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Abstract

A vast amount of images and pixel-wise annotations al-
lowed our community to build scalable segmentation solu-
tions for natural domains. However, the transfer to expert-
driven domains like microscopy applications or medical
healthcare remains difficult as domain experts are a critical
factor due to their limited availability for providing pixel-
wise annotations. To enable affordable segmentation so-
lutions for such domains, we need training strategies which
can simultaneously handle diverse annotation types and are
not bound to costly pixel-wise annotations. In this work, we
analyze existing training algorithms towards their flexibility
for different annotation types and scalability to small anno-
tation regimes. We conduct an extensive evaluation in the
challenging domain of organelle segmentation and find that
existing semi- and semi-weakly supervised training algo-
rithms are not able to fully exploit diverse annotation types.
Driven by our findings, we introduce Decoupled Semantic
Prototypes (DSP) as a training method for semantic seg-
mentation which enables learning from annotation types as
diverse as image-level-, point-, bounding box-, and pixel-
wise annotations and which leads to remarkable accuracy
gains over existing solutions for semi-weakly segmentation.

1. Introduction

Modern semantic segmentation pipelines like [11,24,64]
enable a wide range of segmentation applications in do-
mains like urban scenes [13, 41] or natural images [19, 37,
73]. Besides recent progress in supervised training and
network architectures, an (even more?) important reason
for this success was the availability of large budgets for
the creation of training datasets. A significant portion of
these budgets is usually spent on human labor for creat-
ing pixel-wise annotation masks. Motivated by cost re-
duction, crowd-sourced annotation with briefly instructed

Figure 1. The availability of domain experts for annotating data is
often the major bottleneck in expert-driven domains. Can we give
experts the freedom to provide diverse annotation types based on
their available time, and still train models successfully?

annotators became a popular choice, e.g., for the creation
of MSCoco [37] or OpenImages [7]. However, this is of-
ten not possible for application domains where extensively
trained experts need to provide annotations. As an example,
Guay et al. highlighted in [23] that “Cell biologists have
used [...] segmentations of cellular structures to provide
rich [...] new insights into cellular processes”, but annota-
tion “required nine months’ work from two in-lab annota-
tors and represented a small fraction of all imaged cells.”.

For such expert-driven domains (Fig. 1), the time of
skilled annotators needs to be used more efficiently, as their
number can not be easily scaled up. Hence, training al-
gorithms should not rely on naively extending collections
of pixel-wise masks. Instead, training algorithms should
be flexible towards the annotation-granularity which an ex-
pert has time to and is willing to provide (expert-centrism)
and should still efficiently exploit small quantities of pixel-
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wise annotations (annotation efficiency). Thereby, experts
become the center of the segmentation pipeline, and can
leverage their time and knowledge flexibly, e.g. in form of
bounding box-, image-level- or single point annotations.

In this work, we evaluate both properties for existing
training algorithms. As a starting point, we follow com-
mon semi-supervised scenarios and analyze annotation effi-
ciency where we systematically reduce available pixel-wise
annotations. In addition, we analyze existing training algo-
rithms towards their expert-centrism by varying the num-
ber of pixel-wise masks and the annotation types. Based
on these findings, we finally present Decoupled Semantic
Prototypes: an expert-centric training algorithm applicable
to any off-the-shelf segmentation architecture, designed by
adapting ideas from contrastive learning to semi-weakly su-
pervised scenarios and combining it with end-to-end train-
able protype-based segmentation networks. Our experi-
ments give insight into which algorithms can be flexibly
used in expert-driven domains, and also give intuitions on
how to spend annotation budgets: always on pixel-wise
masks or on coarser annotations?

In summary, our contributions are as follows:

(1) We carefully benchmark segmentation training algo-
rithms by investigating how well they scale to fewer
and fewer pixel-wise annotations and how well they
handle diverse weak label types, giving strong base-
lines and insights into their applicability for expert-
driven domains.

(2) We introduce the Annotation Compression Ratio
(ACR) as a metric for analyzing semi-weakly super-
vised algorithms towards their annotation efficiency
and expert-centrism w.r.t. full supervision signals.

(3) We propose Decoupled Semantic Prototypes as a sim-
ple but efficient method for expert-centric semi-weakly
segmentation which can learn from a diverse mix of
annotation-types and which leads to gains of up to
+12.8% absolute DICE for organelle segmentation.

2. Related Work
Semi-supervised Segmentation Several semi-supervised
segmentation algorithms exploit a network trained on an-
notated data to predict pseudo-labels [30, 76] for unlabeled
images during training to train with both image sets. One
prominent example is FixMatch by Sohn et al. [51], which
initially was introduced for classification and was trans-
ferred to segmentation in [50]. FixMatch produces pseudo-
labels from mildly augmented images as supervision sig-
nal for strongly augmentation versions of the same image
and often leads to strong results. Zhong et al. [71] use this
idea of weak and strong augmentation in a contrastive learn-
ing (CL) framework. Combining self-supervision and CL

on unlabeled data is done increasingly in semi-supervised
learning [2, 65, 69, 75]. We will extend these ideas and
adapt a specific CL variant, the simple yet significant idea
of Decoupled Contrastive Learning (DCL) [66], to be ap-
plicable to diverse annotation types which traditional semi-
supervised methods are not capable of.
Weakly-supervised Segmentation Pixel-wise masks are
extremely costly to generate. As an example, Cordts et
al. [13] report 1.5 hours for each pixel-wise annotation in-
cluding quality control. Lin et al. [37] report about 15
minutes per pixel-annotatated image. To circumvent these
massive efforts, a lot of work has flown into training with
cheaper annotation-types. Most effort in weakly-supervised
segmentation has been spent in the natural image domain
using image-level labels [1, 26, 32, 43, 63, 67], bounding
boxes [14,28,29,34,52] and scribbles, click- or point anno-
tations [5, 6, 10, 35, 36, 56, 57, 60]. As an ill-posed problem,
the task has been mostly addressed by finding useful as-
sumptions and valid priors which can be exploited in train-
ing. Unfortunately, such assumptions are often designed
for object-centric images, and hardly transfer to special-
ized, expert-driven application domains. Prominent tech-
niques [20, 48, 72] may fail for domains substantially dif-
ferent from ImageNet [15]. Specialized weakly-supervised
methods have been proposed for expert-driven domains
[31, 49, 68]. In a similar spirit, we aim to exploit diverse
weak annotation types and at the same time benefit from
unlabeled images .
Semi-weakly Supervised Segmentation The previous two
ideas are combined with semi-weak supervision [12] (also
called mixed- or omni-supervision [21,46,62]). The idea is
simple: exploit any available data during training, irrespec-
tive of being unlabeled, weakly labeled, or pixel-wise an-
notated. This makes training flexible towards different an-
notation types, thereby liberating application experts from
being forced to provide time-consuming pixel-wise masks.
The focus of semi-weakly supervision was mainly on pairs
of annotation types, e.g. pixel-wise masks combined with
image-level labels [4, 39, 40, 44], with bounding boxes [18,
27,28,36,42,55,70], or with partial labels [17,45]. More ex-
otic combinations include unpaired masks [59] or unlabeled
images [21] with scribbles. Li et al. [34] bootstrap panoptic
segmentation from masks, image-level labels, and bounding
boxes coupled with assumptions on natural images.

Inspired by these works, we will go one step further
and enable semi-weakly supervised segmentation training
with pixel-wise masks, bounding boxes, point annotations,
image-level labels, and unlabeled images.

3. Decoupled Semantic Prototypes
Inspired by the previously reviewed methods, we now in-

troduce Decoupled Semantic Prototypes (DSP). The design
of DSP will allow us to exploit diverse annotation types,
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hence, being expert-centric, while remaining applicable to
off-the-shelf segmentation architectures.

3.1. Preliminaries

For training segmentation models, we define a training
dataset as D = {x1, . . . , xn|xℓ ∈ Rcdim×H×W } where im-
ages xℓ have cdim color or intensity channels and H and
W denote height and width. Since we do not want to re-
strict the training to particular annotation types, we allow
for a broad semi-weakly supervised segmentation scenario
where images xℓ may come unlabeled U , with pixel-wise
masks M, or with weak annotations via bounding boxes B,
point annotations P , or image-level labels I. For an im-
age xℓ that is labeled with a mask, we also have access to
the weaker annotation types, as they can be derived from it.
Similarly, box- and point-annotated images include image-
level information as it can be directly derived.

3.2. Pixel-wise Embeddings

A key idea of our method is to integrate different anno-
tation modalities by carefully designing dependencies on a
pixel level. Therefore, each pixel needs to be associated
with an embedding vector. In contrast to standard segmen-
tation networks that are trained with a linear layer and a
pixel-wise cross-entropy loss on top, we design our net-
work ε such that ε(x) yields an embedding F ∈ RD×H·W

consisting of embedding vectors fi ∈ RD for each pixel i.
This adaptation can be easily done for all segmentation net-
works. For details about the network design used in our
experiments see Section 5.2.

3.3. Semantic Prototype Association

Integrating and combining different annotation types re-
quires modelling dependencies between the input data and
class labels. Hence, in addition to the embeddings for each
pixel, we further need an association to semantic classes.
Therefore, we introduce semantic prototype vectors pjc ∈
RD, with c indicating the class represented by the prototype
and j indexing the explicit prototype vector among a set Pc

of prototypes for class c. To evaluate if a pixel-embedding f
belongs to a class c, we first compute its similarity to every
prototype pjc via the cosine distance:

σ(f, pjc) =
f⊤pjc

||f || · ||pjc||
(1)

and then average the similarities between all prototypes of
a given class c and the embedding f :

sc(f, Pc) =
1

|Pc|
·
∑
j∈Pc

σ(f, pjc) , (2)

thereby aggregating them to a class-wise score sc. In train-
ing, these class-wise scores sc(f, Pc) are normalized by

temperature scaling with τ and the softmax function:

s̄c(f, Pc) =
exp (sc(f, Pc)) /τ∑C
i=1 exp (sc(f, Pi)/τ)

. (3)

The scores s̄c can be plugged into the commonly used
cross-entropy loss to train the segmentation network.
At inference time, the class with highest class score
argmaxc{sc(f, Pc)}Cc=1 gives the hard decision for each
embedding vector f ∈ F , thereby giving the final semantic
segmentation.

All prototypes pjc are parameters of the network and
learned end-to-end (similar to [3]), or in pytorch-like code:

P = TORCH.RANDN((C, |PC |, D))
P = P.DIV(P.POW(2).SUM(2,KEEPDIM=TRUE).POW(0.5))
P = TORCH.NN.PARAMETER(P, REQUIRES GRAD=TRUE)

This can be thought of as implicitly finding cluster centers,
which differentiates our prototypical segmentation from
Zhou et al. [74], who require online clustering to acquire
prototypes. Furthermore, class queries in transformers [54]
are also coarsely related to this view on segmentation. To
recap, rather than predicting one-hot categorical vectors, we
learn data-driven D-dimensional class representations com-
patible to pixel embeddings. Using multiple prototypes per
class allows for intra-class variability and multi-modal dis-
tributions in the learned embedding space (see supplement).

3.4. Decoupled Contrastive Prototypes

Modeling segmentation as prototype association pro-
vides us with the freedom to decide which associations be-
tween pixel-embeddings and prototype vectors to enforce.
One way to enforce specific associations between sets of
vectors is contrastive learning or in our case decoupled con-
trastive learning (DCL, [66]). Contrastive learning encour-
ages that for a given image and its augmented version, the
resulting representations zi and ẑi become similar by mini-
mizing:

− log
exp (σ(zi, ẑi)/τ)

Zi
, (4)

with normalization Zi computed over a batch of size B:

Zi =

B∑
j=1,j ̸=i

exp (σ(zi, ẑj)/τ) + exp (σ(zi, zj)/τ) . (5)

Different from standard contrastive learning, decoupled
contrastive learning (DCL) removes the positive association
of the numerator out of the denominator. We adapt DCL to
not relate augmented vectors to each other, but to associate
pixel-embeddings to semantic prototypes:

L(fi, c) = − log
exp (sc(fi, Pc)/τ)

Zi,c
(6)
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Figure 2. Left: Our segmentation method Decoupled Semantic Prototypes embeds each pixel of an input image into an embedding space,
in which it assigns class-attribution by relating pixel-embeddings to learned class-specific prototypes. We add the idea of filtering self-
inferred pseudo-labels with weak labels if available. Right: We extend the idea of Decoupled Contrastive training to learn from diverse
annotation types by using them to decide which class-associations can be regarded as negatives and which should not (gray regions).

with Zi,c normalizing with respect to all pixels:

Zi,c =

B·H·W∑
j=1

C∑
k=1,k ̸=c∧j ̸=i

exp (sk(fj , Pk)/τ) . (7)

As we minimize Eq. (6), it encourages the association of
fi to prototypes in Pc to be high, and all other associations
fj to prototypes in Pc to be small. This is not desirable,
as we would encourage the similarity between an arbitrary
fj and the elements in Pc to be small, even though pixel j
could potentially belong to class c. Thus, we modify Zi,c as
follows yielding our final formulation:

Zi,c =

B·H·W∑
j=1

C∑
k=1,c/∈Aj∨k ̸=c

exp (sk(fj , Pk)/τ) . (8)

Here, Aj is a function returning the set of possible classes
the pixel j might be associated with under the given anno-
tation. For example, if j is a pixel drawn from an unlabeled
image, then A(j) is the set of all classes, as we do not have
any knowledge about classes for j. If the pixel j belongs
to an image with image-level labels, A returns the set of
these image-level classes. Similarly, A returns all classes
of the bounding boxes in which pixel j is located in. For
point annotations and pixel-wise masks, only a single label
is relevant and |A(j)| = 1.

By only using embedding-prototype associations
sk(fj , Pk) in the denominator (as negatives) that satisfy
c /∈ A(j)∨k ̸= c, we make sure that pixel-embeddings and
prototype pairs that are pushed apart through the contrastive
term are guaranteed to encode different semantics. By
utilizing decoupling, all embeddings that are associated to
a class c share the same negatives, such that they only have
to be computed once for each class in a batch, and not for
each pixel-embedding, which would be computationally

challenging. Note that our integration of semantics into
embeddings and prototypes is flexible to any type of pre-
cise, partial, or ambiguous annotation that gives semantic
cues whether a pixel belongs to a class.

3.5. Choosing Positive Associations

One notion missing in Equation (8) is the mechanism
how positives (numerators) are determined. This is espe-
cially important, as this choice can introduce a considerable
amount of faulty associations. As an example, imagine a
thin, diagonally oriented object. In this case, most pixels
in its bounding box do not belong to the class associated
with the box. Simply taking all pixel-embeddings within
the bounding box as positives for the box-class would intro-
duce a lot of noise. Thus, we now discuss how positives can
be carefully chosen for different annotation types.
Pixel-wise masks In case we have pixel-wise masks, we
know the association between the pixel and its class and
therefore between pixel-embedding and class-specific pro-
totypes precisely. In this case, we propose to average pool
all embedding-prototype associations within an instance
(i.e., a connected component in the mask) to represent the
association of the whole instance to a class. This pooled
embedding-prototype association serves as positive. The
set of all pooled associations based on mask annotations for
class c in the batch are denoted as Ωm

c .
Point annotations Point annotations are also precise anno-
tations, indicating the exact class a pixel-embedding should
be associated to. As such, we simply take the pixel-
embedding as it is and declare it as positive. The full set
of point annotations of class c in the batch is Ωp

c .
Image-level labels Positives based on an image-level la-
bel can be formed by means of a pooling function, as of-
ten used in multiple-instance learning. We use average
pooling, i.e. for an image-level label containing class c,
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we average pool the associations to c over the spatial di-
mensions of the whole embedding map F of the image:

1
H·W

∑
fi∈F sc(fi, Pc). We refer to Ωim

c as the set of
image-level pooled embedding associations to class c in the
current batch.
Bounding boxes An implicit property of bounding boxes is
that in each vertical- and each horizontal line of pixels in
the box, at least one pixel corresponds to the class c of the
box-label [58]. We use this property to pool the embedding-
prototype associations for the box label c. As such, we take
the maximum values along all vertical and horizontal direc-
tions and sum up all sc(fi, Pc). Here, we assume that the
maximum values are likely to lie on the object that is as-
sociated to the box class. We denote the set of bounding
box-based positives as Ωb

c.
Loss formulation Bringing everything together, our anno-
tation type unified loss function can be written as:

LDSP =
∑

l∈{m,b,p,im}

λl

C∑
c=1

∑
fi∈Ωl

c

L(fi, c) , (9)

with weighting factors λl. Note that computing the loss
can be simplified, since the normalization log(Zi,c) appears
|Ωl

c| times in Equation (9) (for details see supplement).

3.6. Decoupled Semantic Prototypes for Annotation
Efficient and Expert-centric Segmentation

Given the prototype-based segmentation and decoupled
contrastive loss function LDSP , we can now outline the
general training strategy for our Decoupled Semantic Proto-
types method. First of all, we exploit a standard supervised
cross-entropy loss LCE using our temperature scaled soft-
max predictions Eq. (3) and the available masks.

Additionally, we integrate the commonly used idea of
pseudo-labels [30, 51]: use a weakly augmented version of
an image to compute pseudo-labels (PL) which are used as
target for a strongly augmented version of the same input
image. This way, we can learn from unlabeled data and
regularize the model by training towards augmentation in-
variance. However, to make best use of weak labels, we in-
tegrate the idea of pseudo-label filtering for segmentation.
Hence, instead of directly using predicted PL for weakly an-
notated images, we filter the pre-softmax scores as follows:
(i) Image-level labels: Set all class-predictions for class c
to −∞ if c is not in the image-level label.
(ii) Bounding boxes: Set all class-predictions for class c to
−∞ at pixels where no box of class c is located + (i).
(iii) Point annotations: Set all class-predictions at the point
location to the class given by the point annotation + (i).

After pseudo-label filtering, we take the argmax over
the class dimension to get hard pixel-wise class assign-
ments. We refer to the pseudo-label-based cross-entropy
loss between the predictions on the strongly augmented in-

put and the pseudo-label filtered target as LPLF . We lever-
age pseudo-label filtering also to create strong baselines
from semi-supervised literature [30,45,51] and extend them
to the semi-weakly supervised scenario.

The total loss of our Decoupled Semantic Prototypes for
semi-weakly and expert-centric segmentation is:

Ltotal = LCE + LPLF + LDSP . (10)

The full proposed method is displayed in Figure 2 with our
Decoupled Contrastive Loss on the right.

4. Standardized semi-weakly segmentation
Benefits of training approaches that tackle a lack of an-

notations is commonly investigated by training on increas-
ing portions of fully labeled data [8, 33]. In scenarios with
mixed annotation types, this is a rather simplistic form of
annotation-efficiency and a new measure is required.
Annotation Compression Ratio (ACR) Given a dataset
which is completely labeled with a base annotation type,
a training regime leveraging a small portion of these base
annotations can be viewed as compressing them. Inspired
by this perspective, we define the Annotation Compression
Ratio (ACR) of an algorithm on a dataset with respect to a
base annotation type (e.g. pixel-wise annotations) as

ACR =
# total base annotations
# used base annotations

. (11)

Thus, an algorithm that has been trained with an ACR = 2
cuts the used base annotations in half (cf . with [9] for a
similar notation used for neural network pruning). Since
accuracy as a function of the number of annotated images is
generally regarded to follow power laws [53], we propose to
exponentially sample ACR values, i.e., subsequently cutting
the number of base annotations in half.

For reducing pixel-wise masks M (base annotation), we
substitute it with weak labels (B, P , I) or no labels (U) and
leverage them in training – yielding what we refer to as a
semi-weakly supervised training scenario.

5. Evaluation
5.1. Experimental Setup

Dataset We evaluate semi-weakly supervised segmentation
algorithms on the challenging OPENORGANELLE data
collection by Heinrich et al. [25]. We focus on the four cell
datasets HELA-2, HELA-3, JURKAT-1, MACROPHAGE-2
due to their difficulty and diversity. These datasets are large
tissue volumes scanned with focused ion beam scanning
electron microscopes (FIB-SEM) and come with annotated
sub-volumes. The segmentation task is to segment cell or-
ganelles in these sub-volumes, which are processed as 2D
slices. For a statistically sound analysis, we create cross-
validation splits via cross-sub-volume train/validation/test
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(a) Masks + image-level labels on HELA-2.
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(b) Masks + bounding boxes on HELA-2.
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(c) Masks + point labels on HELA-2.
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(d) Mixed on HELA-2.
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(e) Mixed on HELA-3.
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(f) Mixed on MACROPHAGE-2.
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(g) Mixed on JURKAT-1.
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Figure 3. Segmentation accuracy as a function of reduced annotations, measured as mean and standard deviation in mean DICE for seven
ACRs. Note different scales on y-axes. Top row: Semi-weakly supervised segmentation algorithms for pairs of annotation types on the
HELA-2 data. Results are obtained from 10 cross-validation splits. Bottom row: Results on HELA-2, HELA-3, MACROPHAGE-2 and
JURKAT-1 trained with five annotation types mixed. Results obtained from 10, 5, 5, 5 splits respectively. Numerical results in supplement.

splits under the side-condition that every class is present in
at least one sub-volume per split. However, since many of
the OPENORGANELLE classes are highly specialized, this
condition is rarely fulfilled. Therefore, we merge classes
into 17 classes following a biologically consistent class-
hierarchy (e.g., merging mitochondria, mitochondria mem-
brane and mitochondria DNA). Rare classes occurring in
less than three sub-volumes are excluded due to the require-
ment for cross-sub-volume validation. This results in 11
classes for HELA-2, 10 for HELA-3, 8 for JURKAT-1, and
MACROPAHGE-2. In total, we obtain 10 cross-validation
splits for the largest dataset HELA-2 and 5 for the remaining
ones. Each split is randomly shuffled, with the exception
that all C classes need to be present in the first C images.
Finally, we ensure that the annotated images for small ACRs
contain all annotations of large ACRs.

Semi-weakly Supervision Scenarios In all our experi-
ments, we reduce the amount of costly pixel-wise annota-
tions exponentially, i.e., we double the ACR successively
from 1 to 64 (which reduces the fraction of images with
pixel-wise masks from 100% to 1.6%). We first evaluate
three semi-weak scenarios where these pixel-wise annota-
tions are combined with image-level labels, with point la-
bels, or with bounding boxes. As mentioned in Sec. 4, we
analyze scenarios where these supervision-types are avail-
able for all images without pixel-wise masks. Finally, the
most important scenario for expert-centric and annotation
efficient segmentation is the availability of diverse annota-

tion types. We simulate this scenario by distributing all four
coarse annotation types B, P , I, U uniformly among im-
ages without pixel-wise masks (e.g., for ACR = 2: 50%
pixel-wise masks, 12.5% unlabeled, 12.5% image-level la-
bels, 12.5% point annotations, 12.5% bounding boxes). We
always report mean and standard deviation of average class-
wise DICE scores over the cross-validation splits for all four
datasets and for seven exponentially distributed ACRs.

Implementation details In our experiments, all methods
are implemented with the same Unet architecture [47]. Al-
though all methods are applicable to other segmentation
architectures as well, we intentionally chose Unets due to
their stability such that side-effects like missing learning
rate warmup are not to be expected. All models are trained
with AdamW [38] with β1 = 0.9, β2 = 0.999, a learning
rate of 6e−5, weight decay equal to 0.01, and Xavier initial-
ization [22]. All trainings are performed on a multi-GPU
setup with 4× 40GB NVIDIA A100-40 for 100 epochs
on each split. For each split, validation is done every 10
epochs, and each val-best model is evaluated on the corre-
sponding test set after training. As different training meth-
ods have different memory requirements, we always set the
batch size to the maximally possible size under the method’s
memory consumption (between 16 and 28). Batching re-
quires equally-sized inputs, but the datasets have varying
image sizes. Thus, we zero-pad all images to the respective
maximal size. For weak augmentation, we use horizontal
and vertical flipping, rotations by 0◦, 90◦, 180◦, 270◦, jitter
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brightness, contrast, saturation and hue by a factor of 0.2.
Strong augmentations add flipping and rotating, and apply-
ing a jitter factor of 0.4 and CutOut [16] up to nine times.
Code available at https://github.com/Simael/DSP.

5.2. Baselines

We compare DSP with a variety of competing methods.

Basic Unet [47] being trained with LCE exclusively from
pixel-wise annotations is the naive baseline. This serves as
initialization for all remaining methods.

Pseudo-label [30] is a standard semi-supervised segmen-
tation baseline, where the network predicts labels for unla-
beled images online and uses them for self-supervision. It is
applicable as LPLF to all semi-weakly supervised scenarios
by adapting it with pseudo-label filtering (see Sec. 3.6).

Con2R [45] is a semi-weakly supervised method originally
developed for 3D segmentation. We adapt Con2R as semi-
weakly supervised method to 2D and set the receptive con-
sistency size to 16 × 16. We notice an accuracy increase
when sampling query- and neighbor sets from strongly- and
weakly augmented views instead of just the strongly ones as
in [45]. We add pseudo-label filtering directly to the seman-
tic consistency constraint for semi-weakly segmentation.

FixMatch [51] was initially designed for classification and
adapted for segmentation. Paired with pseudo-label filter-
ing, FixMatch is a strong and versatile baseline for semi-
weakly learning.

Classification branch as in [40] is used for the scenario of
image-level- and pixel-wise labeled images. A dual-head
architecture with segmentation output-head and classifica-
tion branch serves as an obvious baseline.

Euclidean/Geodesic point branch is similar to [40] but
for pixel-wise and point-labeled images. Since we are not
aware of existing techniques for this combination, we ob-
tain baselines by inspirations from interactive segmenta-
tion [61]. As auxiliary self-supervised task, we specify the
second output head to regress point-based distance maps ei-
ther for euclidean or geodesic distances (see supplement).

Box loss: For the scenario with pixel-wise annotations and
boxes, we integrate the bounding box-based loss of Tian et
al. [58] as alternative methods often rely on natural image
priors which do not hold for many expert-centric domains.

DSP (Ours) In order to compute pixel-embeddings, we
replace the final classification layer of a Unet with a se-
quence of batch norm, 1 × 1 convolutions with 64 ker-
nels, LeakyReLU, and final 1× 1 convolutions with 64 ker-
nels. This plug-in-replacement produces embeddings with
D = 64. We use 5 learned prototypes per class, temper-
ature τ = 0.05, and set the annotation type weights to
λm, λb, λp, λim = 0.1.

LCE LPLF LDSP Architecture DICE
λm λb λp λim τ |Pc|

✓ ✓ – – – – 0.05 10 55.9%
✓ ✓ 1.0 1.0 1.0 1.0 0.05 10 58.4%
✓ ✓ 1.0 0.2 0.5 0.3 0.05 10 57.7%
✓ ✓ 0.1 0.1 0.1 0.1 0.05 10 59.5%
✓ ✓ 0.01 0.01 0.01 0.01 0.05 10 56.8%

✓ ✓ 0.1 0.1 0.1 0.1 1.0 10 41.9%
✓ ✓ 0.1 0.1 0.1 0.1 0.5 10 49.3%
✓ ✓ 0.1 0.1 0.1 0.1 0.01 10 58.6%
✓ ✓ 0.1 0.1 0.1 0.1 0.005 10 59.4%

✓ ✓ 0.1 0.1 0.1 0.1 0.05 1 59.0%
✓ ✓ 0.1 0.1 0.1 0.1 0.05 5 60.7%
✓ – – – – – 0.05 5 48.9%

Table 1. Ablation studies for Decoupled Semantic Prototypes on
the first split of HELA-2 mixed supervision at ACR = 8.

5.3. Quantitative results

Supervision M+ I: For the scenario of image-masks and
image-level labels, we observe in Fig. 3a a strong decline in
mean DICE for the basic Unet at an ACR = 8 on HELA-
2 (note that due to the large amount of trained models re-
quired, i.e., 1190 trainings for all splits and methods, we
mainly evaluated scenarios with two annotation types on
HELA-2). The multi-task Unet with a classification branch
and the pseudo-label filtering augmented methods Pseudo-
label and Con2R lead to better results at 4 < ACR < 32 but
are equally unsuited for low-annotation regimes. In con-
trast, FixMatch and DSP lead to significantly better results
for all ACRs. Interestingly, FixMatch and DSP even im-
prove in the fully-supervised case (ACR = 1).
Supervision M + B: Results for the scenario with pixel-
masks and bounding boxes are given in Fig. 3b. We see
that all approaches which exploit boxes can improve over
the baseline for ACR > 2. Interestingly, DSP leads to very
strong results, for large ACRs even better than FixMatch
(+3.8% and +4.8% DICE over FixMatch at ACRs 32, 64).
Supervision M+ P: Results for learning from masks and
points are given in Fig. 3c. Again, all methods perform bet-
ter than a naive baseline for ACR > 2. The slowest de-
cline in DICE over ARCs is again obtained by DSP: +1.3%,
+2.8%, +5.2%, +5.1% for ACRs 8 − 64. In comparison
with Fig. 3b and Fig. 3a, we find a confirmation for the
intuition that boxes provide more information than points,
which again provide more information than image labels.
Supervision M + I + B + P + U : Results from exper-
iments with diverse annotation types are obtained on all
datasets for the naive baseline and the best two techniques
from the previous analysis, i.e., FixMatch and DSP, result-
ing in 455 model trainings. Results on HELA-2 are given
in Fig. 3d. We see that an expert-centric training algorithm
can pay off: the accuracy with DSP declines only slightly
with fewer and fewer masks. At an ACR = 64 with merely
1.6% pixel-wise masks (less than 40), the modelling and
training as Decoupled Semantic Prototypes still leads to
49.5% DICE, which is comparable to the basic Unet under
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Figure 4. Qualitative results on HELA-2. From left to right: test image, ground-truth segmentation of the organelle structures, and predicted
segmentations from models trained with diverse annotation types and decreasing number of annotated pixel-wise masks.

full supervision with 50.1% DICE. Compared to FixMatch,
at ACR = 64, DSP can improve segmentation quality by
12.8% total DICE. We were surprised to find that with this
style of diverse annotations, DSP performs better than in
any scenario with annotation type pairs. This may indeed
be due to the mix of annotations, which may enable a cor-
rect identification of central points and simultaneously al-
low learning of spatial extent from boxes.

Additional results on the remaining cell datasets are
given in Figures 3e to 3g. We again observe improved re-
sults from DSP over FixMatch, and in turn from FixMatch
over the Basic Unet. An exception is JURKAT-1, which
proves to be challenging.
Hyperparameter sensitivity studies To investigate effects
of hyperparameters of DSP, we report results from ablation
studies on the HELA-2 mixed, ACR = 8 scenario in Ta-
ble 1. In the first part, we see that adding LDSP to the
simple semi-weak baseline LPLF gives a clear improve-
ment, confirming that the annotation type-based losses in-
deed help. Adjusting the weights for different annotation
types to result in similar magnitudes did not help (3rd row).
Too low factors also decreased results (5th row). We settle
for a simple λl = 0.1 weighting. In the second part, we
see that the temperature τ is an important factor and we ob-
serve best results for τ = 0.05. We further conclude from
part three that the optimal number of prototypes per class is
|Pc| = 5, although we expect that this depends on dataset
aspects and intra-class variances. Finally, a pure supervised
training with only LCE is sub-optimal as seen in part four.

5.4. Qualitative results

For a final analysis, we can visually inspect differences
of a Unet baseline, FixMatch, and DSP in Figure 4. While
the baseline already struggles with small ACRs, FixMatch

still leads to visually decent results up to ACR 16. Interest-
ingly, DSP is able to perform organelle segmentation even
at ACRs of 32 or 64, which underlines the benefit of expert-
centric and annotation-efficient training algorithms.

6. Conclusion
Our paper focused on expert-driven domains, where ex-

act annotations are hard to obtain and one is usually con-
fronted with different types of coarse annotations. To tackle
this problem, we introduced Decoupled Semantic Proto-
types by posing semantic segmentation as a novel class-
specific prototype association problem that can be easily
used for integrating different types of annotation. The pro-
totypes can be trained with a Decoupled Contrastive Loss
which we adapted to scenarios with different annotation
types. We studied the benefits of our method for elec-
tron microscopy cell organelle segmentation and investi-
gated how our models and several baselines perform when
provided with smaller quantities of pixel-wise annotations.
In these scenarios, our method is able to significantly slow
down the degradation in accuracy with reduced annotations.
This allows for a new level of flexibility in annotation pro-
cesses and focuses on what experts can offer rather than
forcing them to obey to restrictions of a learning method.
Limitations Our formulation of ACR does not yet consider
different costs for different types of weak annotations. In-
stead, it solely focuses on substituting base annotations with
any weaker type. This is sub-optimal, and it will be interest-
ing to consider a holistic measure which respects individu-
ally specified costs in future work.
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eral Ministry of Education and Research.

15502



References
[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised
semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4981–4990, 2018. 2

[2] Inigo Alonso, Alberto Sabater, David Ferstl, Luis Monte-
sano, and Ana C Murillo. Semi-supervised semantic seg-
mentation with pixel-level contrastive learning from a class-
wise memory bank. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8219–8228,
2021. 2

[3] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-
janowski, Florian Bordes, Pascal Vincent, Armand Joulin,
Mike Rabbat, and Nicolas Ballas. Masked siamese networks
for label-efficient learning. In European Conference on Com-
puter Vision, pages 456–473. Springer, 2022. 3

[4] Wonho Bae, Junhyug Noh, Milad Jalali Asadabadi, and Dan-
ica J Sutherland. One weird trick to improve your semi-
weakly supervised semantic segmentation model. arXiv
preprint arXiv:2205.01233, 2022. 2

[5] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li
Fei-Fei. What’s the point: Semantic segmentation with point
supervision. In European conference on computer vision,
pages 549–565. Springer, 2016. 2

[6] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala.
Material recognition in the wild with the materials in con-
text database. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3479–3487,
2015. 2

[7] Rodrigo Benenson, Stefan Popov, and Vittorio Ferrari.
Large-scale interactive object segmentation with human an-
notators. In CVPR, 2019. 1

[8] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
neural information processing systems, 32, 2019. 5

[9] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle,
and John Guttag. What is the state of neural network prun-
ing? Proceedings of machine learning and systems, 2:129–
146, 2020. 5

[10] Hongjun Chen, Jinbao Wang, Hong Cai Chen, Xiantong
Zhen, Feng Zheng, Rongrong Ji, and Ling Shao. Seminar
learning for click-level weakly supervised semantic segmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6920–6929, 2021. 2

[11] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1290–1299, 2022. 1

[12] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk
Chun, Zeynep Akata, and Hyunjung Shim. Evaluating
weakly supervised object localization methods right. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3133–3142, 2020. 2

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 1, 2

[14] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploit-
ing bounding boxes to supervise convolutional networks for
semantic segmentation. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1635–1643,
2015. 2

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[16] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 7

[17] Jose Dolz, Christian Desrosiers, and Ismail Ben Ayed. Teach
me to segment with mixed supervision: Confident students
become masters. In International Conference on Information
Processing in Medical Imaging, pages 517–529. Springer,
2021. 2

[18] Rosana El Jurdi, Caroline Petitjean, Paul Honeine, and Fahed
Abdallah. Bb-unet: U-net with bounding box prior. IEEE
Journal of Selected Topics in Signal Processing, 14(6):1189–
1198, 2020. 2

[19] Mark Everingham, SM Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98–136, 2015. 1

[20] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 2

[21] Feng Gao, Minhao Hu, Min-Er Zhong, Shixiang Feng,
Xuwei Tian, Xiaochun Meng, Zeping Huang, Minyi Lv, Tao
Song, Xiaofan Zhang, et al. Segmentation only uses sparse
annotations: Unified weakly and semi-supervised learning
in medical images. Medical Image Analysis, page 102515,
2022. 2

[22] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 6

[23] Matthew D Guay, Zeyad AS Emam, Adam B Anderson,
Maria A Aronova, Irina D Pokrovskaya, Brian Storrie, and
Richard D Leapman. Dense cellular segmentation for em
using 2d–3d neural network ensembles. Scientific reports,
11(1):1–11, 2021. 1

[24] Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu,
Ming-Ming Cheng, and Shi-Min Hu. Segnext: Rethinking
convolutional attention design for semantic segmentation.
arXiv preprint arXiv:2209.08575, 2022. 1

[25] Larissa Heinrich, Davis Bennett, David Ackerman,
Woohyun Park, John Bogovic, Nils Eckstein, Alyson
Petruncio, Jody Clements, Song Pang, C Shan Xu, et al.

15503



Whole-cell organelle segmentation in volume electron
microscopy. Nature, 599(7883):141–146, 2021. 5

[26] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and
Jingdong Wang. Weakly-supervised semantic segmentation
network with deep seeded region growing. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7014–7023, 2018. 2

[27] Mostafa S Ibrahim, Arash Vahdat, Mani Ranjbar, and
William G Macready. Semi-supervised semantic image seg-
mentation with self-correcting networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12715–12725, 2020. 2

[28] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias
Hein, and Bernt Schiele. Simple does it: Weakly supervised
instance and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 876–885, 2017. 2

[29] Viveka Kulharia, Siddhartha Chandra, Amit Agrawal, Philip
Torr, and Ambrish Tyagi. Box2seg: Attention weighted loss
and discriminative feature learning for weakly supervised
segmentation. In European Conference on Computer Vision,
pages 290–308. Springer, 2020. 2

[30] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 2, 5, 7

[31] Hyeonsoo Lee and Won-Ki Jeong. Scribble2label: Scribble-
supervised cell segmentation via self-generating pseudo-
labels with consistency. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,
pages 14–23. Springer, 2020. 2

[32] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and
Sungroh Yoon. Ficklenet: Weakly and semi-supervised se-
mantic image segmentation using stochastic inference. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5267–5276, 2019. 2

[33] Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch:
Semi-supervised learning with contrastive graph regulariza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9475–9484, 2021. 5

[34] Qizhu Li, Anurag Arnab, and Philip HS Torr. Weakly-and
semi-supervised panoptic segmentation. In Proceedings of
the European conference on computer vision (ECCV), pages
102–118, 2018. 2

[35] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Yukang Chen,
Lu Qi, Liwei Wang, Zeming Li, Jian Sun, and Jiaya Jia.
Fully convolutional networks for panoptic segmentation with
point-based supervision. arXiv preprint arXiv:2108.07682,
2021. 2

[36] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
Scribblesup: Scribble-supervised convolutional networks for
semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3159–3167, 2016. 2

[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.
Springer, 2014. 1, 2

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2018. 6

[39] Wenfeng Luo and Meng Yang. Semi-supervised seman-
tic segmentation via strong-weak dual-branch network. In
European Conference on Computer Vision, pages 784–800.
Springer, 2020. 2
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