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Abstract

In this work, we focus on reducing the annotation cost
for video action detection which requires costly frame-wise
dense annotations. We study a novel hybrid active learning
(AL) strategy which performs efficient labeling using both
intra-sample and inter-sample selection. The intra-sample
selection leads to labeling of fewer frames in a video as op-
posed to inter-sample selection which operates at video level.
This hybrid strategy reduces the annotation cost from two dif-
ferent aspects leading to significant labeling cost reduction.
The proposed approach utilize Clustering-Aware Uncertainty
Scoring (CLAUS), a novel label acquisition strategy which
relies on both informativeness and diversity for sample se-
lection. We also propose a novel Spatio-Temporal Weighted
(STeW) loss formulation, which helps in model training un-
der limited annotations. The proposed approach is evaluated
on UCF-101-24 and J-HMDB-21 datasets demonstrating
its effectiveness in significantly reducing the annotation cost
where it consistently outperforms other baselines. Project
details available at https://tinyurl.com/hybridclaus

1. Introduction
Video action detection requires spatio-temporal annota-

tions which include bounding-box or pixel-wise annotation
on each frame of the video in addition to video level anno-
tations [22, 27, 35, 50, 66]. Cost for such dense annotation
is much higher compared to classification task where only
video level annotations is sufficient [8, 18, 59, 60]. In this
work, we study how this high annotation cost for spatio-
temporal detection can be reduced with minimal perfor-
mance trade-off.

The existing works on label efficient learning for videos
are mainly focused on classification task [10, 23, 57]. Video
action detection methods focus on weakly-supervised or
semi-supervised methods to save annotation costs [12,31,39,
40, 64]. Weakly-supervised methods use partial annotations
such as point-level [39], video-level [3, 12], and temporal
annotations [9, 64]. Similarly, semi-supervised methods use
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Figure 1. Comparison of the proposed CLAUS based AL method
with random selection for video action detection. The plots show
scores for (a-b) UCF-101-24 and (c-d) J-HMDB-21 for different
annotation amount. The green line represents model performance
with 90% annotations.

unlabeled samples with the help of pseudo-labeling [40] and
prediction consistency [31]. Such approaches have been
effective for classification tasks, however spatio-temporal
detection is more challenging under limited annotations with
inferior performance compared to fully supervised methods.
One of the main limitation of these methods is lack of se-
lection criteria which can guide in labeling only informative
samples. To overcome this limitation, we investigate the use
of active learning for label efficient video action detection.

Traditional active learning (AL) approach typically fo-
cuses on classification task where selection is performed at
sample level [19, 34, 61]. In video action detection, a frame-
level spatio-temporal localization is required in addition to
video level class prediction. Therefore, active learning strat-
egy should also consider detection on every frame within a
video apart from video-level decisions. We argue that frame-
level informativeness is also crucial for spatio-temporal de-
tection along with video-level informativeness. Motivated
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by this, we explore a hybrid active learning strategy which
performs both intra-sample and inter-sample selection. The
intra-sample selection targets informative frames within a
video and inter-sample selection aims at informative sam-
ples at video-level. This hybrid approach results in efficient
labeling by significantly reducing the annotation costs.

Informativeness and diversity, both are important for sam-
ple selection in active learning [4]. The proposed approach
utilize Clustering-Aware Uncertainty Scoring (CLAUS), a
novel clustering assisted AL strategy which considers both
these aspects for sample selection. It relies on model un-
certainty for informative sample selection and clustering for
reducing redundancy. Clustering is jointly performed on fea-
ture space while model training where diversity is enforced
based on cluster assignments. Moreover, the intra-sample
selection will lead to limited annotations making model train-
ing difficult. To overcome this, we propose a novel training
objective, Spatio-Temporal Weighted (STeW) loss, which re-
lies on temporal continuity for pseudo labels and helps in
learning under limited annotations.

We make the following contributions in this work: 1)
novel hybrid AL strategy that selects frames and videos
based on informativeness and diversity; 2) clustering based
selection criteria that enables diversity in sample selection;
3) novel training objective for effective utilization of limited
labels using temporal continuity. We evaluate the proposed
approach on UCF-101-24 and JHMDB-21 and demonstrate
that it outperforms other AL baselines and achieves compa-
rable performance with model trained on 90% annotations
at a fraction (5% vs 90%) of the annotation cost (Figure 1).

2. Related work
Video action detection: Recent advances in video action
detection use video-specific modules for spatio-temporal
feature understanding [15, 22, 27, 33, 42, 46, 66]. Earlier
works extend image object detection techniques [36, 47, 49]
to perform per frame detection and combine it with action
classification, but they do not leverage temporal informa-
tion while being computationally expensive. This led to
3D convolution based detection frameworks that combine
tube/tubelets detection [15, 22, 66] with action classifica-
tion [8, 18]. These methods use non-trivial multi-step region
proposal for tube generation and classification. Recently,
end-to-end method [11] with simpler training process have
improved performance. All these methods rely on dense
spatio-temporal annotation for performing well.

Limited label learning: Dense frame-wise spatio-
temporal annotation is costly to obtain, therefore a natural
step ahead was to use reduced annotations to train models
for action detection task. Recent works on weakly and
semi-supervised approach have shown comparable results in
various tasks [2, 43, 52, 58] while reducing annotation cost

Figure 2. Overview of the proposed approach. Model training use
videos with partial labels to learn action detection using the STeW
loss and classification loss while also learning cluster assignment
via cluster loss. The CLAUS hybrid active learning uses a trained
model’s output for intra sample selection and cluster assignment
CV for a video. Intra sample selection uses model score and selects
top At frames of a video to get the video score (Vscore). The Vscore

and CV is used for inter sample selection and selected samples are
sent to oracle for annotation. UV: Unlabeled videos.

drastically. The extension to action detection for weakly
and semi-supervised approach [9, 12, 40, 63] has enabled
using significantly reduced annotation compared to dense
label based fully-supervised methods. These works only
use video-level annotation [3, 12, 40, 67] or point-label or
pseudo-label [9, 39, 63] but they do not have any criteria
for selecting the limited samples and can spend annotation
budget selecting redundant and non-informative samples.

Active learning: Iterative label assignment with AL to
collect useful annotations is a widely used approach [19,
26, 34, 48, 55, 62, 65, 69], where a sample is selected based
on its utility for the given task [13, 19, 34, 45, 69]. The util-
ity function usually depends on uncertainty [14, 26, 38, 68],
core-set selection [44, 54], clusters [4, 6], entropy [1, 20]
or heuristics [30, 62]. These works mainly focus on im-
age domain and lack formulation for temporal correlation
existing in videos. There are some efforts focusing on de-
tection [1] and instance segmentation [13], but they do not
explore label sparsity and temporal aspect of videos. More-
over, these works are based on just informativeness property
of samples without considering their diversity. We focus
on spatio-temporal detection and explore a hybrid approach
which considers both informativeness as well as diversity.

3. Methodology

Given a set of N videos V = {v1, v2, ...vN} with F
total frames, we intend to select a subset of videos VT

s ⊂
V with FT

s frames and annotate AT % of frames from the
subset VT

s based on the total budget B after T AL cycles.
At the end we will have a subset of videos VT

s that has
FT

s = (FT
L ,FT

U ) frames, where FT
L are annotated and FT

U

are unannotated frames. The proposed approach enables the
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use of partial spatio-temporal annotation, utilizing both FT
L

and FT
U for model training. We begin with an initial set of

videos V0
s ⊂ V with F0

s = (F0
L,F0

U ) frames where A%
(F0

L) of these are annotated. We train the action detection
model M0 using (V0

s ,F0
s ) and use this trained model to

select additional videos and frames using proposed AL to
obtain new annotations. The proposed AL approach selects
a diverse set of informative videos for annotation from (V −
V0
s ) which is added to V0

s to obtain V1
s . Next we select

A% informative frames from the selected videos V1
s for

annotation. This iterative process is repeated till desired
performance is met or the total budget is exhausted. An
overview of the proposed approach is shown in Figure 2.

Video action detection: Video action detection requires
spatial localization of the activity in each frame with tem-
poral consistency of the predicted action location through-
out the video. Most of the existing methods involve com-
plex multi-stage training with dense frame-level annota-
tions [21, 27, 66], making iterative training challenging due
to large resource requirement and dependency on good re-
gion proposals [15, 22]. In this work, we utilize a simple
one-stage approach which has state-of-the-art performance
on action detection task and can be efficiently trained end-
to-end using a single GPU [11]. We rely on the optimized
version proposed in [31] to further reduce model complexity
and the model is trained using margin-loss for classification
and binary-cross entropy loss for action localization.

3.1. Hybrid active learning

The proposed hybrid active learning approach enables
selection across unlabeled videos to identify diverse and im-
portant samples while also selecting limited frames within
those samples for annotation; significantly reducing overall
annotation cost. As shown in Figure 3, traditional sample se-
lection approach simply selects and annotates entire sample,
while intra-sample selection approach obtains frame-level
annotations for all video samples. Sample selection does
not take into account redundancy within a sample and intra-
sample strategy on the other hand does not consider utility
across samples and selects redundant samples, causing inef-
fective use of the annotation budget. We propose a hybrid
approach that considers both intra-sample redundancy and
inter-sample redundancy to select high utility frames and
video samples. In addition, the proposed hybrid approach
also integrates deep clustering to enable diversity along with
informativeness while sample selection.

Inter-sample selection: In active learning, several ap-
proaches have been studied to estimate informativeness of
a sample [13, 19, 45]. Motivated by the recent success of
uncertainty-based approaches [14, 68], we focus on model
uncertainty [14] to predict the utility of a video sample. In

[    ,    ]
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Figure 3. Overview of different active learning strategies for sample
selection. We show a toy example for selection strategy as we add
more annotatons to set 1 to obtain set 2. Sample selection approach
takes unlabeled sample and annotates all frames in it. Intra-sample
selects frames from all samples to annotate for the next set. Hybrid
selects important samples and high utility frames to annotate for
next set, significantly reducing overall annotation cost.

case of classification task, video-level classification uncer-
tainty can be sufficient, however, video action detection also
requires localization of actions on every frame of a video.
Therefore, spatio-temporal localization also plays a crucial
role in estimating samples utility. To take this into account,
we rely on spatio-temporal uncertainty in our approach.

We consider uncertainty in model’s prediction at pixel-
level to compute spatio-temporal uncertainty. We rely on
MC-dropout to compute model uncertainty [14, 26, 51] as
it is more efficient in comparison with other approaches
[1, 30, 44, 53]. The activity and non-activity region in a
video will vary across action classes as well as across video
samples. Therefore, uncertainty score based on all pixels
in a video for sample utility will not be comparable across
all unlabeled videos VU for learning action detection. It
will provide low uncertainty score for videos with short
uncertain actions and long easy non-action regions which
is not favorable for such videos. To overcome this issue,
we propose to select limited frames in each video where we
rank the video frames based on uncertainty and select the
top At frames with high uncertainty. Given a pixel-level
uncertainty U , we compute the spatio-temporal uncertainty
at video-level as,

Vscore =
1

At

At∑
i=1

P∑
p=1

Ui,p (1)

where, At is the number of frames to select from each video
in an AL iteration and P is the total pixels in each frame.
The pixel-level uncertainty U is computed as,

U =
1

R

R∑
r=1

−log(M(p, r)) (2)

where, M(p) is the model’s prediction of pixel p for each
frame, averaged over R different runs. Uncertainty values for
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M(p) below certain threshold (definite background) is set to
0. In our preliminary experiments, we observed that sample
level classification uncertainty does not provide significant
improvement over spatio-temporal uncertainty for sample
utility. Therefore, we only utilize spatio-temporal uncer-
tainty in our approach to determine sample informativeness
for action detection.

Intra-sample selection: The informative videos selected
in inter-sample selection Vt

s−prime are added to the exist-
ing set Vt−1

s to obtain Vt
s. In intra-sample selection, we

select frames with high utility from these videos Vt
s−prime

for frame-level annotation. We rely on frame-level model
uncertainty Uf =

∑I
i (Ui) for all I pixels in a frame to esti-

mate frame utility for action detection. Here U is pixel-level
uncertainty as described in Equation 2. Since pixel-level
uncertainty U is already computed for spatio-temporal uncer-
tainty, intra-sample selection has no computation overhead.

Diverse sample selection: Model uncertainty can be used
for sample selection focusing on their informativeness. How-
ever, it does not ensure diversity among selected videos and
there can be redundancy in such a selection strategy. A sim-
ple solution to address this issue can be developed with the
help of class labels. However, this will require additional
annotations which defeats the purpose of saving annotation
cost. We propose an implicit clustering approach which
utilize latent video features and does not require additional
annotations. More specifically, we use deep clustering [7]
which learns the cluster representation for each category
from the known labeled subset V0

s and adapts the clusters as
the latent features of each video changes during training.

To enable diverse sample selection, we model the rela-
tion between diversity of each unlabeled sample VU with
already labeled samples VL. The proposed clustering ap-
proach allows the model M to learn latent features LF
which represent each sample in a cluster. The objective of
the model M is to improve the latent features such that it
is close to the corresponding cluster center for that sample.
The clustering objective is defined as,

min
θ

LCluster =
N∑
i=1

λ

2
||LF(xi|Mθ)− CK(xi)||2 (3)

where, λ is a scaling term for the loss, θ is the parameters
for model M, LF is latent feature for sample xi where
i ∈ [1, N ] and CK is the cluster center for sample xi.

We first compute informativeness scores for each video
in VU using Equation 1, and then find cluster in C =
[c1, c2, ...ck] with K total clusters corresponding to each
unlabeled video. The total number of videos to be selected
in a cycle is constraint by current budget Bv. We limit the
samples selected per cluster such that the selection is propor-
tional to the cluster size. For any cluster with nc videos, we

assign a budget of nc × Bv/NU , where NU represents total
number of unlabeled videos. The selection algorithm is fur-
ther detailed in supplementary. We argue that nearby frames
in a video will have similar model uncertainty and redundant
utility. So, we avoid selecting nearby frames in intra-sample
selection to ensure diversity while frame selection.

3.2. Training objective for partial label learning

Traditional video action detection method relies on actor
annotation for each frame in order to train a model for action
localization and classification [11, 28, 66]. However, in case
of partial annotations it is not possible to train localization
without annotations, which limits the use of these approaches
directly. We propose a novel loss formulation which can
effectively utilize partial annotations for localization.

Spatio-Temporal Weighted (STeW) loss: The partial
spatio-temporal annotations can be converted into dense
pseudo-labels with the help of interpolation [64]. However,
these pseudo-labels can have errors due to motion of ac-
tor/camera in a video and temporal gap between the partial
labels. We propose to use temporal continuity of actions to
mitigate this issue and enable effective utilization of partial
annotations. We hypothesize that actions have some tem-
poral continuity across time which may vary with different
actions. By leveraging this temporal continuity in a video,
we compute spatio-temporal weight for each pixel indepen-
dently which captures the confidence of a pseudo-label.

First, we compute the psuedo-labels using interpolation
between the annotated frames as [64]. Next, we apply a
spatio-temporal weight to suppress incorrect pseudo-labels.
We compute the overlap of annotation for nearby frames and
assign each pixel a weight based on the overall consistency
which is given as,

ϕi,j
f = Dist(fa − f)

1

(W + 1)

f+W∑
w=f−W

f i,j
w , (4)

where, weight ϕ of frame f with i× j pixels is combination
of distance of frame f from nearest annotated frame fa
and average value of pixel i, j of nearby W frames. Our
hypothesis is that the background and foreground should
be consistent for most of the frame, except for the moving
actions. The average value of nearby W pixels will give
consistency value for each pixel, where we assign a weight of
1 for consistent background/foreground (≤ Plow or ≥ Phigh)
and average value for other inconsistent pixels. The final
localization loss with spatio-temporal weight is computed
as,

LSTeW
l =

1

F

F∑
f=1

ϕfL
f
l , (5)

where, for a video with F frames, Lf
l is the BCE localization
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loss for f th frame and ϕf ∈ [0, 1] is the pixel-wise spatio-
temporal weighted mask from Equation 4 for f th frame.

Overall training objective Our overall training objective
is given as,

min
θ

L = LCluster + LSTeW
l + LCls (6)

where, θ is the model parameters, LCluster is cluster loss
from Equation 3, LSTeW

l is detection loss from Equation 5
and LCls is the Margin-Loss for classification from [11].

3.3. Sampling budget and cost incorporation

For each stage of annotation we assume a fixed budget B
which will be separated to annotate video label and to anno-
tate frames in that video, given as Bv and Bf respectively.
Annotating each video label will require a cost Cv since
the annotator has to watch and identify the class. Similarly,
annotating each frame with bounding-box or pixel-wise la-
bels will require a cost Cf . Thus, for each stage we can
only annotate videos and frames so that Ctotal

v ≤ Bv and
Ctotal

f ≤ Bf .

4. Experiments
Datasets: We evaluate our approach on UCF-101-24 [59]
and J-HMDB-21 [25] action detection datasets. UCF-101-
24 consists of 24 different action categories with spatio-
temporal bounding-box annotations for 3207 untrimmed
videos. J-HMDB-21 dataset has 21 categories with pixel-
level spatio-temporal annotations for 928 trimmed videos.
AVA [17] dataset has annotation on keyframes every second
which makes it sparse and unsuitable to measure the effec-
tiveness of the proposed approach (details in supplementary).

Evaluation metrics: We measure the standard frame-
mAP and video-mAP scores for different thresholds to eval-
uate our model’s action detection results following prior
works [42]. The frame-mAP reflects the average precision
of detection at the frame level for each class, which is then
averaged to obtain the f-mAP [16]. The video-mAP reflects
the average precision at the video level, which is averaged to
obtain the v-mAP score

4.1. Implementation details

Active learning: We initialize our training with a set of
videos V0

L with class label and A% annotated frames within
those videos selected at random. We use K=5 centers for
clustering (analysis on varying K in supplementary) and
R=10 forward passes per video. For each stage, we select
v% videos for annotation based on budget Bv,Bf , where
the videos are given class label and A% of their frames are
annotated and added to V0

L. We repeat this until total budget
is exhausted or desired performance is achieved.

UCF-101-24 J-HMDB-21
A% V% v-mAP f-mAP A% V% v-mAP f-mAP
0.25 5 45.0 50.1 0.15 5 4.7 27.2
0.50 10 54.3 55.6 0.30 10 41.6 45.3
0.75 15 57.6 59.4 0.45 15 52.5 54.8
1.00 20 61.8 61.6 0.60 20 56.0 60.5
1.25 25 65.5 65.6 0.75 25 57.6 60.9
1.50 30 67.2 66.9 0.90 30 58.3 61.7
2.00 40 68.6 68.5 1.20 40 61.3 62.7
2.50 50 69.2 69.3 1.50 50 63.7 64.0
5.00 80 72.2 72.1 5.40 80 71.5 72.8

90 90 73.6 73.0 90 90 73.1 73.0
100 100 75.2 74.0 100 100 75.8 74.9

Table 1. Evaluation of the proposed method on UCF-101-24 and
J-HMDB-21 for [v-mAP, f-mAP] @ 0.5 IoU. We increase the
amount of samples and frames in each stage using the proposed
approach and compare with fully-supervised approach. A% is
percent of annotated frames.

Training details: All our experiments are performed us-
ing PyTorch [41] on a single Nvidia Quadro 5000 GPU. The
scores are average of 3 different runs. We adapt the video ac-
tion detection model from [11] and use 2D capsules and I3D
encoder [8] following [31], with pretrained weights from the
Charades dataset [56]. The network is trained using Adam
optimizer [29] with learning rate 5e − 4 and batch size 8.
Plow = 0.1 and Phigh = 0.9 is set empirically. We use ran-
dom crop and horizontal flip for video augmentation during
training. Interpolation is done using linear point interpola-
tion for bounding-box (UCF-101-24) and CyclicGen [37]
for pixel-wise (JHMDB). We compute uncertainty based on
dropout during inference following [14]. We don’t perform
any hyperparameter tuning and use same set of parameter
settings for all our experiments on both the datasets.

4.2. Baseline methods

We compare the proposed approach with several base-
lines to demonstrate its effectiveness. We develop two non-
parametric selection method using random and equidistant
frame selection (both using random video selection). We
also use prior AL methods for object detection in images as
baselines. We use uncertainty-based AL [14] and entropy-
based AL [1] for scoring each frame and do sample selection.
All baselines use same action detection backbone as ours.

4.3. Results

We show that our iterative AL approach is able to improve
results in each step and use only a fraction of the annotations
to perform close to fully-supervised approach with 90% an-
notations (v-mAP@0.5: 72.2 vs 73.6 (UCF-101-24), 71.5
vs 73.1 (J-HMDB-21)) in Table 1. We also perform detailed
comparisons with 4 baselines in Table 2. We further com-
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UCF-101-24 J-HMDB-21
Method A% v-mAP f-mAP v-mAP f-mAP
Random 1% 52.6 54.1 36.6 42.1
Equi. 1% 53.3 55 38.1 43.5
Entropy [1] † 1% 52.2 53.5 40.7 49.0
Uncertainty [14] † 1% 44.0 46.7 46.0 47.9
Our 1% 61.8 61.6 58.6 61.9
Random 5% 67.5 67.3 69.3 70.1
Equi. 5% 67.2 67.0 70.0 70.4
Entropy [1] † 5% 71.3 70.2 70.7 70.8
Uncertainty [14] † 5% 69.7 68.2 69.0 69.3
Our 5% 72.2 72.1 71.3 72.7

Table 2. Comparison of the proposed approach with various base-
line methods. All baseline methods use same action detection
backbone as ours. † is modified for video action detection using
public code. A% is total annotations.

pare our approach with previous weakly-supervised action
detection approaches on both the datasets in Table 3 and 4.

Comparison with baselines: Table 2 shows comparison
of our method with random, equidistant, entropy-based [1]
and uncertainty-based [14] AL baselines for UCF-101-24
and J-HMDB-21. We report the f-mAP and v-mAP scores at
1% and 5% total annotations. Random and equidistant give
an idea of non-parametric sample selection where the videos
are selected at random and the frames are selected at random
or equidistant. We notice that these baselines give lowest
scores. Then we compare with other AL baselines using
[1,14]. Since these are image-based, they are not well suited
for frame ranking in videos as reflected by their scores. [1]
ignores nearest 5 frames for each selection, but this still does
not work as well as proposed diverse selection. Since these
prior AL baselines don’t have notion of similarity/distance
for videos, we see that random performs comparably. In
contrast, our approach gives best performance, highlighting
the impact of cluster based diverse sample selection.

Comparison with weakly supervised approach: Our
cluster based video and frame selection approach selects
limited samples and can also be compared with prior
weakly supervised methods for video action detection. Prior
weakly supervised methods rely on multiple instance learn-
ing [3, 39, 40] or instance learning [64], paired with off-the-
shelf actor detector or user-generated points to create GT
annotations for training. These rely on multiple external
components or require user to annotate points in each frame,
reducing their practical use. Some methods are less involved
with built-in detector branch [12] but suffer from noisy anno-
tations. [9] applies discriminative cluster approach to match
generated actor tubes with video label with partially anno-
tated frames. [67] combines multiple actor detectors to build

Method A% f-mAP@ v-mAP@
0.5 0.1 0.2 0.3 0.5

Mettes et al. [40] V - - 37.4 - -
Escorcia et al. [12] V - - 45.5 - -
Zhang et al. [67] V 30.4 62.1 45.5 - 17.3
Arnab et al. [3] V - - 61.7 - 35.0
Mettes et al. [39] P - - 41.8 - -
Cheron et al. [9] P - - 70.6 - 38.6
Weinz. et al. [64] 1.1% - - 57.1 - 46.3
Weinz. et al. [64] 2.8% 63.8 - 57.3 - 46.9
MixMatch [5] S-20% 20.2 - 60.2 - 13.8
Pseudo-label [32] S-20% 64.9 - 93.0 - 65.6
Co-SSD(CC) [24] S-20% 65.3 - 93.7 - 67.5
Kumar et al. [31] S-20% 69.9 - 95.7 - 72.1
Ours 1% 61.6 98.1 95.9 88.9 61.8
Ours 5% 72.1 98.1 96.1 91.2 72.2

Table 3. Comparison with state-of-the-art weakly-supervised meth-
ods on UCF-101-24. We evaluate our approach on v-mAP and
f-mAP scores using only 1% and 5% total frame annotations. ‘V’
uses video-level annotations and ‘P’ uses a fraction of the mixed
annotation. ‘S’ denotes SSL methods. We report [64] with their
scores for 2 (1.1%) and 5 (2.8%) frames annotated per video.

Method A% f-mAP@ v-mAP@
0.5 0.1 0.2 0.3 0.5

Zhang et al. [67] V 65.9 81.5 77.3 - 50.8
Weinz. et al. [64] 6% 50.7 - - - 58.5
Weinz. et al. [64] 15% 56.5 - - - 64.0
MixMatch [5] S-30% 7.5 - 46.2 - 5.8
Pseudo-label [32] S-30% 57.4 - 90.1 - 57.4
Co-SSD(CC) [24] S-30% 60.7 - 94.3 - 58.5
Kumar et al. [31] S-30% 64.4 - 95.4 - 63.5
Ours 1% 61.9 99.0 96.8 91.5 58.6
Ours 5% 72.7 99.1 97.3 94.8 71.3

Table 4. Comparison with state-of-the-art semi-supervised methods
on J-HMDB-21 using only 1% and 5% total frames annotation.
‘V’ uses video-level class annotations. ‘S’ denotes SSL method.
We report [64] with their scores for 2 (6%) and 5 (15%) frames
annotated per video.

stronger GT annotations, relying heavily on external com-
ponents. Our approach doesn’t rely on external detection
components and uses simple iterative approach to select use-
ful limited samples. This allows our method to be easily
used for training. Table 3 and 4 shows comparative scores
with prior weakly-supervised methods.

4.4. Ablations

Effect of clustering: We evaluate the effect of clustering
for video selection in our approach in Figure 5. The selection
approach without clustering simply selects top-k videos for
further annotation, which ends up selecting some similar
samples as it does not take diversity into account. Cluster-
ing increases sample diversity, as seen in Figure 4, which
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Figure 4. Visual representation of samples selected using (a) pro-
posed Clustering-Aware Uncertainty Scoring (CLAUS), (b) entropy,
(c) uncertainty and (d) random selection methods using x marks.
We get latent features of the videos from same iteration using same
model and project them after PCA reduction. The clusters are from
our clustering method and only for visual demonstration in (b), (c)
and (d). We observe that our approach has diverse and even sample
selection from different clusters while (b), (c) and (d) often selects
samples closer to each other in terms of representation.

0.25 0.50 0.75 1.00 1.25
% Frames annotated

50

60

v-
m

AP
 @

 0
.5

(a)

Our w Cluster Our w\o cluster

0.15 0.30 0.45 0.60 0.75
% Frames annotated

25

50

v-
m

AP
 @

 0
.5

(b)

Figure 5. Comparison of our approach with and without clustering
based selection for UCF-101-24(a) and J-HMDB-21(b).
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Figure 6. Comparison of proposed STeW loss with different loss
variations combined with our CLAUS selection to train the video
action detection network for UCF-101-24 dataset.

improves overall performance compared to non-clustering
selection for both datasets as shown in Figure 5.

Effectiveness of STeW loss: To evaluate the effect of our
proposed STeW loss, we train the action detection network
using simple frame loss and interpolation loss for UCF-101-
24 dataset. Frame loss only computes loss for the annotated
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Figure 7. Evaluating various scoring methods for AL based annota-
tion increments. * uses our STeW Loss for all selection approaches
on UCF-101-24(a-b) and J-HMDB-21(c-d).

frame and ignores the pseudo-labels while interpolation loss
simply computes loss for all real and pseudo-labels equally.
We use the same AL algorithm for all the approaches and
show the result for UCF-101-24 for different steps in Figure
6. With less than 1% frames annotated, we see that Frame
loss is not able to learn detection as well as interpolation and
STeW loss. With the pseudo-labels created by interpolating
the annotated frames, we see an increase in performance
across all steps with both interpolation and STeW loss. Fur-
thermore, the proposed STeW loss gives more importance to
real frames and reduces the impact of the pseudo-labels that
are inconsistent, performing best among all loss variations.

Effectiveness of CLAUS scoring: We also evaluate dif-
ferent scoring functions (random, equidistant, entropy [1],
uncertainty [14]) paired with the proposed STeW loss in Fig-
ure 7. Proposed CLAUS method is the only one that selects
diverse samples based on global utility and is able to perform
best compared to other scoring functions.

4.5. Discussion and analysis

Cost analysis: Figure 8(a-b) compares cost to perfor-
mance relation of our method and random selection. While
having more annotation generally improves performance, our
method selects diverse and important frames compared to
random selection, resulting in significantly improved model
in each step for the same cost. We further take the final model
and evaluate per class performance for our and random se-
lection in Figure 9. We outperform random selection for
most classes while having fewer samples selected and give
priority to select more samples for certain harder classes.
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Figure 8. (a-b) Performance evaluation of our method with random
selection baseline on UCF-101-24 for various sample annotation
percent. The cost of annotation for each step is shown by the shaded
bars, with the cost value in the right axis in thousands. (c-d) Per-
formance difference for increasing sample and frame annotations
[5%] vs increasing only frame annotations [10%] on UCF-101-24.
Increasing both sample and frames at 5% increment adds diversity
compared to only increasing frames, giving better scores.

Sample vs frame increment: We evaluate effect of in-
creasing only samples with a constant frame annotation rate
of 5% and increasing both samples and frames annotation.
Our goal is to get maximum performance gain with lowest
cost. Increasing only samples with constant frame anno-
tation rate has lower annotation cost than increasing both
samples and frames for the same step. We show the results in
Figure 8(c-d); having more training variation by adding only
samples is more cost effective and has better performance
than having more frames annotated for the same samples
with higher cost. Interestingly, even random sampling that
increases sample diversity performs better than our sam-
pling with more frames, showing that sample diversity is an
important factor in the selection process.

Class vs clustering diversity: While samples from differ-
ent classes add diversity, too many samples for easy classes
will also add redundancy. Figure 9 shows that random
approach has class balanced selection but performs below
CLAUS as CLAUS reduces redundant samples from same
class and prioritizes difficult and diverse samples.

Selection strategy analysis: We compare selection using
proposed hybrid method against classical approaches for the
same annotation budget. Inter selection assumes each video
is fully annotated and randomly selects videos for given bud-
get, thereby selecting fewer videos as more budget is used
to annotate all frames. Intra selection assumes each video
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Figure 9. Analysis on performance across classes with varying
amount of annotations. The scatter plot with markers on left axis
shows v-mAP scores @ 0.5 IoU of our method against baseline
random method on 16 action classes for UCF-101-24. The bar plot
with markers on right axis shows per class sample distribution.

of the dataset is annotated for at least 1 frame, spreading the
budget over all videos. We show this comparison in Figure
1; our proposed method consistently scores better with both
hybrid selection and random selection. Inter selection simply
exhausts the budget in redundant frames from fewer videos
and performs worst. Intra selection does perform close to
our-with-random baseline due to larger sample variation.

5. Conclusion
In this work we present a novel hybrid AL strategy for

reducing annotation cost for video action detection. Our
hybrid approach uses clustering-aware strategy to select in-
formative and diverse samples to reduce sample redundancy
while also doing intra-sample selection to reduce frame an-
notation redundancy. We also propose a novel STeW loss
to help the model train with limited annotations, removing
the need for dense annotations for video action detection. In
contrast to traditional AL approach, our proposed hybrid ap-
proach adds more annotation diversity at the same cost. We
evaluate the proposed approach on two different action detec-
tion datasets demonstrating its effectiveness in learning from
limited labels with minimal trade-off on the performance.
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