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Figure 1. This work explores the capability of a simple baseline called ViFi-CLIP (Video Fintuned CLIP) for adapting image pretrained

CLIP [33] to video domain. The figure compares the zero-shot performance of vanilla CLIP and several of its variants adapted for videos

(trained on Kinetics-400, evaluated on UCF-101 and HMDB-51). The t-SNE visualizations of video-embeddings obtained from ViFi-CLIP

(4th col.) are compared with embeddings from vanilla CLIP [33] (1st col.), individually tuned CLIP text (2nd col.) and image encoder

(3rd col.) on videos, and recent state-of-the-art work, XCLIP [30] (last col.) (Δ represents difference over XCLIP). The embeddings of

ViFi-CLIP are better separable, indicating that a simple fine-tuning of CLIP is sufficient to learn suitable video-specific inductive biases,

and can perform competitive to more complex approaches having dedicated components designed to model temporal information in videos.

Abstract
Large-scale multi-modal training with image-text pairs

imparts strong generalization to CLIP model. Since train-
ing on a similar scale for videos is infeasible, recent ap-
proaches focus on the effective transfer of image-based
CLIP to the video domain. In this pursuit, new paramet-
ric modules are added to learn temporal information and
inter-frame relationships which require meticulous design
efforts. Furthermore, when the resulting models are learned
on videos, they tend to overfit on the given task distribu-
tion and lack in generalization aspect. This begs the follow-
ing question: How to effectively transfer image-level CLIP
representations to videos? In this work, we show that a
simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is gen-
erally sufficient to bridge the domain gap from images to
videos. Our qualitative analysis illustrates that the frame-
level processing from CLIP image-encoder followed by fea-
ture pooling and similarity matching with corresponding

*Equally contributing authors.

text embeddings helps in implicitly modeling the temporal
cues within ViFi-CLIP. Such fine-tuning helps the model to
focus on scene dynamics, moving objects and inter-object
relationships. For low-data regimes where full fine-tuning
is not viable, we propose a ‘bridge and prompt’ approach
that first uses fine-tuning to bridge the domain gap and
then learns prompts on language and vision side to adapt
CLIP representations. We extensively evaluate this simple
yet strong baseline on zero-shot, base-to-novel generaliza-
tion, few-shot and fully supervised settings across five video
benchmarks. Our code and pre-trained models are avail-
able at https://github.com/muzairkhattak/ViFi-CLIP.

1. Introduction

Pretrained vision-language (VL) models like CLIP [33]

and ALIGN [16] have shown impressive zero-shot perfor-

mance for many downstream vision applications including

classification [45, 48], detection [15, 35, 49] and segmenta-

tion [22, 34]. These models are trained using millions of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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image-text pairs sourced from the internet and offer unique

representations with strong generalization and transfer ca-

pabilities. However, such massive pretraining is laborious

for videos due to the following reasons: 1) Aligned video-

text data has a limited availability and the cost of preparing

such data is monumental in contrast to image-text pairs that

are readily available via internet sources [16]. 2) Videos are

inherently complex and have large compute cost while the

diverse appearance cues could be learned through image-

text pairs with a much lower compute budget. Therefore, it

is critical to devise methods effectively adapting pretrained

image-language models for video-based tasks without for-

getting the generic multi-modal learned representations.

Recent video-based approaches adopt CLIP represen-

tations using additional learnable components for spatio-

temporal modeling. These components include self-

attention layers for cross-frame communication [17], tex-

tual or visual prompts [40] or dedicated video decoder mod-

ules [30] that are learned while keeping the CLIP backbone

frozen or adapting the CLIP encoders as well. However,

these designs require modality-specific inductive biases to

be modeled in the developed architectural modules and need

careful design efforts to adapt CLIP suitably for videos. Ad-

ditionally, while adapting CLIP for downstream video tasks,

such approaches generally do not remain a winner across all

settings. For example, zero-shot adapted approaches per-

form lower in supervised settings, and supervised models

score lower on zero-shot generalization tasks.

To address the above challenges, we frame the follow-

ing two questions: 1) Does the adaptation of CLIP for

videos using additional tunable parameters tamper its gen-

eralization capacity? 2) Is a simple video-specific fine-

tuning sufficient to bridge the modality gap between im-

ages and videos? In our empirical analysis, we observe

that fine-tuning pretrained CLIP encoders along with the

newly introduced temporal modeling components can hin-

der the generalization capability of CLIP. Interestingly, a

simple CLIP model when fine-tuned on a video dataset can

instill suitable video-specific adaptations within the regular

CLIP model and perform competitively to more complex

approaches having video-specific components inbuilt.

Although existing works explore fine-tuning of CLIP en-

coders as a baseline, they undermine the potential of full

fine-tuning of CLIP. However we note that, full fine-tuning

to achieve better visual-language alignment on videos im-

proves synergy between temporal and language cues, and

perform competitive to much sophisticated approaches de-

veloped for videos (see Fig. 1). Towards understanding how

this capacity is achieved by the regular CLIP model, we

show that a simple frame-level late representation aggrega-

tion before loss calculation allows the exchange of temporal

cues within the video fine-tuned CLIP.

While simple CLIP fine-tuning performs competitively

to more sophisticated approaches, it is not always feasible,

especially on low-data regimes. Based on the finding that

simple fine-tuning can efficiently adapt CLIP for videos,

we propose a two-stage ‘bridge and prompt’ approach for

adapting CLIP for low-data regimes that first fine-tunes

vanilla CLIP on videos to bridge the modality gap, followed

by a vision-language prompt learning approach keeping the

tuned CLIP frozen. The contributions of this work are,

• We formulate a simple but strong baseline, ViFi-CLIP

(Video Finetuned CLIP), for adapting image-based

CLIP to video-specific tasks. We show that simple

fine-tuning of CLIP is sufficient to learn video-specific

inductive biases, resulting in impressive performance

on downstream tasks (Sec. 4).
• We conduct experiments on four different experimen-

tal settings including zero-shot, base-to-novel general-

ization, few-shot and fully-supervised tasks. We show

better or competitive performance as compared to the

state-of-the-art approaches (Secs. 3, 4).
• We show the effectiveness of our proposed ‘bridge

and prompt’ approach to first bridge the modality gap

through fine-tuning followed by prompt learning in

both visual and language branches of the CLIP model

for low-data regimes (Sec. 5).

2. Related Work
Vision Language models: Learning multi-modal represen-

tations using large-scale image-text pretraining has proved

to be effective for a wide range of uni-modal and multi-

modal applications [9, 18, 24, 25, 28, 29]. Foundational VL

models like CLIP [33] and ALIGN [16] follow such a pre-

training paradigm and are trained on large-scale image-

caption pairs with contrastive self-supervised objectives.

These models are open vocabulary and effectively trans-

fer on downstream vision applications including few-shot

and zero-shot recognition [45, 47, 48], object detection [15,

35, 49], and image segmentation [11, 22, 46]. However,

adapting pretrained VL models to videos is a challenging

task due to the lack of video-specific temporal cues in the

image-level pretraining. Therefore, recent works [17,30,40]

adapt CLIP for videos by incorporating additional learn-

able components such as self-attention layers, textual or vi-

sion prompts, or dedicated visual decoder, and have demon-

strated improvements on video applications. However, it

is still unclear how much benefit these relatively complex

domain-specific components provide compared to simple

alternatives such as fine-tuning on videos.

Video Action Recognition: Designing accurate video un-

derstanding models inherently requires encoding both spa-

tial and motion cues. Recently, vision transformers based

networks [2, 26, 43] proposes to effectively model the long

range spatio-temporal relationships and have shown consis-

tent improvements over the 3D CNNs [7, 10, 12, 42].
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While these approaches follow independent uni-modal

solutions, works like ActionCLIP [40], XCLIP [30] and Ju

et al. [17] adopt a multi-modal approach by utilizing CLIP

and steer it for video-understanding tasks. These methods

utilize the rich generalized VL representations of CLIP and

fuse them with additional components for temporal model-

ing. However, we note that such design choices can affect

the generalization ability of CLIP and a simple fine-tuning

approach performs competitively.

Prompt Learning: Prompting is a recently adapted

paradigm to efficiently transfer a model to downstream

tasks without re-learning the trained model parameters. By

utilizing a few additional learnable tokens at the inputs,

this approach typically aims to retain the model general-

ization ability in addition to better transferring the model to

downstream applications. Inherited from the NLP domain,

prompting has been widely used for many vision and V-L

models. CoOp [47] and CoCoOp [48] propose to use con-

tinuous learnable text prompts to transfer CLIP for image

recognition tasks. Bahng et al. [3] introduce visual prompts

to probe CLIP at its vision branch. MaPLe [20] propose

multi-modal prompting to effectively adapt CLIP. By keep-

ing the original model parameters frozen, prompting is con-

sidered efficient and requires less computing and training

time as compared to conventional full fine-tuning.

In video tasks, Ju et al. [17] adapt CLIP via text prompts

and transformer layers for temporal modeling. However,

this temporal modeling hinders the CLIP generalization,

and struggles to perform well in zero-shot setting.

3. Problem Settings
In this section, we introduce four problem settings for video

recognition by varying the level of supervision available.

This allows us to analyse the performance of our baseline

and its comparison with state-of-the-art approaches across

a spectrum of tasks with different degrees of generalization

required. Below, we discuss the studied settings, including

a newly proposed base-to-novel generalization setting for

videos, in the increasing order of supervision available.

Zero-shot setting: The model is trained on a source dataset

and transferred directly on downstream cross-datasets. The

source dataset DS contains samples belonging to source

classes, YS = {yi}ki=0. The model is evaluated on the target

dataset DT with classes YT such that YS ∩ YT = φ.

Base-to-novel generalization: To test the generalization

ability of various approaches to novel classes, we intro-

duce a base-to-novel generalization setting for video ac-

tion recognition. A dataset DS with labels YS = {yi}ki=0

is split into base and novel classes, YB and YN such that

YB ∪YN = YS and YB ∩YN = φ. The model is learned on

base classes and evaluated both on base and novel classes.

The proposed base and novel split categorizes the total cate-

gories into two equal halves, where the most frequently oc-

Figure 2. Frequency plot of K400 [19] and SSv2 [14].

curring classes are grouped as the base classes. Fig. 2 shows

the base-novel splits of Kinetics-400 [19] and SSv2 [14].

Few-shot setting: We use this setting to test the learning ca-

pacity of the model under limited supervision. For a dataset

DS with labels YS = {yi}ki=0, a general K-shot data is

created, where K-samples are randomly sampled from each

category yi ∈ YS for training. We use K = 2, 4, 8 and 16

shots. Validation set of DS is used for evaluation.

Fully-supervised setting: This is the conventional setting

for supervised approaches where for a dataset DS with la-

bels YS = {yi}ki=0, model is trained on all training exam-

ples and evaluated on the respective test set.

4. Video Finetuned CLIP
As training vision-language (VL) models on video-caption

pairs is expensive, the availability of large-scale pretrained

video VL models is limited. A reliable alternative explored

in literature is adaptation of large-scale pretrained image-

based VL models, such as CLIP [33], for video down-

stream tasks. Considering the modality gap, prior meth-

ods have explored the use of various specialized attention-

based components that instill communication across frames

and modules to integrate the information from multiple

frames [17,30,40]. On the contrary, we explore the capabil-

ity of a simple baseline called ViFi-CLIP (Video Fine-tuned

CLIP) for adapting CLIP [33] to video domain. Fig. 3 illus-

Figure 3. Overview of our simple baseline ViFi-CLIP for adapting

CLIP [33] to videos. We fine-tune CLIP on videos with minimal

design changes that do not include modality specific components

which we find to degrade the generalization ability of CLIP 4.1.

Simple frame-level late feature aggregation via temporal pooling

allows the exchange of temporal cues in the CLIP representation.
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Method HMDB-51 UCF-101

Uni-modal zero-shot action recognition models

ASR [41] 21.8 ± 0.9 24.4 ± 1.0

ZSECOC [32] 22.6 ± 1.2 15.1 ± 1.7

UR [50] 24.4 ± 1.6 17.5 ± 1.6

E2E [5] 32.7 48

ER-ZSAR [8] 35.3 ± 4.6 51.8 ± 2.9

Adapting pre-trained image VL models

Vanilla CLIP [33] 40.8 ± 0.3 63.2 ± 0.2

ActionCLIP [40] 40.8 ± 5.4 58.3 ± 3.4

XCLIP [30] 44.6 ± 5.2 72.0 ± 2.3

A5 [17] 44.3 ± 2.2 69.3 ± 4.2

Tuning pre-trained image VL models

CLIP image-FT 49.0 ± 0.3 72.9 ± 0.8

CLIP text-FT 48.5 ± 0.1 69.8 ± 1.1

ViFi-CLIP 51.3 ± 0.6 76.8 ± 0.7

+6.7 +4.8

Method K600 (Top-1) K600 (Top-5)

Uni-modal zero-shot action recognition models

SJE [1] 22.3 ± 0.6 48.2 ± 0.4

ESZSL [36] 22.9 ± 1.2 48.3 ± 0.8

DEM [44] 23.6 ± 0.7 49.5 ± 0.4

GCN [13] 22.3 ± 0.6 49.7 ± 0.6

ERZSAR [8] 42.1 ± 1.4 73.1 ± 0.3

Adapting pre-trained image VL models

Vanilla CLIP [33] 59.8 ± 0.3 83.5 ± 0.2

ActionCLIP [40] 66.7 ± 1.1 91.6 ± 0.3

XCLIP [30] 65.2 ± 0.4 86.1 ± 0.8

A5 [17] 55.8 ±0.7 81.4 ± 0.3

Tuning pre-trained image VL models

CLIP image-FT 62.4 ± 1.0 85.8 ±0.5

CLIP text-FT 68.5 ± 1.2 89.6 ±0.3

ViFi-CLIP 71.2 ± 1.0 92.2 ±0.3

+4.5 +0.6

Table 1. Zero-shot setting:
We compare ViFi-CLIP with

uni-modal methods specifi-

cally designed for zero-shot

action recognition and meth-

ods that explicitly adapt

CLIP for videos. Models

are trained on Kinetics-400

and evaluated directly on

HMDB-51, UCF-101 (left)

and Kinetics-600 (right).

ViFi-CLIP acheives strong

generalization. Accuracy

gains over prior best are indi-

cated in blue. We underline

the second best numbers.

K-400 HMDB-51 UCF-101 SSv2

Method Base Novel HM Base Novel HM Base Novel HM Base Novel HM

Adapting pre-trained image VL models

Vanilla CLIP [33] 62.3 53.4 57.5 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1

ActionCLIP [40] 61.0 46.2 52.6 69.1 37.3 48.5 90.1 58.1 70.7 13.3 10.1 11.5

XCLIP [30] 74.1 56.4 64.0 69.4 45.5 55.0 89.9 58.9 71.2 8.5 6.6 7.4

A5 [17] 69.7 37.6 48.8 46.2 16.0 23.8 90.5 40.4 55.8 8.3 5.3 6.4

Tuning pre-trained image VL models

CLIP image-FT 72.9 58.0 64.6 62.6 47.5 54.0 86.4 65.3 74.4 9.2 8.5 8.8

CLIP text-FT 73.4 59.7 65.8 70.0 51.2 59.1 90.9 67.4 77.4 12.4 9.5 10.8

ViFi-CLIP 76.4 61.1 67.9 73.8 53.3 61.9 92.9 67.7 78.3 16.2 12.1 13.9
+2.3 +4.7 +3.9 +4.4 +6.5 +6.9 +2.4 +4.1 +7.1 +2.9 +2.0 +2.4

Table 2. Base-to-novel gen-
eralization: We compare the

generalization ability of ViFi-

CLIP with models that adapt

CLIP [33] for video tasks

on Kinetics-400, HMDB-51,

UCF-101 and SSv2. Here,

HM refers to harmonic mean

which measures the trade-off

between base and novel accu-

racy. Gains over prior best are

shown in blue.

trates an overview of the proposed baseline ViFi-CLIP.

With the additional temporal information in videos, the

important question is how to leverage this information into

image-based CLIP model. We explore the capability of full
fine-tuning of CLIP to bridge the modality gap in video do-

main. ViFi-CLIP fine-tunes both image and text encoder.

Given a video sample Vi ∈ R
T×H×W×C with T frames,

and corresponding text label Y , the CLIP image encoder en-

codes the T frames independently as a batch of images and

produce frame level embeddings xi ∈ R
T×D. These frame-

level embeddings are average-pooled to obtain a video-level

representation vi ∈ R
D. We refer to this as temporal pool-

ing as this operation implicitly incorporates temporal learn-

ing via aggregation of multiple frames.

The CLIP text encoder encodes the class Y , wrapped in

a prompt template such as ‘a photo of a <category>’ to

produce text embedding t ∈ R
D. For a batch of videos, the

cosine similarity sim(.), between all the video-level em-

beddings vi and the corresponding text embeddings ti is

maximized to fine-tune the CLIP model via cross-entropy

(CE) objective with a temperature parameter τ ,

L = −
∑

i

log
exp(sim(vi, ti)/τ)∑
j exp(sim(vi, tj)/τ)

.

Experimental setup: We use ViT-B/16 based CLIP model

for our experiments. For zero-shot, base-to-novel and few-

shot settings, we use 32 sparsely sampled frames with sin-

gle view evaluation. In fully supervised setting, we use 16

frames and multi-view inference with 4 spatial crops and

3 temporal views. We conduct our analysis on five ac-

tion recognition benchmarks: Kinetics-400 and 600 [6, 19],

HMDB-51 [21], UCF-101 [38] and Something Something

V2 (SSv2) [14]. See Appendix B and D for more details.

4.1. ViFi-CLIP Generalizes Well!

When adapting CLIP to video tasks that demand high gen-

eralization ability, two key elements must be satisfied: i)

modality gap should be bridged by adapting image-based

CLIP for video domain ii) modality adaptation must hap-

pen without hurting the in-build generalization. To analyze

the generalization ability of the simple CLIP fine-tuning

approach, we evaluate two problem settings: 1) zero-shot
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Model
HMDB-51 UCF-101 SSv2

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

Adapting pre-trained image VL models

Vanilla CLIP [33] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7

ActionCLIP [40] 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1

XCLIP [30] 53.0 57.3 62.8 64.0 48.5 75.6 83.7 91.4 3.9 4.5 6.8 10.0

A5 [17] 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7

Tuning pre-trained image VL models

CLIP image-FT 49.6 54.9 57.8 62.0 74.4 79.1 85.3 90.5 4.9 6.0 7.2 10.4

CLIP text-FT 54.5 61.6 63.1 65.0 80.1 82.8 85.8 88.1 6.2 6.1 6.3 9.1

ViFi-CLIP 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4
+4.2 +4.8 +1.7 +2.8 +9.3 +5.2 +4.3 +1.3 +1.8 +1.6 +0.1 +1.3

Table 3. Few-shot
setting: We compare

ViFi-CLIP with ap-

proaches that explicitly

adapt CLIP for video

action-recognition on

HMDB-51, UCF-101

and SSv2. Gains

over the best previous

methods that adapt

CLIP are indicated in

blue and underlined

the second best.

setting to evaluate the cross-dataset generalization, and 2)

base-to-novel generalization to test performance on novel

categories. The later setting has not been studied before for

videos and we introduce new base-to-novel splits for videos.

Further details of the splits are given in Appendix C.

(i) Zero-shot Setting: We investigate the cross-dataset gen-

eralization ability of the simple baseline, ViFi-CLIP, in a

zero-shot setting. We train the model on a large video action

recognition dataset, Kinetics-400 and evaluate across differ-

ent datasets, HMDB-51, UCF-101 and Kinetics-600. In Ta-

ble 1, we compare ViFi-CLIP with: 1) uni-modal methods

that are specifically designed for zero-shot action recogni-

tion, and 2) models that adapt image-based multi-modal VL

models for video action recognition. The direct zero-shot

evaluation of vanilla CLIP shows impressive generalization

performance as compared to uni-modal methods. Further,

adapting CLIP with video-specific components helps in im-

proving the generalization in most of the scenarios, indi-

cating the importance of bridging the modality gap. How-

ever, the simple fine-tuning approach shows better capabil-

ity to bridge the domain gap, without disrupting the gener-

alization learned in the pretraining stage of CLIP. Note that

we also fine-tune image and text encoders (denoted with

CLIP image-FT and CLIP text-FT respectively) and com-

pare with fully fine-tuned CLIP (ViFi-CLIP) where the lat-

ter gives stronger generalization due to better alignment of

visual and text representations on video tasks. ViFi-CLIP

achieves consistent gains of +6.7%, +4.8% and +4.5% in

HMDB-51, UCF-101 and K-600 respectively.

(ii) Base-to-Novel Generalization Setting: In Table 2, we

evaluate the generalization from base to novel classes on

four datasets, K-400, HMDB-51, UCF-101 and SSv2. In

comparison to XCLIP [30] and ActionCLIP [40] which use

additional components to model video-specific inductive bi-

ases, ViFi-CLIP with minimal design modifications pro-

vides better base accuracy, and shows noticeable gains in

novel accuracy. It provides a better base-to-novel trade-off

with an overall best harmonic mean on all datasets. Further,

ViFi-CLIP shows better understanding of scene dynamics

even on temporally-challenging datasets like SSv2.

4.2. CLIP directly adapts to Video tasks

We explore the capability of a simple fine-tuning approach

in bridging the domain gap on supervised video action

recognition tasks under different experimental settings: 1)

few-shot learning, 2) fully-supervised setting.

(i) Few-shot Setting: In Table 3, we show the effect of

ViFi-CLIP in the few-shot setting along with methods that

adapt CLIP for videos. We note that ViFi-CLIP consis-

tently improves performance with increasing shots. Across

the three datasets HMDB-51, UCF-101 and SSv2 in all

the shots (K = 2, 4, 6, 8), it provides better performance

against all the compared methods. Interestingly, it achieves

relatively larger gains in extremely limited data scenarios

demonstrating robustness towards overfitting. For exam-

ple, it achieves gains of +9.3% and 4.2% in UCF-101 and

HMDB-51 respectively compared to prior best methods.

(ii) Fully-supervised Setting: We compare the perfor-

mance of ViFi-CLIP trained on Kinetics-400 with uni-

Method Frames Top-1 Top-5 Views GFLOPs TP

Uni-modal architectures

Uniformer-B [23] 32 83.0 95.4 4 × 3 259 -

TimeSformer-L [4] 96 80.7 94.7 1 × 3 2380 -

Mformer-HR [31] 16 81.1 95.2 10 × 3 959 -

Swin-L [27] 32 83.1 95.9 4 × 3 604 -

Adapting pre-trained image VL models

ActionCLIP [40] 32 83.8 96.2 10 × 3 563 67.7

X-CLIP [30] 16 84.7 96.8 4 × 3 287 58.5

A6 [17] 16 76.9 93.5 - - -

Tuning pre-trained image VL models

CLIP image-FT 16 82.8 96.2 4 × 3 281 71.1

CLIP text-FT 16 73.1 91.2 4 × 3 281 71.1

ViFi-CLIP 16 83.9 96.3 4 × 3 281 71.1

Table 4. Fully-supervised setting: We compare ViFi-CLIP with

uni-modal methods and models specifically designed to adapt

CLIP for video tasks on Kinetics-400. In addition to accuracy,

we report FLOPs and throughput (TP).
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Figure 4. Attention map visualizations of ViFi-CLIP in comparison with vanilla CLIP on two examples from UCF-101 validation set.

ViFi-CLIP learns inter-object relationships and scene-dynamics from temporal cues and focuses on fast-moving parts and objects, thereby

demonstrating the ability to encode video specific information. (Left): An example on action class ‘hammering’. While vanilla CLIP

focuses only on the object (hammer), ViFi-CLIP attends to the interaction between the person and the object. (Right): Example on ‘frisbee

catch’ category. Vanilla CLIP uses only appearance cues and confuses a hat with the frisbee, while ViFi-CLIP focuses on the players and

pays more attention on fast-moving parts like the hands and legs of the players, and correctly locates the frisbee.

modal video-specific models and other methods that tailor

CLIP for videos in Table 4. The simple approach of fully
fine-tuning CLIP provides competitive performance in com-

parison to methods that use additional carefully designed

learnable components for video-specific temporal model-

ing. Further, the ablation of fine-tuning image-encoder and

text-encoder indicates the effectiveness of fine-tuning the

full CLIP model to address the domain gap.

4.3. How simple fine-tuning bridges domain gap?

Having shown the effectiveness of ViFi-CLIP for adapt-

ing CLIP for video action recognition, we explore how this

approach encodes video specific information that enables

bridging the modality gap. We conduct our experiments

by ablating on the fusion mechanism that is used to com-

bine frame-level information. In the proposed baseline, we

adopt an embedding-level fusion, where individual frames

are encoded by the image encoder, and the resulting im-

age embeddings are then fused together to obtain a video-

level visual representation. We explore two alternate fusion

mechanisms; 1) Decision-level fusion: image embeddings

from individual frames are used separately to compute sim-

ilarity (logits) with the corresponding text embeddings. The

frame-level logits are then averaged to obtain video-level

logits. 2) Image-level fusion: the frames of a video are

considered as individual images, and losses are computed

across each frame, thus removing all temporal information.

In Table 5, we compare the two fusion mechanisms with

our simple embedding level fusion across four datasets,

Kinetics-400 tiny (a smaller split of full K-400), few-

shot (K = 16) splits of SSv2, HMDB-51 and UCF-101.

The analysis shows that fusing the frame-level embeddings

helps the model learn the temporal relations between dif-

ferent frames, thus implicitly establishing inter-frame com-

munication. We note a significant gain on SSv2 with

Method K400-tiny SSv2 HMDB-51 UCF-101

Vanilla CLIP [33] 51.6 2.7 41.9 63.6

Decision-level fusion 74.6 10.8 62.2 90.5

Image-level fusion 74.0 11.2 64.4 91.7

Embedding fusion 76.9 12.4 66.8 92.7

Table 5. Analysis on different fusion mechanisms that inte-

grate temporal information in the model. ViFi-CLIP uses an

embedding-level fusion, where representations of multiple frames

are combined together to integrate the temporal information.

embedding-level fusion that further supports the intuition,

as SSv2 demands rich temporal modeling due to its fine-

grained actions as compared to Kinetics-400.

4.4. How effective are the video-specific representa-
tions learned during simple fine-tuning?

We conduct qualitative analysis on the generalization per-

formance of ViFi-CLIP for the zero-shot setting, as shown

in Fig. 1. The t-SNE visualisation of video-embeddings

from ViFi-CLIP are compared with vanilla CLIP, other al-

ternatives (CLIP image-FT and CLIP text-FT) and prior

state-of-the art method XCLIP [30]. The feature represen-

tations improve with the fine-tuning of either text or image-

encoder over vanilla CLIP. When both text and image en-

coder are tuned, the learned representations further improve

and show better separability in the latent space. Addition-

ally, we note that ViFi-CLIP achieves competitive perfor-

mance when compared with XCLIP, that requires dedicated

components to model temporal information.

To better understand what temporal relations are cap-

tured by fine-tuning CLIP on a video-dataset, we present

attention map visualizations in Fig. 4. Our empirical analy-

sis stipulates two interesting findings: 1) ViFi-CLIP learns

inter-object relationships from temporal cues to recognize

the action. For example, in Fig. 4 (left), the model fo-
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Figure 5. Generalization to out-of-distribution examples: Attention map visualizations from ViFi-CLIP shows impressive generaliza-

tion. (Left): Visualization on a diffusion model generated (synthetic) video from Imagen [37] shows how ViFi-CLIP focuses on the body

of the astronaut, the horse and its moving feet. (Right): Example of a rare scenario ‘giraffe diving’. ViFi-CLIP consistently attends to

the giraffe at various locations: diving board, air, water-surface and under the pool.

cuses not only on the object (hammer), but attends to the

interaction between the person and the object. 2) ViFi-

CLIP focuses on scene dynamics and moving objects. In

Fig. 4 (right), ViFi-CLIP attends to the fast-moving parts of

the scene and learns to attend to salient parts of the body

important for temporal understanding such as the legs and

hands of the players. Intuitively, these observations indicate

that temporal relations can be implicitly modeled by simply

fine-tuning CLIP on a video-dataset. Additionally, we test

ViFi-CLIP on extreme out-of-distribution examples. Atten-

tion maps shown in Fig. 5 demonstrate good generalization.

It supports the claim that ViFi-CLIP learns temporal rela-

tions and aids in boosting the generalization of CLIP [33]

by keeping CLIP image and text encoders intact.
4.5. Is fine-tuning efficient w.r.t adapting CLIP?

Being a competitive alternative to other methods in-terms

of accuracy, we further study the compute complexity of

ViFi-CLIP in comparison to other methods.

Method GFLOPs TP Params (M)

ActionCLIP [40] 563 67.7 168.5

XCLIP [30] 287 58.5 131.5

ViFi-CLIP 281 71.1 124.7

Table 6. Compute comparison of ViFi-CLIP with methods that

adapt CLIP with additional components. Throughput per view

(TP) is measured using a single A100 GPU. ViFi-CLIP enjoys ef-

ficiency in-terms of GFLOPs, throughput and parameter count.

Table 6 shows that ViFi-CLIP provides high throughput

(TP) of 71.1 images/sec as compared to other methods that

adapt CLIP for videos. This is attributed mainly due to

its simple design that avoids using any additional video-

specific components. This also leads to lower FLOPs and

fewer training parameters as compared to other approaches.

5. Bridge and Prompt in low-data regimes
ViFi-CLIP shows that a simple fine-tuning approach is ef-

fective in bridging the domain gap in video. However, fine-

tuning the CLIP model may not always be feasible as it

requires training large number of parameters. Particularly

in case of low-data regimes, where availability of training

data is extremely limited, we explore an important question:

How can one efficiently steer CLIP towards various down-

stream tasks, after bridging the modality gap, that favours

both effectiveness and efficiency in-terms of performance

and compute respectively? We explore a two-stage frame-

work, ‘bridge and prompt’: i) The model is first fine-tuned

on a video dataset to bridge the modality gap, ii) Model

is adapted to downstream tasks for better generalization

through context optimization via prompting. Here the en-

tire model is frozen, and prompts are adapted and learned

for a specific task. Ju et al. propose a strong baseline

that learns task-specific vision prompts for adapting CLIP

for video tasks [17] and use lightweight transformers for

temporal modeling. Although this efficient prompting tech-

nique proves to adapt CLIP for video tasks, the model strug-

gles to generalize towards unseen classes due to the late fu-

sion through the transformer layers.

To this end, we develop an extended baseline that

Figure 6. We use Vision-Language prompting approach to adapt

CLIP for videos. Vision and textual prompt tokens are used in the

vision and language branch of CLIP which are the model’s only

learnable parameters. These prompts steer CLIP towards down-

stream tasks in low data regime scenarios without losing the orig-

inal generalization ability of CLIP. Deep contextual prompts are

used in both branches across multiple transformer layers.
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Model
HMDB-51 UCF-101 SSv2

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

Vanilla CLIP [33] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7

ActionCLIP [40] 54.3 56.2 59.3 66.1 76.7 80.4 87.6 91.8 4.8 6.9 9.1 12.3

XCLIP [30] 60.5 66.8 69.3 71.7 89.0 91.4 94.7 96.3 6.6 7.8 9.9 13.7
A5 [17] 46.7 50.4 61.3 65.8 76.3 84.4 90.7 93.0 4.5 6.7 7.2 9.5

VL Prompting 63.0 65.1 69.6 72.0 91.0 93.7 95.0 96.4 6.7 7.9 10.2 13.5

Table 7. VL prompting

effectively improves

over other methods

in few-shot setting.

Models are pretrained

on Kinetics-400 to

bridge the modality

gap.

HMDB-51 UCF-101 SSv2

Method Base Novel HM Base Novel HM Base Novel HM

Vanilla CLIP [33] 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1

ActionCLIP [40] 69.0 57.2 62.6 85.6 75.3 80.1 8.1 8.7 8.4

XCLIP [30] 75.8 52.0 61.7 95.4 74.0 83.4 14.2 11.0 12.4

A5 [17] 70.4 51.7 59.6 95.8 71.0 81.6 12.9 5.7 7.9

VL prompting 77.1 54.9 64.1 95.9 74.1 83.6 15.8 11.5 13.3

Table 8. Comparison of VL prompting

approach in base-to-novel generalization

setting. VL prompting shows consistent

gains on base classes while also improv-

ing on novel classes. It performs com-

petitive even against fine-tuning based ap-

proaches [30,40]. All models are first pre-

trained on Kinetics-400.

efficiently adapts CLIP in low-data regimes via vision-

language (VL) prompt learning for videos. Fig. 6 shows

the overall architecture of our proposed framework. In con-

trast to previous approaches that learn prompts only at the

language branch for video adaption [17], we use a vision-

language prompt learning design where prompt vectors are

learnt on both vision and language branch. Moreover, we

introduce prompts at deeper layers of both encoders, to cap-

ture hierarchical contextual representations.

5.1. Prompting is effective on fine-tuned CLIP

We compare our VL prompting with other methods that

adapt CLIP for videos. Following the first stage of our

‘bridge and prompt’ approach, all methods are pretrained

on Kinetics-400 and then evaluated in two problem settings:

few-shot transfer and base-to-novel generalization. Note

that ActionCLIP [40] and XCLIP [30] fine-tune CLIP en-

coders on the corresponding datasets.

(i) Few-shot Setting: Table 7 shows the results for few-

shot transfer. Vanilla CLIP [33] is the lower bound and

A5 [17] is most similar to our approach as it only adapts

prompts and few transformer layers, keeping the CLIP

model frozen. We note that VL prompting consistently pro-

vides better performance over A5 and even performs com-

petitively against fine-tuning approaches. Particularly for

extreme cases where K = 2, it provides the best results

by providing absolute gains of 2.5% and 2% over XCLIP

on HMDB-51 and UCF-101 respectively. This suggests the

significance of learning prompts in low-data regimes.

(ii) Base-to-Novel Generalization Setting: In Table 8, we

compare the results on base-to-novel setting among differ-

ent methods. In comparison to vanilla CLIP, all fine-tuning

approaches improves their generalization ability for novel

classes. We note that vision-language (VL) prompting pro-

vides competitive performance against prior prompting [17]

designs and highly competitive fine-tuning methods [30,40]

without any video-specific attention modules. The results

suggest that VL prompting is effective in steering pretrained

CLIP model towards downstream tasks without compromis-

ing on generalization.

5.2. Is prompting efficient w.r.t CLIP adaptation?

We perform an analysis on complexity of various meth-

ods in the low-data regime as detailed in Table 9. CLIP

adaptation methods provide less throughput due to the use

of video-specific learnable components in addition to the

vanilla CLIP model. A5 [17] requires fewer FLOPs but

achieves less throughput, due to the additional transformer

blocks for temporal modeling. On the other hand, VL

prompting shows higher efficiency in terms of throughput

and comparable FLOPs as compared to prior approaches.

Method GFLOPs TP

ActionCLIP [40] 563 67.8

XCLIP [30] 287 58.5

A5 [17] 284 62.5

VL prompting 287 71.6

Table 9. Computational complexity comparison of VL prompting

with other methods in-terms of GFLOPs and throughput (TP).

6. Conclusion
This work shows the significance of an often neglected but

simple baseline for transferring image-based CLIP model

to video domain. We demonstrate that simply fine-tuning

both the vision and text encoders on video data performs

favourably on supervised as well as generalization tasks.

The results show the scalabiltiy and advantage of a simple

solution with respect to sophisticated approaches developed

dedicatedly for videos in majority of the settings. In cases

where fine-tuning is not possible, we also propose a bridge

and prompt scheme that uses the video fine-tuned represen-

tations to quickly adapt to downstream video applications.
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