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Abstract

In comparison with most methods focusing on 3D rigid
object recognition and manipulation, deformable objects
are more common in our real life but attract less attention.
Generally, most existing methods for deformable object ma-
nipulation suffer two issues, 1) Massive demonstration: re-
peating thousands of robot-object demonstrations for model
training of one specific instance; 2) Poor generalization:
inevitably re-training for transferring the learned skill to
a similar/new instance from the same category. There-
fore, we propose a category-level deformable 3D object ma-
nipulation framework, which could manipulate deformable
3D objects with only one demonstration and generalize the
learned skills to new similar instances without re-training.
Specifically, our proposed framework consists of two mod-
ules. The Nocs State Transform (NST) module transfers the
observed point clouds of the target to a pre-defined uni-
fied pose state (i.e., Nocs state), which is the foundation for
the category-level manipulation learning; the Neural Spa-
tial Encoding (NSE) module generalizes the learned skill to
novel instances by encoding the category-level spatial in-
formation to pursue the expected grasping point without
re-training. The relative motion path is then planned to
achieve autonomous manipulation. Both the simulated re-
sults via our Cap40 dataset and real robotic experiments
justify the effectiveness of our framework.

1. Introduction
Autonomous 3D object recognition and manipulation

[1, 11, 12, 36] is crucial for robots and has broad applica-
tions for our human lives, e.g., the bin-picking for indus-
trial robot, housework for service robot. Recently, most
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Figure 1. The demonstration of our proposed framework for wear-
ing the cap: 1) the manipulation skill is learned via only one
demonstration; 2) the learned manipulatin skill could be gener-
alized to other novel caps without re-training.

state-of-the-arts focus on 3D rigid object recognition and
manipulation [9]; in contrast, less attention is concerned
on non-rigid/deformable objects, which are actually more
common in our real lives, such as clothes, animals, veg-
etables or even human ourselves. This is partially because
the motion space representation of rigid objects is relatively
simple and could be represented by a 6-DOF linear vec-
tor; nevertheless, the deformations of non-rigid/deformable
objects are difficult to match and get a uniform linear rep-
resentation. Recently, the data-driven methods [2, 32, 39]
achieve significant progress for non-rigid/deformation ob-
ject manipulation, which can estimate the states of the de-
formable objects and predict the appropriate manipulations
simultaneously. However, these methods suffer two issues:
1) Massive demonstration: thousands of repetitions of
robot-object demonstrations are needed to train the model

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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to manipulate one specific instance; 2) Poor generaliza-
tion: re-training is inevitably needed to transfer the learned
skill from the known instance to a similar/new instance from
the same category. Let us take the task of wearing a cap as
an example, the training phase repeats thousands of times
wearing procedures in the simulated environment or in the
real world; however, to handle a novel cap, we need to rec-
ollect data of the new cap and re-train the model to adapt
to the shape and deformation of the new cap. Therefore,
these complex and time-consuming procedures limit their
practical applications.

In this paper, we aim at solving a more challenging
task—learning to manipulate freely deformed unseen ob-
jects of the same category, from only one demonstration. To
learn from few demonstration, prior works learn dense fea-
tures [13], and estimate the grasp pose on target objects by
feature matching. However, such features are not robust to
large deformation, and cannot generalize to novel objects.

To tackle such problem, we develop two new compo-
nents: 1) the Nocs State Transfer (NST) module trans-
fers the target objects under arbitrary deformation to a
pre-defined canonical state (i.e., Nocs state), thus effec-
tively eliminating the disturbance caused by deformation
in feature matching; 2) the Neural Spatial Encoding
(NSE) module learns to encode the Nocs coordinates ob-
tained from the NST into category-level features via self-
reconstruction and contrastive losses. By encoding and con-
strating between similar geometric structures, the NSE fea-
tures can generalize well, thus further enabling effective
manipulation pose transfer on novel objects. Our frame-
work needs to be pre-trained only once for the whole ob-
ject category, i.e., without re-training for some specific new
instance. For different manipulation tasks on the objects
within the same category, only one demonstration is needed.
Then, the robot could plan the related manipulation path ac-
cordingly.

The main contributions are presented as follows:

• We present a novel framework which learns to ma-
nipulate similar non-rigid/deformable objects via only
one robot demonstration. To the best of our knowl-
edge, this is the earliest exploration about generaliza-
tion learning of deformable object manipulation.

• Our framework can generalize the learned skills from
known instances to other novel/similar instances with-
out tedious data collection or model re-training, which
expands its application possibilities in the real world.

• We contribute a simulated caps dataset containing
4000 annotated frames of 40 deformable caps; more-
over, a real robotic system is also designed to serve
people wearing caps automatically. Both the simu-
lated results and real-world experiments justify the ef-
fectiveness of our proposed framework and system.

2. Related Work

2.1. Deformable Object Manipulation

Various approaches are proposed for deformable object
manipulation in decades of robotic research [46]. Con-
ventional methods [17, 23, 43] leverage the high-fidelity
physics-based model to estimate and simulate the state of
the target object. [23] leverages a minimal-energy curve to
plan the execution path for ropes. [17] conduct dressing task
using the physics simulation of humans and clothes. [43]
dresses a person using the optical Flow-based method and
state regression. Nowadays, data-driven methods achieve
promising progress in deformable object manipulation. [35]
trains a network to combine cloth manipulations with shape
changes of the target to perform folding tasks. ACID
[32] learns implicit representations of the states of the tar-
get object to make plan manipulation. [31] uses a goal-
conditioned transporter network to tackle manipulation of
cables, fabrics, and bags spanning. However, the above
methods are limited in real-world applications since they re-
peat robot-object interactions in a time-consuming way and
cannot generalize to novel instances directly.

2.2. Learning from Demonstration
Demonstration learning is a powerful and intuitive

method to teach robots to perform complex tasks [15, 28,
33]. Observing expert demonstrations, it learns to gener-
ate appropriate motion steps from input observations [24,
29, 41]. Nonetheless, these methods cannot handle novel
instances from the same category without re-training. Re-
cently, several works [33, 38] explore demonstration learn-
ing on category-level rigid object manipulation. [38] learns
to perform industrial tasks interacting with novel instances
from a video demonstration. [33] proposes an implicit neu-
ral field to generalize learned skills at the category level.
However, these methods cannot be applied to deformable
objects. Compared with manipulation on rigid objects
whose pose can be fully specified as a low-dimensional vec-
tor [12,14,44], deformable objects have infinite continuous
configuration (i.e., pose) spaces, severely self-occlusion.
These characteristics make the skill generalization of the
category-level deformable objects hard to achieve.

2.3. Implicit Neural Representations

Implicit neural representation [22] describes the sur-
face or volume of the 3D object as mapping functions and
makes great progresses in representing 3D geometric shapes
[4, 25, 45, 48]. It has been well-extended to various 3D
tasks like scene reconstruction [7,34,37], scene understand-
ing [47], and view Synthesis [19,26]. Most saliently, several
works combine the implicit neural representation with ob-
ject robot manipulation [18, 32, 33] and achieve promising
performance. However, these methods are either designed

17070



Demonstration
Neural Features Field

Poses 
Generalization 

via Features 
Matching

Encoder E

Demonstration
Instance 𝑷𝒅

Novel 
Instance 𝑷𝒏

Contrastive
Loss

Nocs State Transfer(NST) Module

Concat  

Classifier C

Features
assignment

Nocs state 𝒐𝒅

pre-
training

M

3D Unet U

Nocs Spatial Encoding
(NSE) Module

Transfer point clouds to 
unified Nocs state

Novel Neural
Features Field

Gripper Pose State Transfer

Nocs state 𝒐𝒏

Gripper Pose 
Transfer

Robot Path Planning for 
Novel Instances

Only one 
Demonstration

Manipulation Skill Generalization

Nocs stateInitial state

𝑷𝒅

Gripper
𝒙𝒊

 𝐆𝐫𝐢𝐩𝐩𝐞𝐫 
𝒙𝒊

𝒏𝒐𝒄𝒔

𝑷௦
𝐓௧௦ = 𝑎𝑟𝑔

𝐓
𝑚𝑖𝑛  𝐓

 



(𝐱 − 𝐱
௦)

NST

(0, 0, 0)

(1, 0, 0)(0, 1, 0)

(0, 1, 1)

(1, 1, 1)

(1, 0, 1)

Figure 2. Overall workflow of our developed framework, which is made up of two significant modules, i.e., Nocs State Transfer (NST) and
Neural Spatial Encoding (NSE). Specifically, the NST module transfers the observed point cloud of the target object from the deformable
pose state to the unified Nocs state; then the NSE module encodes the query coordinates around the transferred point cloud to the neural
spatial features. During the demonstration phase, the NSE module intends to learn the manipulation skill (spatial relationships between
the end-gripper, the target, and the environment) from robot-object demonstration. During the test phase, the learned skill is generalized to
novel objects. The total framework needs to be pre-trained only one time for each category.

for rigid objects or cannot handle novel instances. There-
fore, learning category-level skills for deformable objects
via one demonstration is still an unsolved problem.

3. Method
3.1. Preliminary

Normalized Canonical state. Normalized Canonical
state (Nocs state) is a pre-defined pose state of the de-
formable object [7]. As shown in Fig. 2 (top left), we define
the Normalized Canonical State for the caps by first trans-
lating them to the center of a unit cube (Nocs cube), and
then simulating they were worn on a head. Finally, we scale
the cap until its longest bounding box edge matches the unit
cube to get the Nocs state of the caps.

Here, we further provide the necessity for introducing
the Nocs state. Compared with the rigid transformations
which can be described by a low-dimensional vector (i.e.,
Rotation and translation), non-rigid deformation has near
infinite degree-of-freedom, i.e., pose states [6]. As a re-
sult, it is impossible for a deep model to learn whether such
new geometrics are suitable for manipulation. On the con-
trary, once the object point clouds are transferred to a uni-
fied state, the relative poses between objects and the envi-
ronment are fixed and describable, which provides the foun-
dation for skills generalization.
3.2. Overall Framework

Our framework aims to learn manipulation skills from
few demonstrations and generalize skills to novel instances

according to their deformed state and geometry diversity.
Our overall framework is shown in Fig. 2, which con-

sists of Nocs State Transform (NST) module and Neural
Spatial Encoding (NSE) module. Given the demonstration
D = {P|{T}}, where P is the point cloud of a deformable
target object and {T} are key observed gripper poses for
skill execution, the NST is designed to transfer the point
cloud P together with related gripper poses {T} from arbi-
trary deformable states to the unified Nocs state. The trans-
ferred Nocs state gripper pose H determines a concrete rel-
ative pose between the gripper and the target free from the
disturbance of infinite deformable states. The NSE aims to
construct a neural spatial encoding function to encode the
{H} into the category-level geometric features. With the
cooperation of the NST and NSE, our framework learns the
H between gripper and object under arbitrary deformable
state, generalizes the H to novel instance on depending
on common geometry features, and generate gripper poses
{Ton} for the on on its deformable states from generalized
H. Finally, the skill could be executed on on with the tra-
jectory calculated from generated gripper poses {Ton}.

3.3. Nocs State Transfer (NST) Module

Implementation. The details about how NST transfers
the observed point clouds P from the deformable pose state
to the Nocs state Pnocs are described as follows:

Step 1: Given P ∈ RN×3 (N denotes the point number),
we adopt the block E of pointnet++ [27] to encode points in
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P into the per-point features F = {fi}Ni=1 = E (P; θE) ∈
RN×C , where C denotes the feature channel, and θE is the
weights of the encoder E.

Step 2: The classifier C is employed to predict the
Nocs state coordinate of each point in P based on {fi}Ni=1.
Specifically, we divide the Nocs cube in Fig. 2 into a 643

volume, and predict the id in x, y and z axes for the voxel
that each point occupies (px,py,pz) = C (F; θC).

Step 3: For each point, we select the voxel with maxi-
mum probabilities of three axes as the predicted voxel, and
denote its centra coordinate as the corresponding point in
the Nocs state. All corresponding points constitute the point
clouds Pnocs.

Training. In pre-training task, we train the encoder E
and classifier C using the simulated data only once for each
category. The object function is presented as follows:

Lnocs = −
(
cx
∑

logpx + cy
∑

logpy + cz
∑

logpz

)
,

(1)

where (px,py,pz) is the output of the C; (cx, cy, cz) is the
ground-truth Nocs coordinate for each point.

Besides, we introduce an auxiliary loss, i.e., the con-
trastive loss [42], to enforce the points with the same Nocs
coordinates to learn similar features and vice versa. This
further improves the generalization ability of category-level
features in NSE. Specifically, the contrastive loss Lconst is
defined as follows:

Lconst = −
∑

(i,j)∈P

log
exp (fi · fj/τ)∑

(·,k)∈P exp (fi · fk)
, (2)

where P is the set of point pairs that have the same Nocs
coordinates, and f is the feature of the corresponding point.
For a matched point pair (i, j) ∈ P , we regard fi as the
query feature, fj as the positive key feature, and fk (k 6= j)
as the negative key feature.

3.4. Neural Spatial Encoding (NSE) Module

Given the per-point features F and the transferred point
cloud Pnocs, NSE maps arbitrary query coordinates x in
Nocs state space to a neural spatial feature fs. These fea-
tures encode the coordinates with category-level geometry
information and make them easy to generalize to novel in-
stances according to common geometry features.

Implementation. NSE constructs a feature volume cov-
ering the Nocs cube first and then generates features for
given query coordinate by interpolating from feature vol-
ume. The details are decsribed as follows:

Step 1 : With the output of the NST module, NSE gener-
ates new point-level features for each point in P by concate-
nating its original point coordinate, predicted Nocs coordi-
nate, predicted probability and per point features fi ∈ F.

Step 2: NSE divides the nocs cube into a 323 volume,
and assigns the features generated from step 1 to the vol-
ume according to predicted nocs coordinates. The features
that are assigned to the same location of the volume will be
aggregated by a max pooling operation. For those location
that have no corresponding point in P, a zero feature is ini-
tialized as the placeholder. The assigned result is denoted
as V ∈ R32×32×32×(C+3+3+3).

Step 3: NSE feeds V into the block U of 3D UNet [8]
to generate dense features D = U(V; θU). This embeds
the features with more context information.

Step 4: NSE interpolates D at a given query coordi-
nate x, as D (x) = Interpolate(x|D). Then, the D (x)
is concatenated with coordinate x, and forwarded to a MLP
M. Finally, NSE generates the spatial neural feature for the
query coordinate M by:

fs = +©L
i=1M

i(D (x; θD) +©x; θM), (3)

where Mi denotes the features generated from the i-th layer
of M, θM is the weight parameters of the M. Finally, we
can get an implict encoding functoin by rewriting Eq.(3) as
fs = Φ (x|P). Φ describes the ability of NSE that encodes
query coordinates in Nocs space to features given observed
point cloud P.

Training. We train U and M by shape completion [7].
The key insight is that accurate completion guides the NSE
to encode salient geometric features for each point. Specif-
ically, given a coordinate in Nocs cube, the U and M are
leveraged to predict the generalized winding number [3,16]
w(x) for x:

w(x) = M(D (x; θD) +©x; θM). (4)

Then the mesh model of the object under the Nocs state can
be reconstructed by the marching cubes method [21]. The
concept of generalized winding number is proposed by [16]
to describe the magnitude of a query coordinate surrounded
by an object surface. Intuitively, it is determined by the
relative pose between the query coordinate and the object
as well as the geometry structure of the object. Once the
U and M can predict the winding number in the Nocs cube
accurately, it is reasonable to regard they are embedded with
geometric information, which enables precise manipulation
pose determination.

The ground truth of the w(x) can be determined by inte-
grating the solid angle [16] over all Nocs points at x. Simi-
larly, we use the data in a simulated environment to train the
parameters of U,M. Given a mesh model of a target object
under the Nocs state, we sample a 1283 point grid in the
Nocs cube. During training, we use the predicted winding
number from M and ground truth to calculate a L1 loss as:

Limplicit =
∣∣Mi (D (x))− w(x)

∣∣ , (5)
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where w(x) is the ground-truth winding number at point x.

3.5. Manipulation skill generalization

This section introduces how we learn and generalize ma-
nipulation skills from demonstration to novel objects lever-
aging NST and NSE.

Demonstration phase. Learning manipulation skills
from demonstration D = {P|{T}}, where P is the point
cloud of a deformable target object and {T} are key ob-
served gripper poses, can be divided into three steps.:

Step 1: Computing the Nocs state grippr pose H for T
shown in demonstration D. Specifically, we first transfer
observed point cloud P to Nocs state Pnocs using NST. To
obtain the Nocs state gripper pose, we need to transform
the demonstrated gripper pose T to the Nocs space. We
denote such transformation as Ttrans. Since Ttrans cannot
be directly solved, we regard the transformation of a small
set of object points enclosed by the gripper as Ttrans. As
shown in Fig. 2 (top middle), we denote the sampled point
set in the observation space as {xi}, and denote their Nocs
coordinates as {xnocsi }. Then the transformation Ttrans

can be derived by solving a Procrustes problem:

Ttrans = arg min
T

∑
i

T(xi − xnocsi ). (6)

Finally, we can get the H by transferring T to Nocs state:
H = TtransT.

Step 2: Encoding Nocs state gripper pose H with
category-level geometry features to make it able to adapt the
shape of novel instances. In detail, we sample N points from
the model of the gripper to form a query set G = {xi}Ni=1.
We then move the query set G to Nocs state using H as
H (G) = HG. Finally, We feed P into NSE and encode
H by generating the implicit features of all points in H (G)
using Eq. (3) as:

Z (H|P) = Φ (H (G) |P) . (7)

Generalization phase. Given the observed point cloud
Pon of a novel cap on and Z learned from Eq. (7), the NST
and NSE modules could generalize the manipulation skill
to on in three steps.:

Step 1: Transferring Pon to Ponnocs (Nocs state) using the
NST module.

Step 2: Generalizing the spatial relationships H to novel
object on. Specifically, we randomly initialize a gripper
pose H in Nocs state and represent it as:

Zon = Φ (H (G) |Pon) (8)

using the same operations in step2 of the demonstration
phase, where G is the query set used in Eq.(7). We then
try to minimize LZ = |Zon −Z| in order to optimize H
iteratively and get generalized H for novel objects on as:

Hon = arg min
H

|Φ (H (G) |Pon)−Z| . (9)

Figure 3. Some instances contained in Cap40. We totally capture
4000 scenarios for pre-training our proposed framework.

Step 3: Calculating the gripper poses for novel object
on. We use the points set from Ponnocs between gripper fin-
gers at Hon in Nocs state and its corresponding set in orig-
inal coordinates to obtain the transformation Titrans and
then we can get gripper pose for on as Ton = TitransH

on .

Finally, the robot can plan the motion path by calculating
the trajectory related to different gripper poses, and move
along the trajectory to execute skill on the novel instance.

3.6. Application to cap wearing

As shown in Fig. 1, wearing cap can be divided into three
steps: I) grasping the cap under arbitrary pose states, II)
moving the cap to the middle pose, and III) moving the cap
to the release pose. During the execution of the task, the
poses of the robot gripper and the head are known. Observ-
ing a demonstration D = {Pod ,Tpick,Tmiddle,Trelease},
where Pod ∈ RN×3 is the observed point clouds of the
demonstrated cap od; Tpick,Tmiddle,Trelease ∈ R4×4 are
recorded gripper poses during task performing, the pro-
posed framework automatically estimates Hpick, Hmiddle,
and Hrelease that denotes the Nocs state gripper poses be-
tween gripper and cap in step I, step II and III respectively.
In the test phase, given the point clouds of the novel cap on,
the framework generalizes the Hpick, Hmiddle, Hrelease to
the novel instance on and generate gripper poses and path
to execute wearing cap task.

3.7. Implementation detail

We provide the overall pre-training formulation of the
proposed framework as follows:

min
θE,θC

Lnocs + Lconst,

min
θU,θD

Limplicit,
(10)

where the Lnocs and Lconst are adopted to enable Encoder
E and Classifier C to predict Nocs coordinates for points
under initial state correctly, and the Limplicit helps 3D
block U and MLP M in NSE module to extract spatial in-
formation from object point clouds under Nocs state.

We use an NVIDIA TITAN GPU for model pre-training
and the code of our framework is implemented based on
Pytorch [20]. ADAM optimizer is adopted as the main pa-
rameters optimizer. The MLPs C and M are composed of
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Method GSR (↑) WSRτ=0.1d (↑) ADPτ=0.1d (↓) WSRτ=0.2d (↑) ADPτ=0.2d (↓)
DON [13] 55.6 18.0 0.061 25.12 0.125
NDF [33] 87.5 25.0 0.057 27.31 0.113
Garmennet [7] 90.3 43.6 0.031 65.16 0.043

Ours-w/o Lconst 98.2 53.4 0.033 83.17 0.048
Ours-w/o NSE 98.0 51.0 0.034 82.14 0.047
Ours 98.5 55.0 0.030 86.55 0.041

Table 1. Performance comparison of our framework with other methods, such as DON [13], NDF [33], and Garmentnet [7]. The Grasp
Success Rate (GSR), Wearing Success Rate (WSR), and Average Distance of Points are considered for evaluation. The tuning parameter d
denotes the diameter of each target object. Obviously, ours with various variations outperforms othe methods.

2 and 3 fully connected layers respectively. For E, a point-
net++ [27] feature encoder is adopted. The 3D Unet U [8]
has three 3D conv-layers (128, 64, 128).

4. Simulated data generation
A simulated cap dataset Cap40 containing 40 instances

is built for framework pre-training and task simulation(
Fig. 3). We collect the original mesh data from sketch-
fab and process them with simplification, reconstruction
and hole filling using Blender [40]. Finally, the modified
meshes are loaded to the Pybullet [10] for simulation with
appropriate material parameters.

In order to generate data for pre-training, we randomly
initialize a pose above the table for a cap, and then let it
freely fall to the table by gravity. We capture the RGBD
image from the virtual camera when the cap deforms, and
extract the point cloud of the cap as one frame. We repeat
this procedure iteratively to capture 4000 frames in total.
For each cap, we put it on a simulated human head in the
Blender as its Nocs state. We leverage the vertices corre-
sponding relationships to generate the ground-truth Nocs
coordinates and apply [16] to generate the ground-truth gen-
eralized winding number of the Nocs mesh.

5. Experiments
Based on the proposed framework, we develop a robotic

system that can conduct cap wearing tasks for humans. In
this section, we verify the developed system in both simu-
lated and real world environments. The code, dataset and
videos are available on the webpage1.

5.1. Setup

Simulated experiments: We execute our simulated ex-
periments in pybullet [10] environment. Our simulated sys-
tem includes a robotic arm, a parallel finger gripper and
a virtual camera. In the experiments, an arbitrary cap is
placed on the table under a random initialized pose. We
then extract the point clouds of the caps from the captured

1https://renyu2016.github.io/DLCDO.github.io/

Figure 4. The real robotic testing platform includes a Ur5 robotic
arm as the main body, an AG-95 parallel finger gripper, and a Re-
alsense 435i depth camera. We evaluate the success rate with dif-
ferent random initialization.

RGBD images and feed the point clouds to the framework.
After that, the end effector poses of three steps are obtained
leveraging framework and the robot can wear the caps on
the head step by step. We run 600 attempts on 20 novel
caps (i.e. 30 attempts for each cap) that are unseen in pre-
training and demonstration.

Real robotic experiments: As shown in Fig. 4, our
robotic system includes an Ur5 robotic arm as the main
body, an AG-95 parallel finger gripper as the manipulator
and a Realsense 435i as the visual sensor. An additional hu-
man head model is placed on a table as the target for the arm
wearing caps on it. The execution steps are same as simu-
lated experiments. We run 100 attempts on 10 novel caps
that do not appear in pre-training and demonstration. As
shown in Fig. 4, the caps have distinct geometric structures,
thus are capable of evaluating the generalization ability of
the proposed method.

5.2. Baselines

As far as we know, there is no prior work that focuses
on learning category-level deformable object manipulation
from few demonstrations. To justify the effectiveness of our
method, we compare with several baselines:
• Garmentnets [7] is a non-rigid registration method. We
apply it to directly transfer the demonstrated grasp point
to novel instance by estimating its correspondence on the
novel instance.
• NDF [33] learns to manipulate rigid objects from a few
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Methods Grasp Success Rate Wear Success Rate
DON [13] 0.31 0.11
NDF [33] 0.64 0.12
Garmennet [7] 0.72 0.44

Ours-w/o Lconst 0.85 0.76
Ours-w/o NSE 0.84 0.72
Ours 0.85 0.78

Table 2. The result of wearing cap task. 100 attempts on 10 caps.

Method τ = 0.04d ↑ τ = 0.1d ↑
NST-w/o Lconst 57.0 95.6

NST 62.0 96.8

Table 3. The accuracy of the predicted Nocs coordinates Accnocs

predicted by NST module. d denots the diameter of the target
object.

demonstrations. For deformable caps, we feed them to the
framework and regard different poses as different instances.
We then complete the task by following the procedure of
the NDF.
• DON [13] learns pixel-level 2D descriptors of the object
from images. We train DON on the simulated dataset, and
generalize grasp points to novel objects by feature match-
ing. The robot can then move to the poses to finish the task.

5.3. Evaluation metrics

Three evaluation metrics are adopted:
The Grasp Success Rate (GSR) is defined as:

GSR =
GSnum
Tnum

, (11)

where GSnum is the successful times of the robot grasp
caps in the test phase; and Tnum is the total test number.

The Wearing Success Rate (WSR) is designed as :

WSR =

∑
I
(

1
mv

∑
|vr − vt| < τ

)
Tnum

,

I (t) =

{
1, if t is True,

0, if t is False,

, (12)

where mv is the total of vertexes on the cap mesh, vr is
the real initialization coordinates of the vertex, and vt is
the expected target coordinates of the vertex by simulating
the cap that is correctly worn on the head. τ is the tuning
parameter.

The Average Distance of Points (ADP ) is defined as:

ADP =

∑
I
(

1
mv

∑
|vr − vt| < τ

)
Tnum

∑ 1

mv

∑
|vr − vt| .

(13)

Metrics CD↓ [5] EMD↓ [30]

Ours 0.0485 0.0312

Table 4. We evaluate the Nocs mesh reconstruction performance
of the NSE module with the Chamfer Distance (CD) [5] and Earth
Mover‘s Distance (EMD) [30] as evaluation metrics, respectively.

5.4. Performance comparison on cap wearing
Analysis of results: The performance of our proposed

framework and other baselines in simulated environment
and real world are shown in Table 1 and Table 2 respec-
tively. From the presented result, we can obtain the follow-
ing observations: 1) our proposed method and two other
variations outperforms all other baselines in terms of all
metrics by 3% ∼ 20%, which denotes that our proposed
framework could learn manipulation via only one demon-
stration and generalize the learned skill to novel instances
well. 2) Although some methods achieve a relative higher
performance in terms of the GSR, they show a low perfor-
mance on WSR. This is because compared with grasping,
placing cap on the head is more difficult and requires more
precise manipulation. 3) Our proposed framework outper-
forms other methods in terms of APD, which means that
our framework can not only wear the cap on the head suc-
cessfully, but also in the desired pose.

Analysis of other baselines: In experiments, 1) We ob-
serve that DON and NDF often fail when the grasped area
deforms significantly. This is because the features struggle
to match under large deformation. 2) Similar to our method,
Garmentnets deform each instance to its own canonical
space to transfer grasp pose. However, it can only apply the
same pose to manipulate different caps, ignoring the intra-
class shape diversity, leading to the drop of WSR. On the
contrary, we develop NSE module to handle shape diversity
by learning class-general features to infer specialized grasp
pose for each instance.

Grasp Success Rate Place Success Rate

Simulated env 0.95 0.93
Real World 0.89 0.87

Table 5. Results of cap hanging task. 100 attempts on 10 caps.

5.5. Evaluation on Soft part manipulation
We leverage cap wearing task to show that our frame-

work could learn to manipulate similar deformable objects
via only one demonstration. Here, we further design a hang-
ing task with caps where the robot grasps the soft part of
the target, as shown in Fig. 7 5) 6). The hanging task shows
that 1) our framework could manipulate the soft part of the
deformable objects and 2) our framework could generalize
well to different manipulation task. From Tab. 5, we can ob-
serve that our method also achieves good performance with
only one demonstration, which verifies the soft part manip-
ulation ability and the generalizaiton ability.
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5.6. Effectiveness Analysis

Nocs state prediction. We provide the accuracy of the Nocs
coordinates predicted by NST module in Tab. 3. The ac-
curacy of the predicted nocs coordinates Accnocs for each
instance is calculated as:

Accnocs =
1

np

∑
|xpre − xgth| , (14)

where np is the point number in an observed point cloud
P; xpre and xgth are the predicted result and the ground-
truth Nocs coordinates respectively. We also provide several
visualization results of the Nocs coordinates predicted by
NTS module in Fig. 5. From Tab. 3 and Fig. 5, we find the
NST module can predict the Nocs coordinates of the most
points in P correctly.

Input
Nocs predicted 

by NST
Reconstructed 

3D mesh by NSE 
3D mesh 

ground truth

Figure 5. Visualization of the input point clouds, the Nocs coordi-
nates predicted by the NST, the Nocs meshes reconstructed by the
NSE, and the ground-truth Nocs mesh. Intuitively, NST can accu-
rately align the partial inputs with various large deformations into
Nocs, and NSE can further reconstruct high-quality mesh models
under Nocs state.

Shape completion. As stated in Sec. 3.4, the NSE module
learns to extract the neural spatial features via shape com-
pletion. Here, we provide the Nocs mesh reconstruction
result in Fig. 5 and Tab. 4. The presented results show that
NSE can exactly reconstruct the Nocs mesh model of the
deformable object, which means NSE indeed has the ability
to complete the whole shape from partial point clouds.
Spatial relationship encoding. Our method generalizes the
demonstrated pose to novel objects via feature matching.
To accurately estimate the manipulation poses, the features
learned by NSE should be able to generalize to the same
parts on novel objects, while rejecting wrong grasp points
at different parts. To demonstrate such ability, we con-
struct two energy fields, and visualize them in Fig. 6a, and
Fig. 6b. Specifically, E1 measures the similarity between
the feature of the grasping point xr and other points in the
Nocs cube of the demonstrated object Pd: E1 (x,xr) =
||Φ (x|Pd) − Φ (xr|Pd) ||. E2 measures the similarity be-
tween the feature of xr and the features in the Nocs cube of

𝒙

(a) The visualization result of E1 (b) The visualization result of E2

Figure 6. The visualization results of E1 and E2 show that the
NSE module has the ability to describe the spatial information of
coordinates in Nocs state.

a novel object Pn: E2 (x,xr) = ||Φ (x|Pn)−Φ (xr|Pd) ||.
The visualization results show that the feature at xr can be
accurately transferred to the novel objects.

1)Real scenario

2)Real Point cloud

3)Nocs Grasp pose

4)Transferred Grasp pose

5)Grasping

6)Hanging
Figure 7. The steps and middle states of hanging cap task.

5.7. Ablation study
We conduct ablation studies by ablating Lconst (Ours-

w/o Lconst) and the NSE module (Ours-w/o NSE). For the
variant without the NSE module, we leverage the similarity
of the features to search the key points of different manipu-
lation steps in the novel object and transfer them to the orig-
inal point cloud to get the gripper poses. From the results
presented in Tab. 1, we can observe that the performances
decrease about 2%∼ 4% after removing any components of
our method, which justifies the effectiveness of each strat-
egy and module.

6. Conclusions
In this paper, we propose a deformable 3D object manip-

ulation framework with the NST and NSE modules, which
can learn to manipulate similar non-rigid/deformable ob-
jects via only one robot demonstration and achieve learned
skills generalization from known instances to novel similar
instances smoothly without re-training. Based on our pro-
posed framework, a new simulated dataset Cap40 is col-
lected and annotated, and a real robotic system is built to
achieve cap wearing automatically as well. Both simulated
results and real-world experiments justify the effectiveness
of our framework and robotic system. Actually, the cap
wearing is just a simple case for deformable 3D objects ma-
nipulation, our idea could be extended to more general and
complex cases in future.
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Kröger, and Ken Goldberg. Speedfolding: Learning efficient
bimanual folding of garments. In International Conference
on Intelligent Robots and Systems, IROS 2022. 1

[3] Gavin Barill, Neil G. Dickson, Ryan M. Schmidt, David I. W.
Levin, and Alec Jacobson. Fast winding numbers for soups
and clouds. ACM Trans. Graph., 37(4):43, 2018. 4

[4] Yizhak Ben-Shabat, Chamin Hewa Koneputugodage, and
Stephen Gould. Digs:divergence guided shape implicit neu-
ral representation for unoriented point clouds. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 19301–19310. IEEE, 2022. 2

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 7

[6] Ronghan Chen, Yang Cong, and Jiahua Dong. Unsuper-
vised dense deformation embedding network for template-
free shape correspondence. In International Conference on
Computer Vision, ICCV 2021, pages 8341–8350. IEEE. 3

[7] Cheng Chi and Shuran Song. Garmentnets: Category-level
pose estimation for garments via canonical space shape com-
pletion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 3324–3333, 2021. 2, 3,
4, 6, 7
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