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Abstract

Recently, many deep stereo matching methods have be-
gun to focus on cross-domain performance, achieving im-
pressive achievements. However, these methods did not
deal with the significant volatility of generalization perfor-
mance among different training epochs. Inspired by masked
representation learning and multi-task learning, this pa-
per designs a simple and effective masked representation
for domain generalized stereo matching. First, we feed the
masked left and complete right images as input into the
models. Then, we add a lightweight and simple decoder
following the feature extraction module to recover the orig-
inal left image. Finally, we train the models with two tasks
(stereo matching and image reconstruction) as a pseudo-
multi-task learning framework, promoting models to learn
structure information and to improve generalization per-
formance. We implement our method on two well-known
architectures (CFNet and LacGwcNet) to demonstrate its
effectiveness. Experimental results on multi-datasets show
that: (1) our method can be easily plugged into the cur-
rent various stereo matching models to improve generaliza-
tion performance; (2) our method can reduce the signifi-
cant volatility of generalization performance among differ-
ent training epochs; (3) we find that the current methods
prefer to choose the best results among different training
epochs as generalization performance, but it is impossible
to select the best performance by ground truth in practice.

1. Introduction
Stereo matching is a challenging research topic of com-

puter vision, which aims to obtain the corresponding pix-
els between two rectified stereo images [3, 30, 37, 39]. It is
essential in many applications, including autonomous [11],
augmented reality [35], virtual reality [2], etc.

1B is the corresponding author.
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Figure 1. The generalization performance among different epochs
on multi-datasets. When the models converge on the source do-
main (Sceneflow), the results are stable on the source domain.
However, generalization performance has fluctuations on target
datasets (KITTI 2012&2015, ETH3D, and Middlebury).

In mainstream deep stereo matching methods, the main
steps include four parts: feature extraction, cost volume,
feature matching, and disparity regression [10]. To improve
the accuracy or speed, researchers proposed many strate-
gies to improve the above four parts [3, 25, 36]. For exam-
ple, 1) scene awareness modules are applied to the feature
extraction to improve accuracy [3, 21]; 2) similarity mea-
surements are employed to enhance physical representation
in cost volume construction [23, 26, 36]; 3) various feature
matching modules are proposed to solve inefficient calcula-
tions or improve accuracy [15, 25, 39]; 4) loss functions of
classification or other fields are joined to disparity regres-
sion to obtain unimodal results [42]. Although the above
methods have achieved significant progress in accuracy or
efficiency, they failed to obtain good generalization perfor-
mance in unseen domains [30, 40].

Therefore, many approaches learn domain-invariant rep-
resentation features to achieve better generalization capabil-
ity [40]. There are three solutions to accomplish this objec-
tive: the unsupervised matching method [24,32,33], domain
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adaptation techniques [12, 13, 17, 31], and domain general-
ization approaches [16, 30, 41]. The above solutions reveal
that feature presentation is crucial for improving general-
ization capability [40, 41]. However, all domain general-
ized matching methods did not mention that the generaliza-
tion performance varies significantly among different train-
ing epochs, as shown in Fig. 1. Namely, the results were
unstable. These methods preferred to choose the best re-
sults to represent the generalization performance by testing
the models of different training epochs. However, we can
not employ ground truth (can not obtain) to select the best
model among different training epochs in practice. Thus, it
is crucial to keep a stable generalization performance.

On the other hand, many researchers introduced multi-
task learning into stereo matching [18, 27]. For instance,
Rao et al. proposed a bidirectional guided attention network
to cope with semantic segmentation and stereo matching si-
multaneously [27]. Liu et al. employed the task-shared and
task-specific manner to obtain a generalizable representa-
tion and used the loss weights to balance all tasks [18]. The
multi-task learning proved that feature sharing and weight
sharing are essential in different tasks, promoting the learn-
ing process and obtaining a better feature representation. In-
spired by these multi-task learning methods, we use masked
left images as input to reconstruct the original left image as
another task. By building pseudo-multi-task learning, we
obtain better structural information features, urging stereo
matching models to perform better generalization.

This paper addresses the domain generalization for
stereo matching methods by masked representation learn-
ing. Our solution considerably increases generalization ac-
curacy while reducing the volatility of generalization per-
formance among different training epochs. First, we ran-
domly mask (or remove) the part of the left image with a
fixed ratio following a uniform distribution. Second, we add
a simple decoder to the feature extraction module’s tail to
recover the original left image. Finally, we train the model
with two tasks (stereo matching and image reconstruction)
as a pseudo-multi-task learning framework and test general-
ization performance on the multi-datasets. In this task, our
strategy helps existing methods to achieve significant gains
in generalization performance. Furthermore, we exhibit the
generalization performance over different training epochs to
demonstrate the superiority of our approach. We hope these
observations will help other tasks explore better generaliza-
tion results. The main contributions are as follows:

• We combine masked image modeling and stereo
matching as a pseudo-multi-task learning framework
to increase generalization accuracy in stereo matching.

• Our approach is employed for various stereo matching
networks, significantly improving cross-domain accu-
racy and reducing the volatility of generalization per-
formance among different training epochs.

• We find that the accuracy of the existing stereo match-
ing domain generalization methods varies significantly
among different training epochs. Thus, we advise that
stability should be evaluated in cross-domain methods.

2. Related Work
Deep learning based stereo matching. Since Zbontar

et al. used convolution neural networks (CNNs) to replace
hand-crafted features and compute matching costs, many
researchers started to apply this novel technology to up-
date the traditional pipelines [38]. Mayer et al. built a cost
volume in a correlation manner and created a sizeable syn-
thetic dataset to meet the data requirements in stereo match-
ing [19]. Kendall et al. first proposed 4D cost volume by
stacking two view features and used 3D convolution to reg-
ularize costs, producing a profound impact in stereo match-
ing [10]. Chang et al. introduced the scene awareness mod-
ule to extract features and applied a 3D hourglass module
to aggregate cost volume [3]. Zhang et al. utilized the tra-
ditional semi-global matching method to reform the feature
matching module (3D convolution), capturing the local or
global cost dependencies [39]. Shen et al. replaced the 3D
hourglass module to cascade structure as a coarse to fine
process, achieving a state-of-the-art generalization perfor-
mance [30]. Li et al. employed a hierarchical network with
recurrent refinement to modify a stacked cascaded archi-
tecture and proposed an adaptive group correlation layer to
reduce the impact of erroneous rectification [11].

Domain adaptation stereo matching. To improve gen-
eralization performance, many researchers converted the
original domain (synthetic scenes) to the target domain (real
scenes) [31]. Liu et al. employed an end-to-end training
framework with domain translation to tackle the problem of
pixel distortion and stereo mismatch after translation [17].
Song et al. designed a bottom-up domain adaptation method
based on color transfer and cost regularization to improve
generalization without any learnable parameters [31]. Li
et al. proposed Fourier-based amplitude transform (FAT),
mapping the source image to the target style without alter-
ing semantic content [12].

Domain generalization stereo matching. Generaliza-
tion performance is an important indicator that reveals the
ability of networks to cope with the unseen domain. To-
nioni et al. joint unsupervised and continuous online learn-
ing to preserve the model’s accuracy in multiple environ-
ments [33]. Zhang et al. proposed a domain-invariant
stereo matching network by regularizing the distribution of
learned representations and extracting robust structural rep-
resentations [40]. Cai et al. introduced matching functions
and confidence measures to replace the learning-based fea-
ture extraction module, leading to superior generalization
to unseen environments [1]. Li et al. introduced a trans-
former to the stereo matching task, which showed strong
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Figure 2. The overall pipeline of our method. Inspired by masked representation learning and multi-task learning, we build a pseudo-multi-
task learning framework based on image reconstruction and stereo matching. The feature extraction module can learn better structure
information by feature fusion in pseudo-multi-task learning, improving generalization performance and stability.

robustness [14]. Liu et al. leveraged the feature of a model
trained on the large-scale dataset to deal with the domain
shift and used a cosine similarity-based cost volume to graft
task-oriented features [16]. Zhang et al. argued maintaining
feature consistency between matching pixels is a vital fac-
tor for the generalization capability and employed a simple
pixel-wise contrastive learning across the viewpoints [41].

Masked representation learning. Masked modeling is
a highly successful way for pre-training in natural language
processing (NLP) and computer vision (CV) [5,9]. Vincent
et al. proposed denoising autoencoders (DAE), which cor-
rupted an input signal and learned to reconstruct the orig-
inal, uncorrupted signal [34]. Pathak et al. presented an
unsupervised visual feature learning algorithm driven by
context-based pixel prediction, proving the effectiveness of
CNN pre-training on classification, detection, and segmen-
tation tasks [22]. Devlin et al. held out a portion of the
input sequence and trained the transformer to predict the
missing content [5]. Chen et al. inspired by progress in
unsupervised representation learning in NLP and trained a
sequence transformer to predict pixels without incorporat-
ing knowledge of structure information [4]. He et al. at-
tempted to demonstrate that masked autoencoders (MAE)
are scalable self-supervised learners for computer vision,
which achieved the best accuracy among approaches that
only used ImageNet-1K data [9]. Feichtenhofer et al. stud-
ied a simple extension of Masked Autoencoders (MAE) to
spatiotemporal representation learning from videos [6].

3. Method

3.1. Overall Pipeline

In a typical stereo matching method based on deep learn-
ing [3, 10, 11, 30, 39], the rectified left and right images are
fed to the feature extraction module. Then, these methods
construct the cost volume by concatenating the left and trav-
eled right features. Finally, they use 3D convolutions to ag-
gregate the cost volume and regress to the disparity map.
Therefore, the poor generalization ability of stereo match-
ing must be caused by two learnable modules (feature ex-
traction module and feature matching module).

In previous studies [16, 40], many achievements have
demonstrated that feature representation in the feature ex-
traction module is a vital factor in the model’s generaliza-
tion ability. Meanwhile, we have noticed that multi-task
learning helps the models obtain a better matching accu-
racy, especially when another task has a recognition at-
tribute (e.g., semantic segmentation, object detection, clas-
sification, etc.) [18, 27]. Why can recognition algorithms
help models to get better performance in multi-task learn-
ing? Because feature-sharing in two or more tasks can
help the models learn better structural or scene informa-
tion [16, 18]. Inspired by the above research, we elegantly
employ masked representation learning to build a pseudo-
multi-task learning framework, promoting models to learn
better structural information in the feature extraction mod-
ule to improve generalization ability, as shown in Fig. 2.
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Masked Input image. Following MAE [6, 9], we fol-
low a uniform distribution to randomly mask pixels as
gray in the left image with the fixed size and ratio (e.g.,
0.15, 0.3, 0.45), as shown in Fig. 3. Unlike MAE, we use
a low ratio and small mask size to mask pixels and do not
employ random positions of patches. Because 1) we hope
the models extrapolate the missing pixel from visible neigh-
boring patches to perceive structural information; 2) lacking
too many pixels is not conducive to learning correlation in
the stereo matching task, mainly feature matching module;
3) stereo matching is sensitive to location information, and
the goal is to build the relationship of correlation, so we do
not use random positions. This design helps the models to
learn structural information in the feature extraction module
and does not impact the training process of other learnable
modules (e.g., the feature matching module.).

(a) original left image (b) ratio: 0.15

(c) ratio: 0.3 (d) ratio: 0.4

Figure 3. Illustration of mask sampling strategy. It determines the
difficulty of the reconstruction task and affects the reconstruction
quality. More masked pixels mean more difficult reconstruction
tasks and less reference information in stereo matching.

After masking the left image, we feed the masked left
and unmasked right images to the feature extraction mod-
ule to obtain the left and right features. Then, we design a
simple and efficient decoder to predict the missing pixels by
the left features, introduced next.

Decoder Design. We treat the feature extraction mod-
ule as an encoder to encode the masked left image and ob-
tain the left features. In stereo matching, all methods use
down-sampling in the feature extraction process to reduce
computation and memory utilization. Therefore, we get the
features with a compressed size (e.g., H/4×W/4×F ) after
the feature extraction module. To reconstruct the target im-
age, we design a lightweight decoder to decode the features
to the original size, as shown in Fig. 2.

We only employ the decoder module to cope with the im-
age reconstruction task during training. In other words, the
decoder module does not work in the testing process. There-
fore, the decoder module will not affect the runtime of the

existing stereo matching models in the testing process. In
this paper, our decoder design is very lightweight and only
consists of three 2D convolutions and two up-sampling op-
erations. Thus, the training process will not be significantly
prolonged in our design.

Reconstruction Target. The decoder module recon-
structs the left image by predicting the missing pixels. The
last layer of the decoder module is a line projection with-
out batch normalization (BN) or ReLU Activation Func-
tion (ReLU). Following MAE, we use normalized pixels
as the reconstruction target to improve representation qual-
ity, and we only compute the loss on the masked pixel of
the left image. Our idea is to use image reconstruction
and stereo matching to build a pseudo-multi-task learning
framework, promoting structural representation learning to
improve cross-domain performance further.

3.2. Loss Functions

We apply image reconstruction and stereo matching to
construct pseudo-multi-task learning. Hence, the loss func-
tions contain two parts, as follows:

Reconstruction loss function. We employ the mean
squared error (MSE) to compute the loss Lr between re-
constructed and original left images in the pixel space. The
reconstruction loss function Lr can be defined as follows:

Lr =
1

N

N∑
i=1

(Io(i)− Ir(i))
2, (1)

where N demotes the number of masked pixels, i is the
identifier of masked pixels, Io represents the original left
image, and Ir indicates the reconstructed masked pixels.

Matching loss function. The matching loss Lm in dif-
ferent papers is different. Most of these methods use the
mean absolute error (MAE) or Smooth L1 loss as based
loss functions. Then, they add photometric or other loss
functions to improve performance. In our method, we fol-
low the loss functions of previous matching works and con-
tinue to adopt the same manner as the loss following their
paper. Therefore, the total loss can be presented as follows:

L = Lr + Lm. (2)

3.3. Algorithm applicability and advantage

Algorithm applicability. Although many stereo match-
ing methods have been proposed recently, they do not break
away from the existing framework (four parts mentioned
in Sec. 1). All models have feature extraction modules,
although the style of the modules is variable. Hence, our
method can be plugged into the current matching methods
by treating the feature extraction modules as encoders and
adding a simple decoder. Our method works for all current
matching algorithms, not just a few.
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Figure 4. CFNet with different masking ratio. As the masking
ratio rises, performance rises first and then declines.

Algorithm advantage. Compared with current domain
adaptation and domain generalization methods in stereo
matching, our approach has many advantages regarding
runtime and convenience, as shown in follows. (1) Unlike
domain adaptation technologies, our method does not need
an additional training process or access to the target do-
main data. Meanwhile, our decoder module is a lightweight
structure. Thus, it will not significantly prolong the training
process of the existing algorithms. (2) Unlike domain gen-
eralization methods, our image reconstruction branch does
not participate in testing. Therefore, our approach does not
affect the runtime of the current matching methods.

4. Experiments
4.1. Datasets & Evaluation metrics

The current domain generalized evaluation manner is
that the models are trained on the source domain and tested
on the target domain. Thus, we first briefly describe these
datasets based on different domains and then introduce eval-
uation metrics on these datasets.

Source domain. We train all models on the Sceneflow
dataset [19] in the experiment with the same schedule.

Target domain. Following previous works [12, 16, 30],
we evaluate all models on the KITTI 2012&2015 (KT-12
and KT-15) [7, 20], ETH3D (ET) [29], and Middlebury
(MB) [28] without fine-tuning.

Evaluation metric. Following previous works [16, 40],
we apply end-point-error (EPE) and the percentage of error

pixels larger than t pixels (> t px) as evaluation metrics.
According to evaluated websites, we set t = 1, 2, 3, which
correspond to the default thresholds of t = 1 (bad 1.0) on
the ETH3D, and t = 2 (bad 2.0) on the Middlebury, and
t = 3 (D1) on the KITTI 2012&2015, respectively.

4.2. Implementation Details

In this paper, we implement our strategy with state-of-
the-art methods (CFNet [30] and LacGwcNet [15]) by Py-
Torch. According to our goal, we need to decide on the
hyper-parameters and training schedule, as presented below.

Hyper-parameters. We set the maximum disparity D =
256 in CFNet and LacGwcNet to ensure that nearly all pos-
sible disparity values in the images could be detected. We
apply Adam Optimizer (β1 = 0.9, β2 = 0.999) to optimize
the model. In training, we set a mini-batch size of 1 image
pair per GPU (six on 6 GPUs) and all loss weights following
their papers.

Training schedule. We only train models on the Scene-
Flow dataset. The learning rate is initially set to 1 × 10−3

for 30 epochs and then reduced to 1× 10−4 for the other 10
epochs. After this process, we obtain the final models. For
data augmentation, we use random cropping, random re-
size, random shift, and random chromatic transformations
to cope with the input image on the SceneFlow dataset.

4.3. Main Properties

Ratio Type KT-12 KT-15 ET MB

0 EPE 1.11 1.55 0.69 2.45
0.15 EPE 1.05 1.44 0.56 1.86
0.25 EPE 1.05 1.45 0.57 1.85
0.35 EPE 1.13 1.53 0.65 2.14
0.45 EPE 1.27 1.63 0.75 2.57

0 t-px error 5.83 6.56 7.25 15.17
0.15 t-px error 5.01 6.09 6.64 12.82
0.25 t-px error 5.12 6.20 6.74 12.60
0.35 t-px error 5.63 6.48 6.94 14.81
0.45 t-px error 4.00 6.79 7.04 15.32

Table 1. The generalization performance of CFNet with different
masking ratios. A low ratio improves generalization performance,
while a high ratio hurts generalization performance.

Masking ratio. Fig. 4 and Tab. 1 show the influence of
the masking ratio (we use an average of ten epochs as gen-
eralization performance.). When the masking ratio is low,
it does not affect the performance (source domain) but im-
proves generalization performance. As the masking ratio
increases, the performance (source domain) gradually de-
clines, and generalization performance rises first and then
falls. Thus, a high masking ratio is not unsuited for this
pseudo-multi-task framework due to two factors: (1) a high
masking ratio will increase the difficulty of reconstruction,
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which is a disadvantage to the learning process; (2) exces-
sive masking will reduce the learnable matching area in the
following modules, such as the feature matching module.
Some qualitative results of our final models on the four re-
alistic datasets are displayed in Fig. 5.

(a) Left image (b) Mask-CFNet (C) Mask-LacGwcNet

Figure 5. The examples of different models on the source and tar-
get datasets (without fine-tuning). From top to bottom are Scene-
Flow (source dataset), KITTI 2012&2015, ETH3D, and Middle-
bury (four target datasets).

Convergence process. In Fig. 6, we compare the perfor-
mance and the convergence process with or without masked
representation learning. Because CFNet and LacGwcNet
have many outputs, we use the matching accuracy of the fi-
nal output as the performance on the training dataset. Mean-
while, we test the performance of these methods on the
source domain. We conclude that: (1) the results are very
stable on the source domain; (2) compared with baselines,
our method does not change the convergence process for the
low mask ratio; (3) a high mask ratio will affect the learning
process and reduce the matching accuracy. Stereo matching
is a task highly related to location information. Mask ratio
means more missing pixels, and it will affect the models to
learn the correlation based on adjacent pixels in the feature
matching module.

Runtime. As shown in Tab. 2, we list the runtime of two
models at the training and testing processes. Our method
only adds a lightweight decoder to reconstruct the left image
in the training process, which does not participate in the test
process. Therefore, we draw the following conclusions: (1)
for the training process, our method does not significantly
prolong training time compared with baselines; (2) for the
testing process, our approach is no different from baselines.

Training epochs and generalization performance. As
presented in Fig. 7, we draw two models’ curves with or

0 10 20 30 40

epoch

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
P

E
 (

p
x
) 

o
n

 S
c
e

n
e

F
lo

w

ratio:0.0

ratio:0.15

ratio:0.25

ratio:0.35

ratio:0.45

0 10 20 30 40

epoch

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
P

E
 (

p
x
) 

o
n

 S
c
e

n
e

F
lo

w

ratio:0.0

ratio:0.15

ratio:0.25

ratio:0.35

ratio:0.45

(a) CFNet (training) (b) LacGwcNet (training)

30 32 34 36 38 40

epoch

1

1.2

1.4

1.6

1.8

2

E
P

E
 (

p
x
) 

o
n

 S
c
e

n
e

F
lo

w

ratio:0.0

ratio:0.15

ratio:0.25

ratio:0.35

ratio:0.45

30 32 34 36 38 40

epoch

0.5

1

1.5

E
P

E
 (

p
x
) 

o
n

 S
c
e

n
e

F
lo

w

ratio:0.0

ratio:0.15

ratio:0.25

ratio:0.35

ratio:0.45

(c) CFNet (testing) (d) LacGwcNet (testing)

Figure 6. The convergence process with or without masked repre-
sentation learning. It proves that a low ratio does not change the
convergence process and the matching accuracy, while a high ratio
affects the learning process and reduces the matching accuracy.

Model Mask Training Resolution Runtime (s)

CFNet ✔ ✔ 576× 320 0.89
CFNet ✔ ✘ 960× 576 0.052
CFNet ✘ ✔ 576× 320 0.84
CFNet ✘ ✘ 960× 576 0.051

LacGwcNet ✔ ✔ 576× 320 1.63
LacGwcNet ✔ ✘ 960× 576 0.264
LacGwcNet ✘ ✔ 576× 320 1.61
LacGwcNet ✘ ✘ 960× 576 0.264

Table 2. The runtime with different resolutions. It presents that
our method does not significantly prolong training time and is no
different from the baseline at the test runtime.

without masked representation learning. When the mod-
els converge (> 30 epochs, as shown in Fig. 6), the re-
sults are stable on the source dataset. However, the gener-
alization performance varies significantly between adjacent
training epochs. Compared with the baselines, the models
with masked representation learning can perform better and
more stable. As shown in Tab. 3, we apply mean and vari-
ance to measure these fluctuations among different training
epochs. By quantifying the changes, we find that the struc-
tural information can help the models achieve a relatively
stable and better generalization performance.
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Figure 7. The generalization performance with or without masked representation among different epochs. It shows that the generalization
performance varies significantly between adjacent training epochs, and our method achieves better performance and is more stable.

M. Mask Data
EPE

(Mean)
EPE
(Var.)

D1

(Mean)
D1

(Var.)

C
FN

et

✔ KT-12 1.44 0.04 5.03 0.03
✘ KT-12 1.55 0.05 5.82 0.13
✔ KT-15 1.05 0.01 6.08 0.07
✘ KT-15 1.11 0.01 6.56 0.19
✔ ET 0.56 0.02 6.63 0.21
✘ ET 0.69 0.03 7.24 0.30
✔ MB 1.86 0.13 12.82 0.37
✘ MB 2.45 0.13 15.16 0.90

L
ac

G
w

cN
et

✔ KT-12 1.43 0.03 6.57 0.30
✘ KT-12 1.83 0.32 9.17 10.46
✔ KT-15 1.41 0.02 6.08 0.23
✘ KT-15 1.78 0.11 8.37 9.24
✔ ET 1.00 0.37 6.57 1.03
✘ ET 2.18 0.84 7.99 1.37
✔ MB 2.40 0.02 17.30 0.89
✘ MB 2.49 0.19 18.28 0.51

Table 3. Volatility comparison of with or without masked repre-
sentation. It demonstrates that our method can help the models
achieve a relatively stable and better generalization performance.

4.4. Comparisons

Comparisons with generalization method. We com-
pare our methods with other stereo matching methods, in-
cluding well-known and generalized methods. Tab. 4 shows
that our approach can help models improve generalization
ability, indirectly proving that masked representation learn-

Method
KT-12
> 3px

KT-15
> 3px

MB
> 2px

ET
> 1px

PSMNet [3] 15.1 16.3 26.9 23.8
GWCNet [8] 12.0 12.2 34.2 11.0
GANet [39] 10.1 11.7 20.3 14.1

DSMNet [40] 6.2 6.5 21.8 6.2
FC-DSM [41] 5.5 6.2 12.0 6.0

CFNet [30] 4.7 5.8 15.3 5.8
GF-PSMNet [16] 5.3 4.6 10.9 6.2

Mask-CFNet 4.8 5.8 13.7 5.7
Mask-LacGwcNet 5.7 5.6 16.9 5.3

Table 4. Cross-domain generalization evaluation (peak results) on
four target datasets. All methods are only trained on the Scene-
Flow dataset and tested on training images of four real datasets.

ing can promote high-level representation feature learning.
Note that all methods have volatility among training epochs,
and we list the volatility as shown in the supplemental ma-
terial. It prompted us to suggest that the scope of fluctuation
should be attached to future work in stereo matching.

Comparisons with fine-tuning. We fine-tune the mod-
els (CFNet and LacGwcNet) on the KITTI datasets to test
the performance after fine-tuning. Tab. 5 shows that the
results are similar to the trend of the SceneFlow dataset.
When the masking ratio is low (< 25%), our method does
not affect the performance and produces nearly the same re-
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sults. As the ratio rises, the performance gradually declines.

Method Ratio
KT-12

(Out-Noc)
KT-15

(D1-all)

LacGwcNet [15] 0 1.13 1.77
LacGwcNet [15] 0.15 1.15 1.78
LacGwcNet [15] 0.25 1.16 1.77
LacGwcNet [15] 0.35 1.27 1.95
LacGwcNet [15] 0.45 1.39 2.21

CFNet [30] 0 1.23 1.88
CFNet [30] 0.15 1.23 1.89
CFNet [30] 0.25 1.27 1.91
CFNet [30] 0.35 1.36 2.05
CFNet [30] 0.45 1.48 2.28

Table 5. The fine-tuning results on the KITTI dataset. It indicates
the results are similar to the trend of the SceneFlow dataset.

5. Discussion

This paper has proposed a simple approach to allevi-
ate the significant volatility of generalization performance.
This section will discuss two topics: (1) When does our ap-
proach fail? (2) What is the real unseen domain?

When does our approach fail? (1) In our study, we
have added the channels of the feature extraction module
to get a better reconstruction image. However, the gener-
alization performance did not obtain remarkable improve-
ment. Although larger models can handle two tasks well, it
is not conducive to the fusion of multi-task learning because
larger modules may learn features of two tasks separately.
Similarly, it will weaken the effect of masked representa-
tion. (2) Excessive masking will cause the learnable match-
ing area to shrink in the feature matching module, affect-
ing matching accuracy or generalization. Thus, large-size
masking is not recommended to improve generalization.

What is the real unseen domain? In previous stud-
ies, nearly all papers used KITTI, ETH 3D, and Middle-
bury datasets as the unseen domains. However, can these
datasets be represented the unseen domain? Although the
color distribution, illumination, and authenticity are differ-
ent between the source domain and the target domains, sim-
ilar objects are included in the source domain, such as the
street scenes in the Driving dataset (sub-dataset of Scene-
Flow), pedestrian in the Driving dataset, daily supplies in
FlyingThing3D (sub-dataset of SceneFlow), etc. Herefore,
we can get good results without fine-tuning models on the
target dataset. Does it mean we can use these algorithms in
practice? The answer is no. We use these models that work
well on target datasets to deal with daily images collected by
the zed camera or remote sensing images collected by satel-
lite. As shown in Fig. 8, we can not get the expected results

(b) disparity map(a) remote sensing image

(c) daily image  (d) disparity map 

Figure 8. The examples of failures in the real unseen domain.
When elements do not appear in the source dataset, the models
can not predict the expected results.

for these images. We consider that the main reason is that
these elements or scenes do not appear in the source dataset,
such as the human body, buildings under the top view angle,
etc. When the real unseen domain appears in the images,
matching methods based on deep learning can not predict
disparity correctly. Thus, we doubt the cross-domain per-
formance of these datasets (KITTI, ETH 3D, and Middle-
bury) can represent actual cross-domain performance.

6. Conclusion

In this paper, we have proposed a simple masked repre-
sentation method to address the problem of unstable gener-
alization performance among different training epochs for
stereo matching. Our approach is inspired by masked rep-
resentation learning and multi-task learning to construct a
pseudo-multi-task learning framework, which helps models
learn better features in the feature extraction module to im-
prove generalization performance and stability. Extensive
experiments have proved the effectiveness of our method.
Meanwhile, it also demonstrated that the current evaluation
manner is unsuitable for measuring generalization perfor-
mance. In the last, we discussed the failure of our approach
and doubted the current definition of the unseen domain.
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