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Figure 1. Generated samples from our model. Left: 3D reconstruction visualization. Center and Right: Rendered faces using 2 different
illumination conditions under 3 different poses. Illumination visualization using spherical harmonics [26].

Abstract

We propose a generative framework, FaceLit, capable of
generating a 3D face that can be rendered at various user-
defined lighting conditions and views, learned purely from
2D images in-the-wild without any manual annotation. Un-
like existing works that require careful capture setup or hu-
man labor, we rely on off-the-shelf pose and illumination
estimators. With these estimates, we incorporate the Phong
reflectance model in the neural volume rendering frame-
work. Our model learns to generate shape and material
properties of a face such that, when rendered according
to the natural statistics of pose and illumination, produces
photorealistic face images with multiview 3D and illumina-
tion consistency. Our method enables photorealistic gener-
ation of faces with explicit illumination and view controls on
multiple datasets – FFHQ, MetFaces and CelebA-HQ. We
show state-of-the-art photorealism among 3D aware GANs
on FFHQ dataset achieving an FID score of 3.5.

corresponding authors: {anuragr, otuzel}@apple.com.

1. Introduction
Learning a 3D generative model from 2D images has re-

cently drawn much interest [13, 23, 32]. Since the intro-
duction of Neural Radiance Fields (NeRF) [21], the quality
of images rendered from a 3D model [6, 13] has improved
drastically, becoming as photorealistic as those rendered by
a 2D model [19]. While some of them [7,28] rely purely on
3D representations to deliver 3D consistency and pay the
price of decreased photorealism, more recent work [6] has
further shown that this can be avoided and extreme photo-
realism can be obtained through a hybrid setup. However,
even so, a shortcoming of these models is that the compo-
nents that constitute the scene—the geometry, appearance,
and the lighting—are all entangled and are thus not control-
lable using user defined inputs.

Methods have been proposed to break this entangle-
ment [2, 4, 35], however, they require multiview image col-
lections of the scene being modeled and are thus inappli-
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cable to images in-the-wild where such constraint cannot
be satisfied easily. Boss et al. [3] loosens this constraint to
images of different scenes, but they still require the same
object to be seen from multiple views at the end. Moreover,
these methods are not generative and therefore need to be
trained for each object and cannot generate new objects.
For generative methods [6, 7, 13], geometry and illumina-
tion remains entangled. In this work, we demonstrate that
one does not require multiple views, and the variability and
the volume of already existing datasets [16–18] are enough
to learn a disentangled 3D generative model.

We propose FaceLit, a framework that learns a disentan-
gled 3D model of a face, purely from images; see Fig. 1.
The high-level idea behind our method is to build a render-
ing pipeline that is forced to respect physical lighting mod-
els [25,26], similar to [35] but in a framework friendly to 3D
generative modeling, and one that can leverage off-the-shelf
lighting and pose estimators [10]. In more detail, we em-
bed the physics-based illumination model using Spherical
Harmonics [26] within the recent generative Neural Volume
Rendering pipeline, EG3D [6]. We then simply train for re-
alism, and since the framework has to then obey physics to
generate realistic images, it naturally learns a disentangled
3D generative model.

Importantly, the way we embed physics-based render-
ing into neural volume rendering is the core enabler of our
method. As mentioned, to allow easy use of existing off-
the-shelf illumination estimators [10], we base our method
on Spherical Harmonics. We then model the diffuse and
specular components of the scene via the Spherical Har-
monic coefficients associated with the surface normals and
the reflectance vectors, where the diffuse reflectance, the
normal vectors and the material specular reflectance are
generated by a neural network. While simple, our setup al-
lows for effective disentanglement of illumination from the
rendering process.

We show the effectiveness of our method using three
datasets FFHQ [18], CelebA-HQ [16] and MetFaces [17]
and obtain state-of-the-art FID scores among 3D aware gen-
erative models. Furthermore, to the best of our knowledge,
our method is the very first generative method that can gen-
erate 3D faces with controllable scene lighting. Our code
is available for research purposes at https://github.
com/apple/ml-facelit/.

To summarize, our contributions are:
• we propose a novel framework that can learn a disentan-

gled 3D generative model of faces from single views, with
which we can render the face with different views and un-
der various lighting conditions;

• we introduce how to embed an illumination model in the
rendering framework that models the effects of diffuse
and specular reflection.

• we show that our method can be trained without any man-

ual label and simply with 2D images and an off-the-shelf
pose/illumination estimation method.

• we achieve state-of-the-art FID score of 3.5 among 3D
GANs on the FFHQ dataset improving the recent work [6]
by 25%, relatively.

2. Related work
We first discuss works that focus on decomposing a

scene into shape, appearance, and lighting, then discuss
those that focus on 3D generative models.

Decomposing a scene into shape, appearance and light-
ing. Neural Radiance Fields (NeRF) [21] learn a 5D ra-
diance field where the aspects of the scene such as shape,
appearance and lighting are jointly modeled by a neural net-
work. While effective, this results in an entangled represen-
tation of the scene where only the camera pose can be con-
trolled. In fact, besides controllability, in Ref-NeRF [34], it
was demonstrated that explicitly allowing diffuse and spec-
ular rendering paths within the deep architecture, thus hav-
ing in a sense architectural disentanglement leads to im-
proved rendering quality. Thus, it is unsurprising that vari-
ous methods have been proposed for disentanglement.

Recent works [2,35] use a Bidirectional Reflectance Dis-
tribution function (BRDF) to learn a scene representation
using multiview images. Neural-PIL [4] computes a pre-
integrated lighting map from multiview image collections
and models diffuse and specular reflectance in the scene.
SAMURAI [3] operates on image collections of an object
under different views and lighting conditions with various
backgrounds thus reducing the strictness of the multiview
constraint. However, even with reduced constraint, they still
require the same object of interest to be in the scene from
multiple views. In our case, we are interested in the problem
setting when only single views are available, which none of
these methods can be trivially extended to.

3D generative models. Generative Adversarial Networks
(GAN) [12] trained from single-view images have been
shown to be successful in generating photorealistic face
images [18, 19]. Early works to enforce 3D consistency
on generated images relied on conditioning the GAN with
pose [22] and other attributes [11, 29] such as expression
and lighting. However, these methods do not model the
physical rendering process like NeRFs. This leads to incon-
sistent 3D geometry—rotating images generated from these
2D-based models result in change of shape and appearance
and not just the view point. Follow up work [7,13,28,30,36]
thus uses volume rendering—which brings 3D consistency
by construction—on top of GANs to force 3D consistent
representation. Furthermore, recent work [24, 27, 33] use
illumination modeling on top of volume rendering. While
this allowed the models to be 3D consistent, their generated
image quality is not as photorealistic as their 2D counter-
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Figure 2. Overview: Our generation process samples a 3D face from a latent z conditioned on pose p and illumination l. The generator
uses a StyleGAN2 backbone with a tri-plane feature representation f introduced by EG3D [6] and introduces illumination modeling using
diffuse and specular decoders. Green modules are non-trainable fixed differentiable functions. See §3.2 for details.

parts [19]. EG3D [6] thus proposes a tri-plane represen-
tation, and a hybrid framework that achieves the level of
photorealism similar to 2D GAN frameworks. In a different
direction, Cao et al. [5] utilize a massive dataset of multiple
views of human faces to build a generative model that are
conditioned on facial expressions, that are then adapted to a
subject of interest for a controllable 3D model.

Regardless of whether these models aim for uncondi-
tional generation or controllability, they, however, do not
disentangle geometry from illumination and thus cannot be
relighted, limiting their application towards a fully control-
lable generative 3D model.

2.1. Preliminaries: The EG3D framework

As we base our framework on the EG3D framework [6],
we first briefly explain the pipeline in more detail before
discussing our method. The core of the EG3D pipeline is
the use of tri-plane features, which allows the use of well-
studied 2D CNNs for generating deep features to be used
for volume rendering.

As shown in Fig. 2, EG3D uses a tri-plane generator Gtri
with a StyleGAN2 [19] backbone conditioned on camera
pose p to generate feature maps. These feature maps are re-
arranged to obtain tri-plane features fXY , fY Z , fXZ along
3 orthogonal planes. A decoder neural network is then used
to regress color c and density σ and additional features w at
a given location x ∈ R3 from the tri-plane features. A color
image Ic is then obtained by aggregating the values c, σ by
volume rendering along the ray r given by

Ic(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where spatial locations are sampled within the near and far

plane locations as t ∈ [tn, tf ], d is the viewing direction,
and the transmittance

T (t) = exp

(
−
∫ t

tn

σ(r(u))du

)
. (2)

This volume rendering of Ic is performed at a relatively low
resolution to be memory efficient, and an upsampling is per-
formed for higher resolution images. Hence, an additional
nw-channel feature image Iw is rendered by tracing over
the features w ∈ Rnw , which is then used for generating
the final image I+c = U(Ic, Iw), with the super-resolution
network U . The framework is then trained to make I+c as
realistic as possible through GAN training setup, with the
discriminator being conditioned on the poses p.

Note here that, as the discriminator is conditioned on the
pose, the pose must be provided for each training image;
which has been shown to be effective in delivering better
3D consistency [6]. In the case of EG3D [6], these poses
are obtained using Deng et al. [9]. Similarly, we will rely
on DECA [10] since it provides the estimates of poses, as
well as illumination.

3. Method
While modeling a scene with a radiance field is effective

in rendering from novel viewpoints, it hinders our capability
to relight the scene with different illumination conditions as
illumination is entangled with the appearance and shape. To
relight with unseen illumination conditions, we incorporate
physics-based shading into the forming of radiance fields,
thus disentangling it by construction.

In the following subsections we first discuss the illumi-
nation model that we propose which allows us to achieve
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disentanglement, then detail how we implement the model
into a deep generative model.

3.1. Illumination model

To explicitly constrain the rendering process on illumi-
nation we use a simplified version of the Phong reflectance
model [25]. The color at a location is computed using

c =

∫
ω

(
kd ⊙ (n · ω)Ld(ω) + ks (ωr · ω)

α
Ls(ω)

)
dω,

(3)
where n is its normal, ωr is the reflection direction given
by Eq. (9), kd ∈ R3 is the diffuse reflectance, ks ∈ R is the
specular reflectance coefficient, α is the shininess constant,
and Ld and Ls : R3 → R3 are the diffuse and specular en-
vironment maps (distance light distributions) respectively
parameterized by incident light direction, ω on the surface
of the unit sphere. The operator ⊙ is element-wise mul-
tiplication and · is the dot product. For brevity, when we
element-wise multiply a scalar with a vector, we assume
each element of the vector is multiplied by the scalar. Here,
the first term computes the diffuse color cd and the second
term computes the specular color cs.

Further simplification via Spherical Harmonics. We as-
sume a single environment map for diffuse and specular,
Ld = Ls = L. To speed up rendering Eq. (3) and ef-
ficient representation, we follow Ramamoorthi et al. [26],
and pre-integrate the environment map to compute the irra-
diance environment map

E(n) =

∫
ω

(n · ω)L(ω) dω. (4)

The irradiance environment map can be efficiently (approx-
imately) represented in Spherical Harmonics (SH) basis us-
ing only 9 basis functions. See [26] for details.

Consider that irradiance environment map is represented
by SH coefficients lk ∈ R3 with SH basis Hk : R3 → R
and k ∈ [1, 9]. We can fold all illumination-related terms
in Eq. (3) using the SH basis functions. Thus, the diffuse
term can be rewritten as

cd = kd ⊙
∑
k

lkHk(n). (5)

For the specular component we assume that α = 11

in Eq. (3) which, with the SH basis again folding in the
illumination terms gives us

cs = ks
∑
k

lkHk(ωr). (6)

Note here that unlike in Eq. (5) we use ωr to retrieve the
irradiance environment map values rather than n, as we are

1Using α = 1 allows us to use the same irradiance environment map
to compute the specular color.

interested in the specular component, which reflects off the
surface. The final color is then a composition of specular
and diffuse components

c = cd + cs (7)

As we will show in Sec. 4, this simple formulation works
surprisingly well, with the illumination being explicitly fac-
tored out. In other words, by controlling lk in Eq. (5) and
Eq. (6), one can control how the face renders under different
illuminations. Although, we do not model other effects of
light on the skin, such as subsurface scattering [20], we ex-
pect our model to account for it from the training process.

3.2. Generator

To imbue a 3D generative model with explicitly control-
lable illumination, we condition the tri-plane generator on
both the camera pose p and the illumination l. This allows
us to take into account the distribution of illumination con-
ditions within our training dataset, similar to how pose was
considered in EG3D [6]. Mathematically, we write our tri-
plane generator as

fXY , fY Z , fXZ = Gtri (p, l) . (8)

For a given point in space x ∈ R3, the aggregated features
are obtained using fx = fXY

x + fY Z
x + fXZ

x . However, as
discussed earlier, simply conditioning the tri-plane genera-
tor Gtri alone is not enough to enable explicit and consistent
control over the camera pose and illumination—there is no
guarantee that the generated content will remain constant
while illumination and camera pose changes. We thus uti-
lize fx and apply the illumination model in Sec. 3.1.

Specifically, as shown in Fig. 2, instead of directly re-
gressing the color c and the density σ at a given point as
in EG3D [6], we decode fx using diffuse and specular de-
coders. We then apply shading through Eq. (5) and Eq. (6)
to obtain the diffuse color cd and the specular color cs of a
point.

Diffuse decoder. We regress the diffuse reflectance kd, nor-
mal n and density σ at a point given tri-plane features fx
using diffuse decoder (see Fig. 2). We then apply Eq. (5)
to obtain the diffuse color cd. Here, as in other NeRF
work [34, 35] we opt to directly regress the normals, as we
also found that using the derivative of the density to be un-
reliable for training.

Specular decoder. We regress the specular reflectance co-
efficient ks using the specular decoder. We also compute the
reflection direction which is a function of the view direction
d and the normal n given by

ωr = d− 2(d · n)n. (9)

We then obtain the specular color cs using the specular
shading model given by Eq. (6).
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Volume rendering. Following [6, 23], we volume render
the image Ic and feature images Iw by tracing over color c
and features w respectively via Eq. (1).

Superresolution. Lastly, to generate high-resolution im-
ages, as in EG3D [6] we upsample the rendered images Ic
to I+c via an upsampling module U , guided by the feature
images Iw. We write

I+c = U(Ic, Iw). (10)

3.3. Training

We extend the standard training process of EG3D [6] and
adapt it to our framework. Specifically, for the GAN setup,
we use the rendered image Ic, and condition the discrimi-
nator on both the camera poses p and the illumination SH
coefficients l. We further introduce a regularization on the
estimated normal n, such that it matches the estimated den-
sities. Similar to Zhang et al. [35], we introduce a loss term
defined as

Ln = |n(x)−∇xσ(x)|1, (11)

where ∇x is the spatial gradient.

4. Experiments
4.1. Experimental setup

Datasets. We use three datasets for our experiments:
FFHQ [18], MetFaces [17] and CelebA-HQ [16]. FFHQ
contains 70,000 samples and CelebA-HQ contains 30,000
samples of real human faces as both datasets have been
used traditionally to evaluate GAN methods. MetFaces con-
tains 1,336 samples of faces taken from museum art images,
which is a small dataset that we use to demonstrate that our
method can be applied beyond real face photos.

Implementation details. As in Chan et al. [6], we mir-
ror samples in each of the datasets to double the number
of training samples. We estimate the camera poses p and
illumination coefficients l using DECA [10].

We apply slightly varying training strategies for each
dataset to account for their image resolution and volume.
For FFHQ, we follow a strategy of EG3D [6] and train in
two stages with a batch size of 32 on 8 GPUs. In the first
stage, we train for 750k iterations where we volume ren-
der the images at 642 and super resolve them to 5122. In
the second stage, we adjust the rendering resolution to 1282

and super resolve them to 5122, and train them further for
750k iterations. For the CelebA-HQ dataset, we train only
using the first stage at a rendering resolution of 642 that
are superresolved to 5122, for 500k iterations. For the Met-
Faces dataset, as the sample size is small, we use a model
pretrained on FFHQ and fine tune it on MetFaces via ADA
augmentation [17]. We train for 15k iterations. We detail
the network architectures in the supplementary material.

4.2. Qualitative results

We first qualitatively demonstrate the effectiveness of
our method.

Randomly drawn samples. We demonstrate the quality of
our generated samples from the FFHQ dataset in Fig. 3. For
our results, we also visualize the 3D reconstruction and the
illumination used when generating these samples via a matt
sphere for easy verification of the illumination consistency
of each sample. As shown, our results are photorealistic,
also with fine details. Furthermore, the 2D images rendered
from our model is visually consistant with the 3D shapes.
Note especially the regions around the lips and the teeth
where our model provides improved 3D shape compared to
EG3D, benefitting from the specular modeling.

We further show samples from CelebA-HQ and Met-
Faces datasets in Fig. 5. For both datasets our results deliver
rendering quality that photorealistic, or indistinguishable
form actual paintings, while still providing explicit control
over illumination and camera pose. We provide additional
visualizations in the supplementary material.

Controlling pose and illumination. In Fig. 4, we fix the la-
tent code for generating a face and vary the camera pose and
illumination. Each row corresponds to a different illumina-
tion condition. We note that the lighting matches over two
different persons. We also see the effect of strong lights in
the middle row versus weak directional lights on the top and
the bottom row. Our model provides rendering that remains
consistent regardless of the pose and illumination change.
We show additional results in the supplementary material.

Specular highlights. In Fig. 6, we show the effect of vary-
ing the specular component on the generation process. We
vary the strength of specular component across each row in
Fig. 6. Note how the generated results for lower specularity
seem matt, which is to be expected. Under normal condi-
tions of specularity, highlights on the nose and cheeks are
pronounced adding to the realism of the generated faces.
Furthermore, using higher specularity results in glare.

4.3. Quantitative results

We further evaluate our results quantitatively through
various metrics.

Evaluation metrics. We benchmark our generation quality
on key metrics: FID score [15], KID score [1, 15], identity
consistency (ID), depth, pose and light consistency.
• FID [15] and KID [1, 15]: As in [6], we sample 50,000

faces from the model and compute the score against the
full dataset. The FID and KID score captures the photo-
realism in the generated samples.

• Identity consistency (ID): As in [6, 7, 31, 36], we com-
pute ID with the mean Arcface [8] cosine similarity, af-
ter rendering a face with two random camera views. The
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FaceLit (ours) EG3D

Figure 3. Qualitative results. Curated generated faces with different pose and illumination conditioning using our model (left) compared
with the curated generated samples from EG3D (right). Our model shows detailed reconstruction in the lip and teeth region. The environ-
ment map is rendered using the half-sphere at the bottom right.

measure highlights the consistency of the face under dif-
ferent rotations.

• Consistency: We further evaluate our model on cam-
era pose, depth and illumination consistency. We sam-
ple 1024 faces from the generator along with their cam-
era pose, illumination and depth using the our model.
We then use DECA [10] to obtain psuedo ground truths
for camera pose, illumination of the generated samples.
This differs from baseline methods [6, 7, 31, 36] that use
Deng et al. [9] for pose estimation and preprocessing.
Since DECA has better performance, this also contributes
to lower error in our evaluation. For depth consistency,
following previous work [6, 31, 36], we estimate pseudo
ground truth depth from Deng et al. [9]. We report the
mean square error between our estimates and the pseudo
ground truth estimates.

Variants. For the quantitative study we evaluate four differ-
ent variants of our method. We introduce two sets of models
FaceLit-d and FaceLit-f using the diffuse-only model and
the full model respectively with volume rendering resolu-

tion of 642 and superresolved to 5122. We further train the
models FaceLit-D and FaceLit-F at volume rendering reso-
lution of 1282 and superresolved to 5122.

FFHQ. We report the quatitative evaluations on the FFHQ
dataset in Tab. 1 and compare with previous work on 3D
aware GANs. We observe that FaceLit-D and FaceLit-F
obtain state-of-the-art in photorealism metrics—FID, KID
and competitive performance on ID and depth consistency
metrics. Amongst methods that generate at 5122 resolution,
we achieve state-of-the-art accuracy on depth consistency
metrics. We also note that although diffuse models achieve
state-of-the-art on photorealism metrics, the full models that
also model the specular components have better depth. On
the pose consistency metrics, we achieve state-of-the-art
performance.

MetFaces. In Tab. 2, we compare the performance of our
model to a 2D GAN – StyleGAN2 [19], and a 3D aware
GAN, StyleNeRF [13]. We obtain better photorealism than
both the methods on FID and KID scores. We further pro-
vide face consistency metrics and 3D consistency metrics –
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Figure 4. Camera Pose (left-to-right) and Illumination (top-to-bottom) interpolations. The illumination is represented by a normalized
map [26] at the bottom-right of each image. Each row has same illumination. Top and bottom row show directional light. Middle row
shows overexposed central light.

Figure 5. Qualitative results. Randomly generated faces with dif-
ferent pose and illumination conditioning using our model trained
using MetFaces dataset (top) and CelebA-HQ dataset (bottom).

depth and pose. We note that the depth metrics obtained on
this dataset are worse than those of FFHQ. A reason for this
could be that art images do not strictly respect the physical
model of illumination.
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Figure 6. Effect of specular model by varying the specularity in-
creasing from top to bottom. Specularity term helps in improving
highlights on the nose and cheek region (middle row), and higher
specularity results in the glaring effects (bottom row).

CelebA-HQ. In Tab. 3, we evaluate our models trained on a
smaller dataset, CelebA-HQ with 30,000 samples. We note
that our models can achieve better photorealism scores than
2D GANs such as StyleGAN and has good performance on
consistency metrics. Furthermore, we also note that the full
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FID ↓ KID ↓ ID ↑ Depth ↓ Pose ↓

GIRAFFE [23] 2562 31.5 1.992 0.64 0.94 0.089
π-GAN [7] 1282 29.9 3.573 0.67 0.44 0.021
Lift. SG [31] 2562 29.8 - 0.58 0.40 0.023
StyleNeRF [13] 5122 7.80 0.220 - - -
StyleNeRF [13] 10242 8.10 0.240 - - -
GMPI [36] 5122 8.29 0.454 0.74 0.46 0.006
GMPI [36] 10242 7.50 0.407 0.75 0.54 0.007
EG3D [6] 2562 4.80 0.149 0.76 0.31 0.005
EG3D [6] 5122 4.70 0.132 0.77 0.39 0.005

FaceLit-d 5122 4.01 0.124 0.72 0.42 0.0009
FaceLit-f 5122 4.06 0.115 0.72 0.33 0.0008
FaceLit-D 5122 3.48 0.097 0.77 0.62 0.0008
FaceLit-F 5122 3.90 0.117 0.75 0.43 0.0008

Table 1. Comparison of 3D aware GANs with FaceLit (ours) using
FID, KID ×100, Identity Consistency, depth accuracy and pose
accuracy on the FFHQ dataset [18]. The method names are suf-
fixed with the resolution of generated images.

FID ↓ KID ↓ ID ↑ Depth ↓ Pose ↓

StyleGAN2 [19] 18.9 0.27 - - -
StyleNeRF [13] 20.4 0.33 - - -
FaceLit-d 15.30 0.22 0.87 0.96 0.0018
FaceLit-f 15.43 0.23 0.86 0.77 0.0032

Table 2. Comparison of a 2D GAN and a 3D aware GAN with
FaceLit (ours) using FID, KID × 100, Identity Consistency, depth
accuracy and pose accuracy on the MetFaces dataset [17]. All
models generate at a resolution of 5122.

FID ↓ KID ↓ ID ↑ Depth ↓ Pose ↓

StyleGAN [18] 10242 4.41 - - - -
FaceLit-d 5122 3.63 0.083 0.73 0.36 0.0011
FaceLit-f 5122 3.94 0.117 0.72 0.33 0.0011

Table 3. Performance of FaceLit evaluated using FID, KID ×100,
Identity Consistency, depth accuracy and pose accuracy on the
CelebA-HQ dataset [16]

model, FaceLit-f provides better depth accuracy than dif-
fuse only, FaceLit-d model.

4.4. Illumination accuracy

We further report how accurate our model learns the illu-
mination effects by generating random samples and running
DECA [10] on them to see how well the estimated illumina-
tion agree with the conditioned illumination. We use mean
square error of the SH coefficients averaged over 1024 ran-
dom samples from our model. The samples are conditioned
on pose and illumination randomly sampled from the train-
ing dataset. While imperfect, as these results will be lim-
ited by the accuracy of DECA [10], it allows us to roughly
gauge the accuracy of our illuminations. We report these
results in Tab. 4. As reported, our model generates images
that are well inline with the DECA estimates. We show the
visualizations in Fig. 7.

FFHQ CelebA-HQ MetFaces

FaceLit-d 0.0054 0.0061 0.0069
FaceLit-f 0.0053 0.0042 0.0084
FaceLit-D 0.0049 - -
FaceLit-F 0.0051 - -

Table 4. Average mean square error (MSE) of illumination SH
coeffients evaluated using pseudo ground-truth from DECA [10]

Figure 7. Top: Irradiance maps used to condition our generator.
Bottom: Pseudo ground-truth estimates of irradiance maps using
DECA [10] on the generated images.

5. Conclusion

We have presented a novel method to learn a disentan-
gled 3D generative model for faces that allows the user to
control the camera pose and the illumination, with only sin-
gle views, and without the need of any manual annotation.
Our core idea is how we model physics-based rendering
with a simplified Phong model, that integrates effectively
to neural volume rendering. We demonstrate the effective-
ness of our method on FFHQ, CelebA-HQ, and MetFaces
dataset, providing photorealistic image quality.

Limitations and future work. Our method does not model
all the physical aspects of the scene and rendering process.
Our setup is unsupervised, learned without any explicit con-
trol of the environment during the capture. While this prob-
lem setup is difficult, we are capable of generating photo-
realistic faces under various diffuse/specular lighting. The
quality of the method may be further improved by model-
ing global illumination or subsurface scattering. For fur-
ther improved factorization/specular quality, we may need
higher frequency environment maps [14] that are difficult to
obtain in an unsupervised setting where manual annotation
or specially designed capture setup would help. Further,
our method uses estimation of illumination parameters and
camera pose from existing methods [10]. As such, the accu-
racy of our method is limited by the performance of existing
work. In Fig. 3, it can be seen that the estimated illumina-
tion can sometimes be entangled with skin color, which is a
limitation that we inherit from DECA [10].

Ethical Considerations. We intend our work to be used for
research purposes only and should not be used edit images
of real people without their consent. The use of our method
for developing applications should carefully consider pri-
vacy of the faces, as well as, bias present in the datasets.
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