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Abstract

This paper aims to illustrate the concept-emerging phe-
nomenon in a trained DNN. Specifically, we find that the
inference score of a DNN can be disentangled into the effects
of a few interactive concepts. These concepts can be under-
stood as causal patterns in a sparse, symbolic causal graph,
which explains the DNN. The faithfulness of using such a
causal graph to explain the DNN is theoretically guaranteed,
because we prove that the causal graph can well mimic the
DNN’s outputs on an exponential number of different masked
samples. Besides, such a causal graph can be further sim-
plified and re-written as an And-Or graph (AOG), without
losing much explanation accuracy. The code is released at
https://github.com/sjtu-xai-lab/aog.

1. Introduction

It is widely believed that the essence of deep neural net-
works (DNNs) is a fitting problem, instead of explicitly for-
mulating causality or modeling symbolic concepts like how
graphical models do. However, in this study, we surprisingly
discover that sparse and symbolic interactive relationships
between input variables emerge in various DNNs trained
for many tasks, when the DNN is sufficiently trained. In
other words, the inference score of a DNN can be faithfully
disentangled into effects of only a few interactive concepts.

In fact, the concept-emerging phenomenon does exist and
is even quite common for various DNNs, though somewhat
counter-intuitive and seeming conflicting with the DNN’s
layerwise inference. To clarify this phenomenon, let us first
define interactive concepts that emerge in the DNN. Let a
DNN have n input variables (e.g. a sentence with n words).
As Fig. 1(a) shows, given the sentence “sit down and take it
easy,” the co-appearance of a set of words S = {take, it, easy}
causes the meaning of “calm down,” which makes a consider-
able numerical contribution wS to the network output. Such
a combination of words is termed an interactive concept.
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Each interactive concept S represents an AND relationship
between the set of words in S. In other words, only their
co-appearance will trigger this interactive concept. The ab-
sence (masking) of any words in {take, it, easy} will remove
the effect wS towards “calm down” from the network output.

Causal graph based on interactive concepts. Given an
input sample, we introduce how to extract a set of interactive
concepts Ω from a trained DNN, and how to organize all
such concepts S ∈ Ω into a three-layer causal graph in Fig.
1(b). We also prove that such a causal graph can mimic the
inference score of the DNN. Specifically, each source node
Xi (i = 1, ..., n) in the bottom layer represents the binary
state of whether the i-th input variable is masked (Xi = 0)
or not (Xi = 1). Each intermediate node CS (S ∈ Ω) in the
causal graph represents an interactive concept S that encodes
the AND relationship between input variables in S. In fact,
S can also be interpreted as a causal pattern for the DNN’s
inference, as follows. If the interactive concept appears in
the sample, then the causal pattern S is triggered CS = 1;
otherwise, CS = 0. Each triggered pattern S contributes a
causal effect wS to the causal graph’s output Y in the top
layer. Therefore, the output Y of the causal graph can be
specified by a structural causal model (SCM) [25], which
sums up all triggered causal effects, i.e. Y =

∑
S wS · CS .

Note that we study the mathematical causality between
the input and the output of the DNN, instead of the natu-
ral true causality potentially hidden in data.

In this study, we discover that we can always construct
a causal graph with a relatively small number of causal
patterns (interactive concepts) to faithfully and concisely
explain a DNN’s inference on an input sample.

• Faithfulness. Given an input sample with n variables,
there are 2n different ways to randomly mask input variables.
Given any one of all the 2n masked input samples, we prove
that the output Y of the causal graph can always mimic the
DNN’s output. This guarantees that the causal graph encodes
the same logic (i.e. the same set of interactive concepts) as
the DNN. Thus, we can consider such a causal graph as a
faithful explanation for the inference logic of the DNN.

• Conciseness. Theoretically, we may extract at most
2n causal patterns (interactive concepts) from a DNN with
n input variables. However, we discover that most causal
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Figure 1. Emergence of symbolic interactive concepts in a sufficiently trained DNN (a), which make considerable numerical effects on the
network output. (b) All interactive concepts can be faithfully organized into a causal graph, which reflects the DNN’s inference logic. (c,d)
Besides, the causal graph can be further simplified as an And-Or graph (AOG), which extracts common coalitions.

patterns have almost zero effects on the output Y , so we can
use a sparse graph with a small number of salient causal pat-
terns to approximate the DNN’s output in real applications.
Furthermore, as Fig. 1(c,d) shows, we propose to summa-
rize common coalitions shared by salient causal patterns to
simplify the causal graph to a deep And-Or graph (AOG).

Note that since the DNN encodes complex inference logic,
different samples may activate different sets of salient causal
patterns and generate different causal graphs.

• Universality. As Fig. 2 shows, given DNNs with vari-
ous architectures trained on different tasks, we find that the
inference of each DNN can all be faithfully and concisely
explained by a few salient causal patterns.

In addition, we prove that causal patterns extracted from
the DNN have broad theoretical connections with classical
interaction/attribution metrics for explaining DNNs. Specif-
ically, the causal effects can explain the elementary mech-
anism of the Shapley value [31], the Shapley interaction
index [13], and the Shapley-Taylor interaction index [36].

Contributions of this paper can be summarized as fol-
lows: (1) We discover and prove that the inference logic
of a complex DNN on a certain sample can be represented
as a relatively simple causal graph. (2) Furthermore, such
a causal graph can be further simplified as an AOG. (3)
The trustworthiness of using the AOG to explain a DNN is
verified in experiments.

2. Explainable AI (XAI) theories based on
game-theoretic interactions

This study provides a solid foundation for XAI theories
based on game-theoretic interactions. Our research group
led by Dr. Quanshi Zhang in Shanghai Jiao Tong University
has developed a theory system based on game-theoretic inter-
actions to address two challenges in XAI, i.e., (1) extracting
explicit and countable concepts from implicit knowledge
encoded by a DNN, and (2) using explicit concepts to ex-
plain the representation power of DNNs. More crucially, this
interaction also enables us to unify the common mechanisms
shared by various empirical findings on DNNs.

• Extracting concepts encoded by DNNs. Defining the
interactions between input variables is a typical approach

in XAI [36, 38]. Based on game theory, we defined the
multivariate interaction [44, 46] and the multi-order interac-
tion [45] to investigate interactions from different perspec-
tives. In this study, we first demonstrate that game-theoretic
interactions are faithful (Theorem 1) and very sparse (Re-
mard 1). [20] further found that salient interactions were
usually discriminative and shared by different samples and
different DNNs. These findings enabled us to consider
salient interactions as concepts encoded by a DNN. Based
on this, [28] formulated the optimal baseline values in game-
theoretic explanations for DNNs. Furthermore, [6] investi-
gated the different behaviors of the DNN when encoding
shapes and textures. [7] further found that salient interactions
usually represented the prototypical concepts encoded by a
DNN.

• Game-theoretic interactions enable us to explain the
representation power of DNNs. We used interactions to
explain the various capacities of a DNN, including its adver-
sarial robustness [27,39], adversarial transferability [40], and
generalization power [45, 50]. [9] proved that a DNN is less
likely to encode interactions of the intermediate complexity.
In comparison, [29] proved that a Bayesian neural network is
less likely to encode complex interactions, thereby avoiding
over-fitting.

• Game-theoretic interactions also reveal the common
mechanism underlying many empirical findings. [10] discov-
ered that the interactions could be considered as elementary
components of fourteen attribution methods. [49] proved that
the reduction of interactions is the common utility of twelve
previous methods of boosting adversarial transferability.

3. Method
3.1. Causal graph based on interactive concepts

In this paper, we discover and prove a concept-emerging
phenomenon that the inference logic of a DNN on an in-
put sample can be represented as a causal graph, in which
each causal pattern can be considered as an interactive con-
cept1. Thus, in order to clarify this phenomenon, let us

1Note that unlike previous studies [12], the concept in this paper is
defined based on interactions between input variables.

20281



index of causal patterns (interactive concepts)

st
re

n
gt

h
 o

f 
ca

u
sa

l e
ff

ec
ts

 

16 ResMLP-5 trained 
on census dataset

1 212
0

salient

noisy

80 ResMLP-5 trained 
on TV news dataset

1 210
0

salient

noisy

7 ResNet-32 trained 
on MNIST dataset

1 28
0

salient

noisy

60 MLP-5 trained on
TV news dataset

1 210
0

salient

noisy

16 MLP-5 trained on
census dataset

1 212
0

salient

noisy

40 CNN trained 
on SST-2 dataset

1 28
0

salient

noisy

16 LSTM trained on
CoLA dataset

1 210
0

salient

noisy

10 CNN trained on
CoLA dataset

1 210
0

salient

noisy

Figure 2. Strength of causal effects of different causal patterns
shown in descending order. It shows that sparse causality (sparse
interactive concepts) is universal for various DNNs.

first introduce how to build the causal graph. Given a
pre-trained DNN v(·) and an input sample x with n vari-
ables N = {1, 2, . . . , n} (e.g., a sentence with n words), let
v(x) ∈ R denote the DNN’s output2 on the sample x. Then,
the causal graph corresponding to the inference logic on x is
shown in Fig. 1(b). As Fig. 1(b) shows, each source node Xi

(i = 1, ..., n) in the bottom layer represents the binary state
of whether the i-th input variable is masked (Xi = 0) or not
(Xi = 1). The second layer consists of a set Ω of all causal
patterns. Each causal pattern S ∈ Ω represents the AND
relationship between a subset of input variables S⊆N . For
example, in Fig. 1(b), the co-appearance of the three words
in S = {take, it, easy} forms a phrase meaning “calm down”.
In other words, only when all three words are present, the
causal pattern S will be triggered, denoted by CS = 1; other-
wise, CS = 0. As the output of the causal graph, the single
sink node Y depends on triggering states CS of all causal
patterns in Ω. Thus, the transition probability in this causal
graph is given as follows.

P (CS = 1|X1, X2, ..., Xn) =
∏

i∈S
Xi,

P (Y |{CS |S ∈ Ω}) = 1

(
Y =

∑
S∈Ω

wS · CS

)
,

(1)

where Y ∈ {v(xS)|S ⊆ N}. P (CS = 0|X1, X2, ..., Xn) =

1−P (CS = 1|X1, X2, ..., Xn). 1(·) refers to the indicator
function.

wS can be understood as the causal effect of the pattern
S to the output Y . Specifically, each triggered causal pattern
CS will contribute a certain causal effect wS to the DNN’s
output. For example, the triggered causal pattern “take
it easy” would contribute a considerable additional effect
wS > 0 that pushes the DNN’s output towards the positive
meaning “calm down.” The quantification of the causal
effect wS will be introduced later.

According to Eq. (1), the causal relationship between CS

(S ∈ Ω) and the output Y in the causal graph can be specified
by the following structural causal model (SCM) [25].

Y (X) =
∑

S∈Ω
wS · CS(X) (2)

2Note that people can apply different settings for the DNN’s output
v(x). In particular, in the multi-category classification task, we set v(x) =

log
p(y=ytruth|x)

1−p(y=ytruth|x)
∈ R by following [9].

• Faithfulness of the causal graph. In this paragraph, we
prove that there exists at least one causal graph parameterized
by {wS} in Eq. (1) that can faithfully mimic the inference
logic of a DNN on the sample x. Specifically, given an input
sample x with n variables, we have 2n ways to mask input
variables in x, and generate 2n different masked samples. If
the output Y of a causal graph can always mimic the DNN’s
output2 on all the 2n input samples, we can consider that
the causal graph is faithful. To this end, given a subset of
input variables S ⊆ N , let xS denote the masked sample,
where variables in N\S are masked, and other variables in
S keep unchanged. Let v(xS) and Y (xS) denote the DNN’s
output2 and the causal graph’s output on this sample xS ,
respectively.

Theorem 1 (Proof in Appendix C). Given a certain input
x, let the causal graph in Fig. 1 encode 2n causal patterns,
i.e., Ω = 2N = {S : S ⊆ N}. If the causal effect wS of
each causal pattern S ∈ Ω is measured by the Harsanyi
dividend [15], i.e. wS ≜

∑
S′⊆S(−1)

|S|−|S′| · v(xS′), then
the causal graph faithfully encodes the inference logic of the
DNN, as follows.

∀S ⊆ N , Y (xS) = v(xS) (3)

In fact, the Harsanyi dividend wS was first proposed in
game theory to measure the interaction between players.
Here, we first use it in the SCM to explain the causal effect
of each causal pattern S ⊆ N for the DNN’s inference.

Theorem 1 proves the faithfulness of using such a causal
graph to represent the inference logic of the DNN on a certain
sample x. In other words, we can exactly disentangle/explain
the DNN output on any masked sample into the causal effects.
It ensures that we can use the causal graph to predict DNN
outputs on randomly masked samples, thereby showing the
trustworthiness of the causal graph. In comparison, previous
explanation methods [1,4,23,30,42] cannot mimic inferences
on the masked samples (i.e., not satisfying the faithfulness in
Theorem 1). Note that no matter whether input variables are
dependent or not, the faithfulness will not be affected, i.e.,
the causal graph can always accurately mimic the DNN’s
output on all 2n possible masked input samples.

However, different original samples x mainly trigger dif-
ferent sets of causal patterns and generate different causal
graphs. For example, given a cat image, pixels on the head
(in S) may form a head pattern, and the DNN may assign
a significant effect wS on the pattern. Whereas, we cannot
find the head pattern in a bus image, so the same set of pixels
S in the bus image probably do not form any meaningful
pattern and have ignorable effect wS ≈ 0.

Specifically, given the sample x, each masked sample
xS is implemented by masking all variables in N\S using
baseline values just like in [2, 8], as follows.

(xS)i =

{
xi, i ∈ S
ri, i ∈ N \S , (4)
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where r = [r1, r2, . . . , rn] denotes the baseline values of the
n input variables. The DNN’s output v(xS)

2 is computed by
taking the masked sample xS as the input. According to the
SCM in Eq. (2), the output Y (xS) of the causal graph is com-
puted as Y (xS) =

∑
T ∈Ω wT ·CT (xS) =

∑
T ⊆S,T ∈Ω wT . In

particular, Y (x = xN ) =
∑

S∈Ω wS . In Section 3.2, we will
introduce how to learn optimal baseline values ri that further
enhance the conciseness of the causal graph.

• Generality of causal patterns. Besides, we also prove
that the above causal effects wS based on Harsanyi dividends
satisfy the efficiency, linearity, dummy, symmetry, anonymity,
recursive, and interaction distribution axioms in game theory
(see Appendix B and D.1), which further demonstrates the
trustworthiness of the causal effects. More crucially, we
also prove that causal effects wS can explain the elementary
mechanism of existing game-theoretic metrics. Please see
Appendix D.2 for the proof.

Theorem 2 (Connection to the Shapley value, proved by
[15]). Let ϕ(i) denote the Shapley value [31] of an input
variable i. Then, the Shapley value ϕ(i) can be explained
as the result of uniformly assigning causal effects to each
involving variable i, i.e., ϕ(i) =

∑
S⊆N\{i}

1
|S|+1

wS∪{i}.

The Shapley value [31] was first proposed in game theory
and has been used by previous studies [23] to estimate attri-
butions of input variables in the DNN. The Shapley value
satisfies four satisfactory axioms and is widely considered as
a relatively fair estimation of attributions. Theorem 2 proves
that the Shapley value can be considered as a re-allocation
of causal effects to input variables.

In Appendix D.2, we further prove that the Shapley in-
teraction index [13] and the Shapley Taylor interaction in-
dex [36] can also be understood as the assignment of causal
effects wS to different coalitions.

3.2. Discovering and boosting the conciseness of the
causal graph

Remark 1. Given a DNN v(·) and an input sample x with n

variables, we can find a small set of causal patterns Ω subject
to |Ω|≪2n, such that the DNN’s output can be approximated
by the causal graph’s output, i.e. ∀S ⊆ N , Y (xS) ≈ v(xS).

• Discovering the conciseness. We have discovered that
lots of DNNs with various architectures trained for different
tasks can all be explained using sparse causal patterns. Al-
though Theorem 1 indicates that the causal graph needs to
encode 2n causal patterns to precisely fit the DNN’s output
on all the 2n masked samples, Remark 1 shows a common
phenomenon that the causal effects wS extracted from the
DNN are usually very sparse. To this end, we trained various
DNNs for different tasks, and Fig. 2 shows the strength of
causal effects |wS | in descending order for various DNNs.
We found that most causal patterns had little influence on
the output with negligible values |wS | ≈ 0, and they were

termed noisy causal patterns. Only a few causal patterns
had considerable effects |wS |, and they were termed salient
causal patterns. Furthermore, we also conducted experi-
ments in Section 4.2, and Figs. 3, 4, and 6 show that we
could use a small number of causal patterns (empirically 10
to 100 causal patterns for most DNNs) in Ω to approximate
the DNN’s output, as stated in Remark 1.

• Boosting the conciseness. Inspired by Remark 1, we
aim to learn a more concise causal graph. To this end, we pro-
pose the following objective of learning faithful and sparse
causal effects wS .

minw,Ω unfaith(wΩ) s.t. |Ω|≤M

⇔ minw,Ω unfaith(wΩ) s.t. ∥wΩ∥0≤M,

unfaith(wΩ) =
∑

S⊆N

[
v(xS)− YwΩ(xS)

]2 (5)

where wΩ
def
= [w′

S1
, w′

S2
, ..., w′

S2n
]. If S ∈ Ω, then w′

S =wS ;
otherwise, w′

S =0. The L0-norm ∥wΩ∥0 refers to the number
of non-zero elements in wΩ, thereby ∥wΩ∥0 = |Ω|. In this
way, the above objective function enables people to use a
small number of causal patterns to explain the DNN.

However, direct optimization of Eq. (5) is difficult. There-
fore, we propose several techniques to learn sparse causal
effects based on Eq. (5) to faithfully mimic the DNN’s
outputs on numerous masked samples. The following para-
graphs will introduce how to relax the Harsanyi dividend in
Theorem 1 by removing noisy causal patterns and learning
the optimal baseline value, so as to boost the sparsity of
causal effects. Besides, we also discovered that adversarial
training [24] can make the DNN encode much more sparse
causal effects.

First, boosting conciseness by learning the optimal
baseline value. In fact, the sparsity of causal patterns does
not only depend on the DNN itself, but it is also deter-
mined by the choice of baseline values in Eq. (4). Specif-
ically, input variables are masked by their baseline values
r = [r1, r2, . . . , rn] to represent their absence states in the
computation of causal effects. Thus, wΩ can be represented
as a function of r, i.e., wΩ(r). To this end, some recent
studies [2,8,28] defined baseline values from a heuristic per-
spective, e.g. simply using mean/zero baseline values [8, 37].
However, it still remains an open problem to define optimal
baseline values.

Thus, we further boost the sparsity of causal patterns
by learning the optimal baseline values that enhance the
conciseness of the causal graph. However, it is difficult to
learn optimal baseline values by directly optimizing Eq. (5).
To this end, we relax the optimization problem in Eq. (5) (L0

regression) as a Lasso regression (L1 regression) as follows.

minΩ,r unfaith(wΩ) s.t. ∥wΩ∥0≤M

⇔ minΩ,r unfaith(wΩ) + λ∥wΩ∥0
relax
=⇒ minΩ,r unfaith(wΩ) + λ∥wΩ∥1

(6)
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We learn optimal baseline values by minimizing the loss
L(r,Ω) = unfaith(wΩ) + λ · ∥wΩ∥1. More crucially, the
learning of baseline values is the safest way of optimizing
L(r,Ω), because the change of baseline values always en-
sures unfaith(w) = 0 and just affects ∥wΩ∥1. In this way,
learning baseline values significantly boosts the conciseness
of causal effects. In practice, we usually initialize the base-
line value ri as the mean value of the variable i over all
samples, and then we constrain ri within a relatively small
range, i.e., ∥ri−rinitial

i ∥2≤τ , to represent the absence state3.

Second, boosting conciseness by neglecting noisy
causal patterns. Considering the optimization problem,
we use a greedy strategy to remove the noisy causal patterns
from 2N = {S : S ⊆ N} and keep the salient causal patterns
to construct the set Ω ⊆ 2N that minimizes the loss L(r,Ω)
in Eq. (6). It is worth noting that we do not directly learn
causal effects by blindly optimizing Eq. (6), because au-
tomatically optimized causal effects usually lack sufficient
support for their physical meanings, while the setting of
Harsanyi dividends is a meaningful interaction metric in
game theory [15]. The Harsanyi dividend satisfies the effi-
ciency, linearity, dummy, symmetry axioms axioms, which
ensures the trustworthiness of this metric. In other words,
although automatically optimized causal effects can mini-
mize unfaith(w), they still cannot be considered as reliable
explanations from the perspective of game theory. Thus,
we only recursively remove noisy causal patterns from Ω to
update Ω, i.e., Ω←Ω\{S}, without creating any new causal
effect outside the paradigm of the Harsanyi dividends in
Theorem 1. Specifically, we remove noisy causal patterns
by following a greedy strategy, i.e., iteratively removing
the noisy causal pattern such that unfaith(wΩ) is minimized
in each step. In this way, we just use the set of retained
causal patterns, denoted by Ω, to approximate the output, i.e.,
v(x) ≈ Y (x) =

∑
S∈Ω wS · CS(x) =

∑
S∈Ω wS .

Ratio of the explained causal effects RΩ. We propose a
metric RΩ to quantify the ratio of the explained salient causal
effects in Ω to the overall network output.

RΩ =

∑
S∈Ω |wS |∑

S∈Ω |wS |+ |∆|
(7)

where ∆=v(x)−
∑

S∈ΩwS denotes effects of the unexplained
causal patterns.

Third, discovering that adversarial training boosts the
conciseness. As discussed in Section 4.3, we also discover
that adversarial training [24] makes the DNN encode more
sparse causal patterns than standard training, thus boosting
the conciseness of the causal graph.

3The setting of τ is introduced in Section 4.2. Please see Appendix E
for more discussions

3.3. Rewriting the causal graph as an AOG

The AOG is a hierarchical graphical model that encodes
how semantic patterns are formed for inference, which
has been widely used for interpretable knowledge repre-
sentation [21, 48], object detection [35], etc. In this sec-
tion, we show that the above causal graph can be rewrit-
ten into an And-Or graph (AOG), which summarizes com-
mon coalitions shared by different causal patterns to fur-
ther simplify the explanation. According to the SCM in
Eq. (2), the causal graph in Section 3.1 actually repre-
sents the And-Sum representation encoded by the DNN,
i.e., v(x)≈

∑
S∈Ω wS ·CS(x)=

∑
S∈Ω wS . In fact, such And-

Sum representation can be equivalently transformed into an
AOG.

The structure of a simple three-layer AOG is shown in
Fig. 1(c). Just like the causal graph in Fig. 1(b), at the bottom
layer of the AOG in Fig. 1(c), there are n leaf nodes represent-
ing n variables of the input sample. The second layer of the
AOG has multiple AND nodes, each representing the AND
relationship between its child nodes. For example, the AND
node x4x5x6 indicates the causal pattern S = {x4, x5, x6}
with the causal effect wS = 2.0. The root node is a noisy
OR node (as discussed in [21]), which sums up effects of
all its child AND nodes to mimic the network output, i.e.,
output =

∑
S∈Ω wS · CS .

Furthermore, in order to simplify the AOG, we extract
common coalitions shared by different causal patterns as
new nodes to construct a deeper AOG. For example, in
Fig. 1(c), input variables x5 and x6 frequently co-appear
in different causal patterns. Thus, we consider x5, x6 as a
coalition and add an AND node β = {x5, x6} to represent
their co-appearance. Accordingly, the pattern {x4, x5, x6}
is simplified as {x4, β} (see Fig. 1(d)). Therefore, for each
coalition / causal pattern S in an intermediate layer, its trig-
gering state CS =

∏
S′∈Child(S) CS′ , where Child(S) denotes

all input variables or coalitions composing S. I.e., each coali-
tion / causal pattern S is triggered if and only if all its child
nodes in Child(S) are triggered.

In order to extract common coalitions, we use the mini-
mum description length (MDL) principle [14] to learn the
AOG g as the simplest description of causal patterns. The
MDL is a classic way of summarizing patterns from data for
decades, which has solid foundations in information theory.
Given an AOG g and input variables N , letM=N∪Ωcoalition

denote the set of all leaf nodes and AND nodes in the bottom
two layers, e.g. M=N∪Ωcoalition ={x1, x2, ..., x6}∪{α, β} in
Fig. 1(d). The objective of minimizing the description length
L(g,M) is given as follows.

min
M

L(g,M) s.t. L(g,M) = L(M) + LM(g), (8)

where L(M) denotes the complexity of describing the
set of nodes M, and LM(g) denotes the complexity of
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input
variables

OR
node

6.59

-6.59

2.54

-2.54

AND
nodes

( )common
coalitions

AND
nodes

( )salient
patterns

Red edges indicate a parse graph 
of a causal pattern.

output=5.94, 𝑅Ω=99.12%
grammatically correct

output=15.97, 𝑅Ω= 95.80%
positive sentiment

Figure 3. AOGs that explained correct predictions made by the neural network. The networks were trained on (left) the CoLA dataset and
(right) the SST-2 dataset, respectively. The red color of nodes in the second layer indicates causal patterns with positive effects, while the
blue color represents patterns with negative effects. Red edges indicate the parse graph of a causal pattern.

using nodes in M to describe patterns in g. The MDL
principle usually formulates the complexity (description
length) of the set of nodes M as the entropy L(M) =

−κ
∑

m∈M p(m) log p(m). We set the occurring probabil-
ity p(m) of the node m ∈ M proportional to the overall
strength of causal effects of the node m’s all parent nodes
S, Child(S)∋m. ∀m∈M, p(m)=count(m)/

∑
m′∈M count(m′)

s.t. count(m)=
∑

S∈Ω:Child(S)∋m |wS |. κ=10/Z is a scalar
weight, where Z=

∑
S∈Ω |wS |. The second term LM(g)=

−ES∼p(S|g)
∑

m∈S log p(m) represents the complexity (de-
scription length) of using nodes inM to describe all causal
patterns in g. The appearing probability of the causal pattern
S in the AOG g is sampled as p(S|g)∝|wS |. The time cost
of the MDL method is O(|Ω|2). The loss L(g,M) can be
minimized by recursively adding common coalitions into
M via the greedy strategy by following [14]. Please see
Appendix F for more discussions.

Limitations of the AOG explainer. Although we prove
that the AOG explainer is the unique faithful explanation,
it is still far from a computationally efficient explanation.
Thus, extending the theoretical solution to the practical one
is our future work, e.g. developing approximated methods
or accelerating techniques for computation. In Appendix H,
we have discussed some techniques to reduce the time cost
on image datasets.

4. Experiments
Datasets and models. We focused on classifica-

tion/regression tasks based on NLP datasets, image datasets,
and tabular datasets. For NLP tasks, we explained
LSTMs [17] and CNNs used in [26]. Each model was
trained for sentiment classification on the SST-2 dataset [34]
or for linguistic acceptability classification on the CoLA
dataset [41], respectively. For vision tasks, we explained
ResNets [16] and VGG-16 [33] trained on the MNIST
dataset [19] and the CelebA dataset [22] (please see Ap-
pendix G.2 for results on the CelebA dataset). The tabular
datasets included the UCI census income dataset [11], the
UCI bike sharing dataset [11], and the UCI TV news chan-
nel commercial detection dataset [11]. These datasets were
termed census, bike, and TV news for simplicity. Each tab-
ular dataset was used to train MLPs, LightGBM [18], and

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝛼 = {𝑥2 , 𝑥3} 𝛽 = {𝑥5 , 𝑥6} 𝛾 = {𝑥4 , 𝑥6} 𝜁 = {𝑥6 , 𝑥8} 𝜉 = {𝑥1 , 𝑥2 , 𝑥3}

output = 9.01, prediction: digit 4, 𝑅Ω = 98.11%
parse graph of the pattern
𝑆 = 𝜉 = 𝑥1 , 𝑥2 , 𝑥3

Figure 4. An AOG that explained the prediction made by ResNet-
20 trained on the MNIST dataset. Red edges indicate the parse
graph of a causal pattern.

w{she, was} = -4.28

label: grammatically wrong
prediction: grammatically correct

w{John, placed} = -3.92

label: grammatically correct
prediction: grammatically wrong towards

correct
prediction

towards
wrong

prediction

Figure 5. AOGs for a network trained on the CoLA dataset. We
randomly highlight a parse graph (blue) in the AOG.

XGBoost [5]. For MLPs, we used two-layer MLPs (namely
MLP-2) and five-layer MLPs (namely MLP-5), where each
layer contained 100 neurons. Besides, we added a skip-
connection [16] to each layer of MLP-5 to build ResMLP-5.
Please see Appendix G.1 for more details.

Explaining network inferences and discovering repre-
sentation flaws of DNNs. Figs. 3 and 4 show AOG expla-
nations for correct predictions in NLP tasks and the image
classification task, respectively. The highlighted parse graph
in each figure corresponds to a single causal pattern. We
only visualized a single parse graph in each AOG for clarity.
We found that AOGs extracted meaningful word colloca-
tions and typical digit shapes used by the DNN for inference.
Besides, Fig. 5 shows AOG explanations for incorrect predic-
tions in the NLP task. Results show that the AOG explainer
could reveal the representation flaws that were responsible
for incorrect predictions. For example, local correct gram-
mar “she was” in Fig. 5(left) was mistakenly learned to make
negative impacts on the linguistic acceptability of the whole
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Dataset Model
Average IoU

SI
STI

(k=2)
STI

(k=3) ours

Add-Mul dataset [47] functions in
the dataset

0.61 0.27 0.55 1.00
Dataset in [28] 0.99 0.50 0.59 1.00

Manually labeled
And-Or dataset

MLP-5 0.87 0.35 0.69 0.97
ResMLP-5 0.90 0.35 0.69 0.98

Table 1. IoU (↑) on synthesized datasets. The AOG explainer
correctly extracted causal patterns.

sentence. The phrase “John placed” in Fig. 5(right) directly
hurt the linguistic acceptability without considering the com-
plex structure of the sentence. Please see Appendix G.4 for
more results.

4.1. Examining whether the AOG explainer reflects
faithful causality

In this section, we proposed two metrics to examine
whether the AOG explainer faithfully reflected the inference
logic encoded by DNNs.

Metric 1: intersection over union (IoU) between causal
patterns in the AOG explainer and ground-truth causal
patterns. This metric evaluated whether causal patterns
(nodes) in the AOG explainer correctly reflected the in-
teractive concepts encoded by the model. Given a model
and an input sample, let m denote the number of ground-
truth causal patterns m = |Ωtruth| in the input. Then, for
fair comparisons, we also used m causal patterns Ωtop-m

in the AOG explainer with the top-m causal effects |wS |.
We measured the IoU between Ωtruth and Ωtop-m as IoU =

|Ωtop-m ∩ Ωtruth|/|Ωtop-m ∪ Ωtruth| to evaluate the correctness of
the extracted causal patterns in the AOG explainer. A higher
IoU value means a larger overlap between the ground-truth
causal patterns and the extracted causal patterns, which indi-
cates higher correctness of the extracted causal patterns.

However, for most realistic datasets and models, people
could not annotate the ground-truth patterns, as discussed
in [47]. Therefore, we used the off-the-shelf functions with
ground-truth causal patterns in the Addition-Multiplication
(Add-Mul) dataset [47] and the dataset proposed in [28], to
test whether the learned AOGs could faithfully explain these
functions. The ground-truth causal patterns of functions in
both datasets can be easily determined. For example, for the
function y = x1x3 + x3x4x5 + x4x6, xi ∈ {0, 1} in the Add-
Mul dataset, the ground-truth causal patterns are Ωtruth =

{{x1, x3}, {x3, x4, x5}, {x4, x6}} given the input sample x=

[1, 1, ..., 1]. It was because the multiplication between binary
input variables could be considered as the AND relationship,
thereby forming explicit ground-truth causal patterns. In
other words, the co-appearance of variables in each causal
pattern would contribute 1 to the output score y.

Similarly, we also constructed the third dataset contain-
ing pre-defined And-Or functions with ground-truth causal
patterns, namely the manually labeled And-Or dataset (see
Appendix G.3). Then, we learned the aforementioned MLP-

Explanation methods TV news census bike
MLP-5 ResMLP-5 MLP-5 ResMLP-5 MLP-5 ResMLP-5

Attribution
-based

explanations

Shapley 125.5 130.8 55.6 51.4 1.1E+4 7953.9
I×G 738.7 2586.1 408.1 1325.1 1.4E+5 1.1E+5
LRP 317.6 9.4E+4 155.1 1.4E+04 1.4E+5 5.8E+8
OCC 1386.2 1117.5 638.7 287.4 6.2E+4 3.7E+4

Interaction
-based

explanations

SI 6231.2 5598.6 2726.1 2719.0 1.2E+5 1.2E+5
STI (k=2) 182.0 236.0 34.7 38.8 7685.0 5219.8
STI (k=3) 177.7 252.4 41.0 60.5 1.0E+4 5045.8

ours 9.4E-12 1.1E-11 8.5E-12 8.5E-12 2.6E-9 1.9E-9

Table 2. Unfaithfulness ρunfaith (↓) of different explanation methods.
Our AOG exhibited the lowest unfaithfulness.

5 and ResMLP-5 networks to regress each And-Or function.
We considered causal patterns in such And-Or functions as
ground-truth causal patterns in the DNN.

As for baseline methods, previous studies usually did not
directly extract causal patterns from a trained DNN at a low
level as input units. To this end, interaction metrics (such
as the Shapley interaction (SI) index [13] and the Shapley-
Taylor interaction (STI) index [36]) were widely used to
quantify numerical effects of different interactive patterns
between input variables on the network output. Thus, we
computed interactive patterns with top-ranked SI values, or
patterns with top-ranked STI values of orders k = 2 and
k=3, as competing causal patterns for comparison. Based
on the IoU score defined above, Table 1 shows that our AOG
explainer successfully explained much more causal patterns
than other interaction metrics.

Metric 2: evaluating faithfulness of the AOG explainer.
We also proposed a metric ρunfaith to evaluate whether an
explanation method faithfully extracted causal effects en-
coded by DNNs. As discussed in Section 3.2, if the quan-
tified causal effects w are faithful, then they are supposed
to minimize unfaith(w). Therefore, according to the SCM
in Eq. (2), we defined ρunfaith = ES⊆N [v(xS)−

∑
S′⊆S wS′)]2

to measure the unfaithfulness. As mentioned above, we
considered the SI values and STI values as numerical ef-
fects wS of different interactive patterns S on a DNN’s in-
ference. Besides, we could also consider that attribution-
based explanations quantified the causal effect w{i} of
each variable i. Therefore, Table 2 compares the ex-
tracted causal effects in the AOG with SI values, STI val-
ues, and attribution-based explanations (including the Shap-
ley value [31], Input×Gradient [32], LRP [3], and Occlu-
sion [43]). Our AOG explainer exhibited much lower ρunfaith

values than baseline methods.

4.2. Conciseness of the AOG explainer

The conciseness of an AOG depends on a trade-off be-
tween the ratio of the explained causal effects RΩ and the
simplicity of the explanation. In this section, we evaluated
the effects of baseline values on the simplicity of the AOG
explainer, and examined the relationship between the ratio
of causal effects being explained and the simplicity of the
AOG explainer.

Effects of baseline values on the conciseness of ex-
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Figure 6. (a) The change of RΩ along
with the number of causal patterns |Ω| in
AOGs. (b,c) The change of the node/edge
number in AOGs along with RΩ. (d) The
histogram of re-scaled causal effects. The
learned baseline values boosted the spar-
sity of causal patterns in the AOG explainer.
Please see Appendix G.6 and G.7 for results
on other datasets.

planations. In this experiment, we explored whether the
learning of baseline values in Section 3.2 could boost the
sparsity of causal patterns. To this end, we followed [8] to
initialize baseline values of input variables as their mean
values over different samples. Then, we learned baseline
values via Eq. (6). The baseline value ri of each input vari-
able i was constrained within a certain range around the
data average, i.e., ∥ri − Ex[xi]∥2 ≤ τ . In experiments, we
set τ = 0.01 ·Varx[xi], where Varx[xi] denotes the variance
of the i-th input variable over different samples. Fig. 6(d)
shows the histogram of the relative strength of causal effects

|wS |
maxS′⊆N |wS′ | , which was re-scaled to the range of [0, 1].
Compared with mean baseline values, the learned baseline
values usually generated fewer causal patterns with signifi-
cant strengths, which boosted the sparsity of causal effects
and enhanced the conciseness of explanations. In this ex-
periment, we used MLP-5 and computed relative strengths
of causal effects in 20 randomly selected samples in the TV
news dataset. Please see Appendix G.7 for more results.

Ratio of the explained causal effects RΩ. There was a
trade-off between faithfulness (the ratio of explained causal
effects) and conciseness of the AOG. A good explanation
was supposed to improve the simplicity while keeping a
large ratio of causal effects being explained. As discussed
in Section 3.2, we just used causal patterns in Ω to approx-
imate the DNN’s output. Fig. 6(a) shows the relationship
between |Ω| and the ratio of the explained causal effects RΩ

in different models based on the TV news dataset. When we
used a few causal patterns, we could explain most effects of
causal patterns to the DNN’s output. Fig. 6(b,c) shows that
the node and edge number of the AOG increased along with
the increase of RΩ.

4.3. Effects of adversarial training

In this experiment, we learned MLP-2, MLP-5, and
ResMLP-5 on the TV news dataset via adversarial train-
ing [24]. Fig. 6(a) shows that compared with normally
trained models, we could use less causal patterns (smaller
|Ω|) to explain the same ratio of causal effects RΩ in adver-
sarially trained models. Moreover, Fig. 6(b,c) also shows
that AOGs for adversarially trained models contained fewer
nodes and edges than AOGs for normally trained models.
This indicated that adversarial training made models encode
more sparse causal patterns than normal training.

TV news census bike

MLP-2 normal 0.5965 0.4899 -
adversarial 0.6109 0.6292 -

MLP-5 normal 0.3664 0.2482 0.3816
adversarial 0.6304 0.4971 0.4741

ResMLP-5 normal 0.3480 0.2764 0.3992
adversarial 0.5731 0.4489 0.4491

Table 3. Jaccard similarity between two models. Two adversarially
trained models were more similar than two normally trained ones.

Besides, adversarial training also made different models
encode common patterns. To this end, we trained different
pairs of models with the same architecture but with different
initial parameters. Given the same input, we measured the
Jaccard similarity coefficient between causal effects of each
pair of models, in order to examine whether the two mod-
els encoded similar causal patterns. Let wS and w′

S denote
causal effects in the two models. The Jaccard similarity co-
efficient was computed as J=

∑
S⊆N min(|wS |,|w′

S |)∑
S⊆N max(|wS |,|w′

S |) . A high
Jaccard similarity indicated that the two models encoded
similar causal patterns for inference. Table 3 shows that
the similarity between two adversarially trained models was
significantly higher than that between two normally trained
models. This indicated adversarial training made different
models encode common causal patterns for inference.

5. Conclusion

In this paper, we discover and study the concept-emerging
phenomenon in a DNN. Specifically, we show that the infer-
ence logic of a DNN can usually be mimicked by a sparse
causal graph. To this end, we theoretically prove and ex-
perimentally verify the faithfulness of using a sparse causal
graph to represent interactive concepts encoded in a DNN.
We also propose several techniques to boost the conciseness
of such causal representation. Furthermore, we show that
such a causal graph can be rewritten as an AOG, which fur-
ther simplifies the explanation. The AOG explainer provides
new insights for understanding the inference logic of DNNs.
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