets by assessing the abil-
ity of a classifier to recognise images from different datasets
and measuring cross-dataset generalisation of object classi-
fication and detection models. Nowadays, datasets abound,
and the approaches used to compare them in those early
works would be prohibitive to scale or generalise, often re-
quiring training models for each dataset of interest and ac-
cess to labels.

Compressed datasets representations allow learning
models with comparable properties with reduced dataset
sizes. Dataset distillation approaches [59] synthesise a
small sample set to approximate the original data when used
to train a model. Core-set selection approaches [15], in-
stead, select existing samples, with image-based applica-
tions including visual-experience summarisation [42] and
active learning [50]. While achieving compression of im-
portant data properties, these approaches do not produce
representations that allow easy dataset comparisons, as our
DNA does. Modelverse [34] performs a content-based
search of generative models. Similarly to DNAs, they rep-
resent multiple datasets – generated by different generative
models – using distribution statistics of extracted features
from the images. However, their work does not focus on
granular and controllable comparisons but on matching a
query to the closest distribution.

Synthetic data evaluation for generative models such
as Generative Adversarial Networks (GANs) [3] is usually
framed as a dataset comparison problem, measuring a dis-
tance between datasets of real and fake images. One of
the most widely used metrics is the Fréchet Inception Dis-
tance (FID) [21], which embeds all images into the feature
space of a specific layer of the Inception-v3 network [55].
A multivariate Gaussian is fit to each real and fake embed-
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ding, and the Fréchet distance (FD) between these distribu-
tions is computed. The Kernel Inception Distance (KID) [1]
is another popular approach, which computes the squared
maximum mean discrepancy between Inception-v3 embed-
dings. There are many other variations, such as using pre-
cision and recall metrics for distributions [10, 30, 49, 51],
density and coverage [37], or rarity score [19]. These ap-
proaches rely on high-dimensional features from one layer,
while our approach considers neuron activations across lay-
ers. Furthermore, while these measure dataset differences,
they have mainly been employed to compare real and syn-
thetic datasets within the same domain, not real ones with
significant domain shifts. Moreover, recent evidence sug-
gests the embeddings typically used can cause a heavy
bias towards ImageNet class probabilities [29], motivating
more perceptually-uniform distribution metrics. Addition-
ally, these high-dimensional embeddings make gathering
information about specific attributes of interest challenging
and lead to computational issues (e.g. when clustering).

2.2. Representation Learning

Feature extractors can provide useful multi-granular

features (e.g. containing information about low-level light-
ing conditions but also the high-level semantics), motivat-
ing our design of DNAs. Work on the interpretability of
NNs supports this assumption. Indeed, Olah et al. [5, 39]
explored the idea that NNs learn features as fundamental
units and that analogous features form across different mod-
els and tasks. Neurons can react more to specific inputs,
such as edges or objects [40]. Combining neuron activa-
tions from several images can be a good way to investigate
what a network has learned through an activation atlas [8].

Existing uses of pre-trained feature extractors include
evaluating computer vision tasks such as Inception-v3 fea-
tures for FID and KID, as above. Pre-trained networks
on large datasets also provide generally useful representa-
tions [24], which are often fine-tuned for specific applica-
tions. Notably, Evci et al. [14] found that selecting features
from subsets of neurons from all layers of a pre-trained
network allows better fine-tuning of a classifier head for
transfer learning than using only the last layer, suggesting
that relevant features are accessible by selecting appropri-
ate neurons. Moreover, a pre-trained VGG network [52]
has been used to improve the perceptual quality of synthetic
images [46, 60] or to judge photorealism [46, 65].

Self-supervised training relies on pretext tasks, forego-
ing labelled data and learning over larger corpora, yielding
better representations [24]. Morozov et al. [36] showed that
using embeddings from self-supervised networks such as a
ResNet50 [20] trained with SwAV [6] leads to FID scores
better aligned to human quality judgements when evaluat-
ing generative models. We explore different feature extrac-
tors but exploit a ViT-B/16 [11] trained with Mugs [67] by

default, a recent multi-granular feature technique.

2.3. The need for a more general tool

FID [21] or KID [1] use representation learning to tackle
similar tasks to ours; yet, our formulation extends their ap-
plicability. Quantitative and holistic comparisons between
different real datasets have been overlooked, despite being
critical to tasks such as transfer or curriculum learning. We
argue that a general data-comparison tool must allow select-
ing attributes of interest after having extracted a reasonably
compact representation of the image(s) and permit the user
to customise the distance between representations.

3. DNA - Distributions of Neuron Activations

Our system is designed around the principle of decom-
posing images into simple conceptual building blocks that,
in combination, constitute uniqueness. Yet, to cover all
possible axes of variations, it is infeasible to specify those
building blocks manually. While we cannot usually link
each neuron of a NN to a human concept [40], we show that
they provide a useful granular decomposition of images.

Keeping track of neuron activations independently al-
lows us to combine their statistics and study conceptually-
meaningful attributes of interest. As the activations at each
neuron are scalar, they can easily be gathered in 1D his-
tograms or univariate Gaussians. While we would ideally
track dependencies between neurons, this is too costly to
include in our representation. Nevertheless, we show exper-
imentally that many applications still benefit from DNAs.

3.1. Distribution choice

As in Fig. 2, in this section, we formulate DNAs using
histograms to fit each neuron’s activations distribution. His-
tograms are a good choice because they do not make as-
sumptions about the underlying distribution; however, we
can also consider other distribution approximations. We
also experiment with univariate Gaussians to approximate
the activations of each neuron and produce a DNA, allowing
us to describe distributions with only two parameters. We
denote versions using histograms and Gaussians as DNAhist.

and DNAGauss., respectively.

3.2. Generating the DNA from images

We consider a dataset of images I where |I| � 1. We
also have a pre-trained feature extractor F with L layers L
manually defined as being of interest, and a set N of all
neurons in those layers. Each layer l 2 L is composed of
Nl neurons, each producing a feature map of spatial dimen-
sions S

l
h ⇥ S

l
w. We can perform a forward pass F(i) of

an image i 2 I and observe the feature map f
l
i obtained at

each layer l which has dimensions Nl ⇥ S
l
h ⇥ S

l
w. For

each neuron n 2 N fed with image i, we define a histogram
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h
n
i 2 NB with B pre-defined uniform bins where bin edges

are denoted b0, b1, . . . , bB . The count h
n
i [k] in the bin of in-

dex k for neuron n of layer l is found by accumulating over
all spatial dimensions that fall within the bin’s edges:

h
n
i [k] =

Sl
hX

sh

Sl
wX

sw

(
1, if f

l
i [n, sh, sw] 2 [bk, bk+1)

0, otherwise
(1)

The resulting image’s DNAhist. can then be accumulated to
represent the dataset I as H = {H

n
} for each neuron n 2

N , where the element k of Hn can be calculated as:

H
n[k] =

X

i2I
h
n
i [k] (2)

3.3. Comparing DNAs

Now, comparing DNAshist. reduces to comparing 1D his-
tograms for neurons of interest. Depending on the use case,
different distances can be considered. Some tasks might
need a distance to be asymmetrical and keep track of orig-
inal histogram counts, while normalised counts and sym-
metric distances might be more appropriate for others.

To demonstrate straightforward uses of the representa-
tion, we experiment with a widely accepted histogram com-
parison metric: the Earth Mover’s Distance (EMD). Earlier
works have argued that the EMD is a good metric for image
retrieval using histograms [48], with examples of retrieval
based on colour and texture. This work uses its normalised
version, equivalent to the Mallows or first Wasserstein dis-
tance [32]. The EMD can be interpreted as the minimum
cost of turning one distribution into another, combining
the amount of distribution mass to move and the distance.
Specifically, given the normalised, cumulative histogram

F
n[k] =

kX

j=0

H
n[j]

kHnk1

where k 2 0, . . . , B � 1 (3)

we can easily compute the EMD between two histograms:

EMD(Hn
1 ,H

n
2 ) =

B�1X

k=0

|F
n
1 [k] � F

n
2 [k]| (4)

As every neuron n is independent in the EMD formula-
tion, we can vary the contribution of each to the calculation
of the total distance. This allows us to treat neurons differ-
ently, e.g. when wanting to customise the distance to ignore
specific attributes, as presented in Sec. 5.3. For this, we
introduce the use of a simple linear combination of the his-
tograms through scalar weights W

n for each neuron n:

EMDW (H1, H2) =
X

n2N
W

nEMD(Hn
1 ,H

n
2 ) (5)

In the special case of W
n = 1/|N |, we obtain EMDavg as

the average EMD over individual neuron comparisons.
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Figure 3. Precision-Recall curves and Area Under the Curve
(AUC) for retrieving 2000 individual augmented Cityscapes im-
ages mixed with 8000 images from four other datasets. The re-
trieval compares these images to a reference set of 500 distinct
non-augmented Cityscapes images.

4. Experimental settings

Our experiments evaluate the DNA’s efficacy on various
tasks, datasets, and with diverse feature extractors.

Datasets and weights We use real and synthetic images
from very varied domains – comparing pairs of images,
pairs of datasets, and individual images to datasets. Images
are processed using tools provided by Parmar et al. [41].
Notably, no additional tuning is performed for any experi-
ments, i.e. the feature extractors’ weights are frozen.

Settings Activation ranges vary for different neurons;
it is therefore important to adjust the histogram settings for
each neuron to get balanced distances between neurons. We
thus monitor each neuron’s activation values over a large
set of datasets and track the minimum and maximum values
observed, adding a margin of 20% and using these extremes
to normalise activations between �1 and 1. Notably, the
only hyperparameter for the DNAhist. is the number of bins,
B, which we set to 1000 for our experiments.

Benchmarking Our primary baseline, fd, is the Fréchet
distance [21], which measures the distance of two mul-
tivariate Gaussians that fit the samples in the embedding
space of entire layers of the extractor. We use the acronym
“Fréchet distance (FD)” rather than “Fréchet Inception Dis-
tance (FID)” as we explore different feature extractors than
Inception-v3. Traditionally, fd has been used on a sin-
gle layer, but we show its performance on different com-
binations of the extractor layers. Here, dna-emd denotes
EMD comparisons of our DNAshist., and dna-fd denotes
FD comparisons of our DNAsGauss.. These three settings al-
low us to verify our approach, showing the effectiveness of
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Figure 4. Images from different datasets organised by dna-emd over all neurons against Cityscapes. We successfully discriminate based
on the scene type and its visual aspect. COCO and ADE20K images get poorly ranked when they do not contain city street scenes. The
visual aspect and image quality are also considered, as seen with poorly ranked images when Wilddash images have different lighting or
BDD images have challenging conditions such as rain on the windshield. Images ranked in the middle for BDD tend to contain scenes
without any obvious anomaly but with brightness and colours further from Cityscapes images than better-ranked images.

considering every neuron as independent and not constrain-
ing the activations to fit specific distributions.

We do not consider the Kernel Distance [1] as it is un-
clear how to compress the required information in a com-
pact representation.

Memory footprint We provide details on memory com-
plexity and DNA storage size in Tab. 1.

Method Complexity Theoretical size Observed size
Features N ⇥ n ⇥ S floats 1.10 TB -
Spatially averaged features N ⇥ n floats 5.59 GB 2.91 GB
DNAGauss. 2 ⇥ n floats 159 kB 84.7 kB
DNAhist.

B ⇥ n ints 79.9 MB 14.8 MB

Table 1. Memory footprint of data for N images, n feature extrac-
tor neurons with an average of S elements in their feature maps,
and B bins. Example with FFHQ (89.1GB, N=70k), Mugs ViT-
B/16 (n=9984, S=197) and B=1000 bins. Observed sizes are
from files saved using NumPy’s savez compressed function.

5. Results

5.1. Finding most similar images with domain shifts

We first show the ability of DNAs to find real images
similar to a reference dataset. We have created two datasets:
a reference Dr contains 500 random Cityscapes [9] im-
ages; a comparison Dc contains 2000 images from each
of ADE20K [66], BDD [62], COCO [33], Wilddash [64]
as well as 2000 randomly augmented images (e.g. noise,
blur, spatial and photometric) from Cityscapes that are not
present in Dr. We rank each image from Dc in terms of its
distance to Dr as a whole. We expect the top-ranked Dc

images to all be Cityscapes augmentations. We compare
the use of dna-emd using the EMDavg (Sec. 3.3) to other
perceptual comparison baselines: a perceptual loss [25],
LPIPS [65], SSIM [61], the L2 pixel distance, and rarity

score [19]. All approaches are evaluated using features from
VGG [52]. For approaches comparing image pairs (all ex-
cept ours & rarity score), we define the distance for one Dc

image to Dr as its average distance to each image in Dr.
Fig. 3 shows DNAs performing best at this task while

not requiring expensive pairwise image comparisons. Re-
sults are further improved when using features from a self-
supervised approach, Mugs [67], instead of VGG.

We also verify qualitatively how images from different
datasets from Dc are ranked when compared to Dr using
Mugs features. Fig. 4 shows the successful discrimination
of scene types and visual aspects in all comparisons.

5.2. Number of images required for dataset DNAs

fd is known to work poorly with scarce data [1]. We as-
sess this in Fig. 5, comparing the distance between the entire
ADE20K training set [66] and increasingly larger subsets of
COCO’s training set [33]. Here, fd reaches a steady value
after 10000 samples while dna-emd needs only 400, mak-
ing it a reliable representation even for small datasets.

5.3. Ignoring specific attributes

Here, we demonstrate the granularity provided by indi-
vidual neurons by considering: given DNAs of two datasets,
can we measure the distance between them while ignoring
contributions due to specifically-selected attributes?

Attribute datasets For this experiment, we split the
CelebA training set according to each of the 40 labelled at-
tributes, e.g. smiling or wearing a hat, where A is the set
of all attributes. We use the “in the wild” version of images
which are not cropped and aligned around faces, allowing
us to assess robustness to different locations and scales of
attributes. Considering one attribute a 2 A, we compute
two DNAs, Da, with images with the attribute, and Dā, with
images without the attribute. Neurons whose distributions
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Figure 5. Influence of the number of images on dataset distances
using DINO (ViT-B/16) features. dna-emd requires significantly
fewer samples than fd from the COCO training set to reach a
steady value when compared with ADE20K’s training set. Here,
the distances using all images are non-zero, as there is a domain
shift between the datasets. Dashed lines illustrate the distances
obtained comparing COCO’s training set to its validation set and
to ADE20K to illustrate the scale of the error. Results are averaged
over ten seeds, with vertical lines showing the standard deviations.

vary greatly between these DNAs – i.e. are sensitive – cor-
relate with the attribute.

Learned sensitivity removal and deviation We input
the neuron-wise (for dna-fd and dna-emd) or layer-wise
(for fd) distances between Da and Dā into a linear layer,
which produces a weighted distance with which we can ig-
nore differences of a specific attribute while maintaining
sensitivity to the other attributes. Its parameters correspond
to the weights W for the linear combination in Eq. (5).
Next, we define the sensitivity deviation of attribute a. For
dna-emd:

�a = 1 �
EMDW (Da,Dā)

EMDavg(Da,Dā)
(6)

This and all the following calculations can be applied to
fd and dna-fd with the FD. If a is the only attribute that
changes between Da and Dā, and W is optimised to ig-
nore a, then the EMDW should not be sensitive to a and
EMDW (Da,Dā) = 0, �a = 1. For instance, we have
datasets at night and datasets at day but want to compare
only considering the types of vehicles present. For attributes
to which we want the distance to remain sensitive, b 2 A\a,
we can also measure deviations from the original distance
caused by the weights W using |�b|, indicating the change
in sensitivity of the distance to this attribute. We want no
deviation for these attributes, i.e. |�b| = 0. Finally, we
impose (and back-propagate, using Adam [28]) a loss:

La = |1 � �a| +
1

|A|� 1

X

b2A\a

|�b| (7)

meaning that we will optimise W to desensitize the EMDW

to a but remain sensitive to all other attributes in b 2 A \ a.
CelebA sensitivities Tab. 2 presents results as averaged

over all attributes (i.e. with a = hat and b being all other
attributes, then a = glasses and b all others, etc.). The
results clearly show that neuron granularity is crucial for
success as fd, which operates layer-wise, falls short against
dna-emd and dna-fd. Averaged over all attributes, our
approach can discard 95.5% of the distance over the at-
tributes on which we remove sensitivity, while only caus-
ing a 9.6% of deviation in distances over other attributes.
dna-emd performs slightly better than dna-fd, but both
do very well. We observe that all feature extractors con-
sidered can somewhat succeed at the task, including the
ResNet-50 with random weights, which we expect to still
produce valuable features [45]. However, we obtain the
best results using self-supervised models which are likely
to produce more informative features.

Finding similar images Qualitatively, we expect neu-
rons to react to general and consistent features, which
should also apply to comparing image pairs and different
datasets. To verify this, we compare image pairs from
a different dataset, FFHQ [26], with and without spe-
cific attributes (eyeglasses and wearing hat) and
select the neuron(s) with the highest dna-emd sensitiv-
ity on CelebA. Using the selected neurons, we compare the
DNAhist. of a selected reference image to DNAshist. of 2000
random FFHQ samples. We present our results in Fig. 6.
We can verify that very few neurons are required to focus
on high-level semantic attributes, even when selected on a
different dataset. We still observe some errors, possibly due
to neurons reacting to several attributes simultaneously.

5.4. Synthetic Data

Related systems have been used in the evaluation of
synthetic image-creation techniques. We thus qualitatively
investigate the use of dna-emd to evaluate the quality
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Feature extractor Mean target attribute a sensitivity removal �a (%) % Mean other attributes sensitivity deviation 1
|A|�1

P
b2A\a |�b|(%) &

Fréchet Distance DNA-Fréchet Distance DNA-EMD Fréchet Distance DNA-Fréchet Distance DNA-EMD
Inception-v3 [55] 9.6 94.8 92.3 9.1 11.9 10.9
CLIP image encoder (ViT-B/16) [44] 20.1 93.7 94.3 17.6 7.2 7.4
Stable Diffusion v1.4 encoder [47] - 87.7 81.4 - 19.4 19.3
Random weights (ResNet-50) [45] 11.6 72.1 83.4 10.1 33.0 20.1
DINO (ResNet-50) [7] 15.8 87.3 93.5 8.9 16.2 9.4
DINO (ViT-B/16) [7] 19.0 93.9 94.2 16.3 10.2 9.6
Mugs (ViT-B/16) [67] 20.0 93.7 95.5 16.7 10.3 9.6
Mugs (ViT-L/16) [67] 34.6 93.3 95.3 28.0 9.4 9.1

Mean 18.7 89.6 91.2 15.2 14.7 11.9

Table 2. Customising different dataset comparison techniques to be insensitive to specific attributes. For each of the 40 attributes in
CelebA, we use a weighted combination of distances over different layers or neurons with weights optimised such that the resulting distance
between images with and without the attribute becomes zero. This is captured in the “target attribute sensitivity removal”, which measures
the relative drop in distance. We must ensure that the distance remains sensitive to the other 39 attributes. The “other attributes sensitivity
deviation” measures the relative deviation in the original distance caused by the customisation. We show averages over all attributes on the
CelebA testing set. fd can only combine distances over individual layers, making it challenging to ignore some attributes while preserving
others. On the other hand, neuron-wise metrics such as dna-fd and dna-emd provide sufficient granularity for customising the distance
to ignore one attribute while preserving the others. We only consider the latent space of Stable Diffusion v1.4, which we treat as a single
layer – hence we cannot perform a weighted combination of layers for the fd approach.

Figure 6. We seek to find the closest match to a reference image,
on the left, from FFHQ, according to specific attributes – here,
wearing hat and eyeglasses. To do so, we select the neu-
rons with the highest attribute sensitivity from CelebA and use
them for comparisons in FFHQ, demonstrating the generalisabil-
ity of these neurons. We show that very few neurons suffice to
recover images with eyeglasses and wearing hat.

– i.e. closeness to the distribution of real images – of
StyleGANv2 [27] generated images. Here, we collect the
DNAshist. for the datasets of real and generated images con-
taining various classes [26, 27, 63]. We use these to select
the most sensitive neurons (as above in Fig. 6) to differences
between real and fake images, which we expect to be
good indicators of realism. These neurons are used to com-
pare a separate dataset with generated images of one class
not included in the datasets responsible for neuron selection
– e.g. when evaluating realism for cars, we select neurons
based on cats, horses, churches, and faces, focusing on gen-
eral realism rather than car-specific features.

Our results are reported in Fig. 7. We clearly identify
outliers in the generated samples using either selected or
all neurons. However, when using all neurons, top matches

do not always match our perceptual quality assessment. By
selecting a small number of neurons reacting to realism, we
favour images with fewer synthetic generation artefacts.

5.5. Generalisation prediction under domain shifts

Above, we have compared images and datasets from
similar domains. However, many applications require com-
paring datasets from distinct domains. Here, we show the
power of DNAs in cross-dataset generalisation prediction,
which can serve, for instance, to select the best dataset for
training when performing transfer learning.

For this, we compare our ranking of distances from
dataset DNAs to the measured cross-dataset generalisation
of a semantic-segmentation network reported in Tab. 3 of
Lambert et al. [31]. This reference provides mIoUs from an
HRNet-W48 [58] semantic segmentation model architec-
ture trained on seven datasets: ADE20K [66], COCO [33],
BDD100K [62], Cityscapes [9], IDD [57], Mapillary [38],
and SUN-RGBD [53], and evaluated on all seven cor-
responding validation sets. Cross-generalization varies
widely for different pairs of datasets, with mIoUs ranging
from 0.2 (training on Cityscapes and validating on SUN-
RGBD) to 69.7 (training on Mapillary and validating on
Cityscapes). Therefore, for each validation set v 2 V , we
have a ranking of which dataset’s training sets transferred
best in terms of mIoU. We denote by T

gt
v [i] the training set

used by the model producing the i-th highest mIoU for val-
idation set v, and by mIoUv(t) the mIoU observed with a
model trained on t and evaluated on the validation set v.

A good dataset distance metric will produce similar
mIoU rankings – and importantly, without training a model.
We therefore compare all pairs of datasets using fd,
dna-fd, and dna-emd, and rank them by distance. We
denote by T

pred
v [i] the training set ranked at the i-th position

when compared to validation set v. To aggregate results, we
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Figure 7. Generated StyleGANv2 [27] images of cars, faces, cats, and horses, ranked by dna-emd similarity to the corresponding real
dataset’s DNAhist.. We selected neurons for realism by comparing real and synthetic images only featuring other classes (for general realism
rather than focusing on class-specific differences) and compared this to using all neurons. Generally, selecting neurons results in rankings
that better align with perceptual quality.

measure the discrepancy d between predicted and reference
rankings using average mIoU differences:

d =
1

|V ||T |

X

v2V

|T gt
v |X

i=1

|mIoUv(T
gt
v [i]) � mIoUv(T

pred
v [i])| (8)

This discrepancy penalises out-of-rank predictions based on
the difference of mIoU at those ranks.

In addition to the Mugs feature extractor, we also
consider domain-specific feature extractors. We evaluate
cross-dataset generalisation using features extracted from
an HRNet-W48 semantic segmentation model trained on
MSeg [31] which combines all datasets used in the experi-
ment. We also use HRNet-W48 models trained on the val-
idation domains. We report results relying on the features
from the last layer of each model. We present the summary
results for different feature extractors and metrics in Tab. 3.

Using dna-emd with a self-supervised network pro-
vides the best cross-dataset generalization. While being
specifically adapted to the task and datasets considered,
HRNet-W48 models fail to perform as well, likely due to
the less general features not allowing to measure domain
shifts as well. The average mIoU error in ranking datasets
with dna-emd with Mugs features is only 0.76, indicat-
ing very good predictions of cross-generalization perfor-
mance without training a model, markedly superior to fd
and dna-fd.

Feature extractor Fréchet Distance DNA-Fréchet Distance DNA-EMD

Mugs (ViT-B/16) 1.66 1.79 0.76

HRNet-W48 (all domains) 9.63 11.18 9.40
HRNet-W48 (val. domain) 13.9 14.5 6.85

Random ordering 14.93 ± 1.86 (50 samples)

Table 3. Effectiveness of using dataset comparisons to predict se-
mantic segmentation transfer learning performance. We compare
the ranking of training datasets by a model’s transfer learning per-
formance to the ranking of datasets based on their distance to the
validation set. We measure the severity of errors in predicted rank-
ing by calculating the average difference in mIoU scores of refer-
ence models when ranked by mIoU and when ranked by the dis-
tance between their training and validation sets.

6. Limitations

Labelled data requirements for neuron selection Our
neuron selection experiments in this work rely on labelled
images to find neuron combination strategies. This is not al-
ways available, in which case unsupervised clustering tech-
niques such as deepPIC [23] could be used.

Combining neurons Many neurons are likely to be pol-
ysemantic [12, 39], meaning that they are likely to react to
multiple unrelated inputs. The approaches used in this pa-
per to combine information from different neurons might be
too limited to properly isolate specific attributes.

Discarded information in the DNA representation To
make DNAs practical and scalable, we have discarded in-
formation about features. This includes spatial information
about where activations occur and dependencies between
activations of all neurons. These could help to obtain an
even better representation.

7. Conclusion

We have presented a general and granular representation
for images. This representation is based on keeping track of
distributions of neuron activations of a pre-trained feature
extractor. One DNA can be created from a single image or
a complete dataset. Image DNAs are compact and granular
representations which require no training, hyperparameter
tuning, or labelling, regardless of the type of images con-
sidered. Our experiments have demonstrated that even with
simplistic comparison strategies, DNAs can provide valu-
able insights into attribute-based comparisons, synthetic
image quality assessment, and dataset differences.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2021. 7, 15

[8] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson,
and Chris Olah. Activation Atlas. Distill, 4(3):e15, 2019. 3

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3213–3223. IEEE, 2016. 1, 5, 7, 15

[10] Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem,
Olivier Bousquet, and Sylvain Gelly. Precision-Recall
Curves Using Information Divergence Frontiers. In Proceed-
ings of the Twenty Third International Conference on Arti-
ficial Intelligence and Statistics, pages 2550–2559. PMLR,
2020. 3

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, page 21, 2021. 3

[12] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas
Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger
Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,

Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits Thread, 2022. 8

[13] Linus Ericsson, Henry Gouk, Chen Change Loy, and Timo-
thy M. Hospedales. Self-Supervised Representation Learn-
ing: Introduction, advances, and challenges. IEEE Signal
Processing Magazine, 39(3):42–62, 2022. 2

[14] Utku Evci, Vincent Dumoulin, Hugo Larochelle, and
Michael C Mozer. Head2Toe: Utilizing intermediate rep-
resentations for better transfer learning. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 6009–
6033. PMLR, 17–23 Jul 2022. 3

[15] Dan Feldman. Introduction to core-sets: an updated survey.
arXiv preprint arXiv:2011.09384, 2020. 2

[16] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets
robotics: The KITTI dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013. 1

[17] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz
Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-
tian Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Mi-
rashi, Chiragkumar Savani, Martin Sturm, Oleksandr Voro-
biov, Martin Oelker, Sebastian Garreis, and Peter Schuberth.
A2D2: Audi Autonomous Driving Dataset. 2020. 1

[18] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and Benchmarking Self-Supervised Visual
Representation Learning. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6390–6399.
IEEE, 2019. 2

[19] Jiyeon Han, Hwanil Choi, Yunjey Choi, Junho Kim, Jung-
Woo Ha, and Jaesik Choi. Rarity score: A new metric to
evaluate the uncommonness of synthesized images. arXiv
preprint arXiv:2206.08549, 2022. 3, 5

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778. IEEE, 2016. 3

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 2, 3, 4

[22] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 954–960, 2018. 1

[23] Nikita Jaipuria, Katherine Stevo, Xianling Zhang,
Meghana L. Gaopande, Ian Calle Garcia, Jinesh Jain,
and Vidya N. Murali. deepPIC: Deep Perceptual Image
Clustering For Identifying Bias In Vision Datasets. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 4792–4801. IEEE.
8

[24] Longlong Jing and Yingli Tian. Self-supervised Visual Fea-
ture Learning with Deep Neural Networks: A Survey. IEEE

11121



Transactions on Pattern Analysis and Machine Intelligence,
2019. 3

[25] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Computer Vision – ECCV 2016, pages 694–711, Cham,
2016. Springer International Publishing. 5

[26] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4396–4405, 2019. 6, 7

[27] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improving
the Image Quality of StyleGAN. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 8107–8116. IEEE, 2020. 7, 8, 20, 21, 22

[28] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 6

[29] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The role of imagenet classes in
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