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Figure 1 The original and edited images using CoralStyleCLIP are shown in the first and second rows of images, respectively. The bottom
row shows the regions and StyleGAN2 layer numbers automatically selected for editing. The driving text prompts are above every column.

Abstract

Edit fidelity is a significant issue in open-world control-
lable generative image editing. Recently, CLIP-based ap-
proaches have traded off simplicity to alleviate these prob-
lems by introducing spatial attention in a handpicked layer
of a StyleGAN. In this paper, we propose CoralStyleCLIP,
which incorporates a multi-layer attention-guided blend-
ing strategy in the feature space of StyleGAN2 for obtain-
ing high-fidelity edits. We propose multiple forms of our
co-optimized region and layer selection strategy to demon-
strate the variation of time complexity with the quality of
edits over different architectural intricacies while preserv-
ing simplicity. We conduct extensive experimental analysis
and benchmark our method against state-of-the-art CLIP-
based methods. Our findings suggest that CoralStyleCLIP
results in high-quality edits while preserving the ease of use.

1. Introduction
Controlling smooth semantic edits to photorealistic im-

ages [1, 5, 34, 41] synthesized by well-known Generative
Adversarial Networks (GANs) [13, 18, 19] has become
simplified with guidance from independently trained con-
trastive models such as CLIP [36]. Using natural language
as a rich medium of instruction for open-world image syn-
thesis [39, 46–48] and editing [11, 12, 24, 26, 28, 45] has ad-
dressed many drawbacks of previously proposed methods.

As first demonstrated by StyleCLIP [34], the require-
ments for large amounts of annotated data [25] and manual
efforts [14, 44] were considerably alleviated. Furthermore,
the range of possible edits that were achievable significantly
improved [34]. The underlying theme of related approaches
involves CLIP-driven exploration [15,22,34] of the interme-
diate disentangled latent spaces of the GANs.
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Co-optimized Region and Layer Selection  (CORAL)

Figure 2 For achieving beard, CORAL selects appropriate regions in lay-
ers 5-10 for carrying out the required coarse edits in early layers and finer
texture edits in later layers

It is well understood by now that manipulating the latent
code of a StyleGAN for aligning with a text prompt can be
computationally intense, as seen in StyleCLIP latent opti-
mization [34], as well as the latent mapper methods [34].
This presents a trade-off between the complexity and qual-
ity of edits leveraged by StyleCLIP global directions [34]
and StyleMC [22].

In addition, these methods often result in undesirable ed-
its to unexpected regions of an image (see [15]), addressed
to some extent by FEAT [15]. However, FEAT requires
manual intervention, as described in Section 2, and involves
significant training complexity of the order of hours1.
Contributions. In this paper, we propose CoralStyleCLIP,
which addresses these challenges by combining the ease of
use [34] with efficient [22] high fidelity edits [15] into our
approach. In particular, we propose a novel strategy which,
for a given text prompt, jointly learns both the appropriate
direction of traversal in the latent space, as well as which
spatial regions to edit in every layer of the StyleGAN2 [19]
(see Figure 1, Figure 2) without any mediation.

Our approach overcomes the need for manual effort in
selecting an appropriate layer for FEAT by incorporating
multi-layer feature blending to enable the joint learning pro-
cess. As a result, the edits are very accurate, rendering our
method simple and effective.

The co-optimized regions and layers jointly learned with
appropriate latent edits typically select earlier layers for en-
acting coarse edits, such as shape and structural, compared
to finer edits, such as color and texture, which are usually
orchestrated through the latter layers of the StyleGAN2.

To alleviate the time complexity, we implement this
strategy for segment selection (see Section 3.2), where we

1With no official implementation available, we present comparisons
with our reimplementation of FEAT denoted by FEAT* in this paper.

jointly learn a global direction [22,34] in theW+ space and
limit the predicted areas of interest at every layer to seg-
ments from a pre-trained segmentation network. Doing so
reduces the learning complexity significantly (see Table 1),
albeit with potential pitfalls discussed in Section 4.3. We
mitigate these pitfalls with a jointly trained attention net-
work where we relax the areas of interest at every layer to
spatial masks predicted by the network (see Section 3.2).
As a result, the training time increases from a few minutes
to about an hour while improving the quality of edits com-
pared to the segment selection approach.

In summary, our contributions are as follows:

• We propose a novel multi-layer blending strategy that
attends to features selectively at the appropriate Style-
GAN layer with minimal hand-holding.

• A CORAL variant based on segment selection demon-
strates high edit quality at a fraction of time cost.

• Through extensive empirical analysis, we find that
CORAL outperforms recent state-of-the-art methods
and is better equipped to handle complex text prompts.

2. Related Work

The use of generative models for high-quality image syn-
thesis and manipulation has a rich history [7, 8, 17]. In
particular, the disentangled latent spaces of StyleGAN pro-
vide robust interpretable controls for editing valuable se-
mantic attributes of an image [3,9,14,30,41–44]. Desirable
changes to attributes of interest were previously brought out
by discovering the relevant channels [44] and curating prin-
cipal components [14] either through manual inspection or
otherwise driven by data-hungry attribute predictors.

StyleFlow [4] leverages normalizing flows to perform
conditional exploration of a pre-trained StyleGAN for
attribute-conditioned image sampling and editing. By learn-
ing to encode the rich local semantics of images into
multi-dimensional latent spaces with spatial dimension,
StyleMapGAN [20] demonstrates improved inversion qual-
ity and the benefits of spatially aware latent code interpola-
tion between source and target images for editing purposes.
The advent of CLIP [36] has re-ignited interest in open do-
main attribute conditioned synthesis of images [34, 35, 50].
Text-driven edits have considerably reduced both the time
and effort required for editing images and extended the
range of possible edits significantly [34], all the more with
increased interest in diffusion models [29, 37, 38].

The disentangled nature of the latent spaces of Style-
GAN has facilitated heuristics such as a fixed global direc-
tion in StyleCLIP [34] and, more recently, StyleMC [22].
For training efficiency, StyleMC performs CLIP-driven op-
timization on the image generated at a low-resolution layer
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Figure 3 Comparison of FEAT [15] with CORAL. In FEAT (left), the
spatial features are blended at a carefully hand-picked layer l. CORAL
(right) performs multi-layer blending with custom edit regions per layer.

of the StyleGAN. Unfortunately, this limits the range of ed-
its to only those possible by manipulating latent codes at the
earlier layers.

For ameliorating edits in unexpected regions of an im-
age, strategies for blending latent features have been an
emerging theme in many recent papers [6, 15, 16, 20]. [6,
15, 20] interpolate spatial features more explicitly. In con-
trast, StyleFusion [16] realizes similar objectives through
blended latent code extracted using a fusion network that
combines disjoint semantic attributes from multiple images
into a single photorealistic image.

Our work is most closely related to [15, 22, 34].
FEAT [15] reduces undesirable edits by imposing sparsity
in the number of spatial features modified by StyleCLIP at
a manually selected layer l of the StyleGAN2. FEAT edits
layers≤ l using a non-linear latent mapper, while the atten-
tion network emits a spatial mask for interpolating edited
spatial features at layer l with original spatial features at
the same layer (see Figure 3). At the cost of training time
and convenience, FEAT achieves high-fidelity edits. If the
blending layer is not carefully selected, the edits can be
significantly poor, as shown in [15] and Figure 6. Fur-
thermore, FEAT enacts inferior edits when presented with
multi-faceted prompts (see Figure 7). In Suppl., we also

discuss how CORAL is different from a multi-layer exten-
sion of FEAT.

Furthermore, we argue that the required edits for align-
ing with a given text prompt arise from multiple layers of
the StyleGAN2, necessitating a multi-layer feature interpo-
lation mechanism (see Section 3.3). Our method percolates
meaningful edits from the current layer onto subsequent
layers, with restrictions on the number of spatial edits cus-
tomized for each layer. As a result, we can automatically
select the correct layers and regions for editing an image.

To correctly identify the region of interest at every layer,
we discuss a lightweight segment-selection scheme (see
Section 3.2) and contrast this with an involved convolu-
tional mask prediction model motivated by FEAT. Recently,
SAM [32] accomplished superior GAN inversion at the
cost of editability by leveraging different latent spaces of
the StyleGAN2 in a spatially adaptive manner. However,
the edits performed on the inverted latent codes continue
to modify irrelevant image regions and could benefit from
CORAL (see Section 3).

With a focus on convenience and fidelity, CoralStyle-
CLIP learns global directions at every layer of the Style-
GAN2, as done in [22], and exhibits high-quality edits with
a significant reduction in the training time and manual effort
(see Table 1). Borrowing inspiration from [34], we also im-
plement our co-optimized region and layer selection strate-
gies for a non-linear mapper-based latent edit and demon-
strate additional customized and high fidelity edits.

3. Approach

An image edit is often spatially localized to a specific
region of interest. For example, edits corresponding to the
mohawk text prompt should affect only the hair region of the
portrait image while preventing edits in other parts. In this
work, we learn a latent edit vector and a soft binary mask
at every layer of a StyleGAN2 to accurately edit the image
according to the input text prompt. We achieve this by train-
ing them end-to-end while respecting the challenging but
desirable minimal overall edit area constraint. Following a
brief revisit to the StyleGAN architecture, we introduce two
simple yet effective strategies to determine the region of in-
terest given a text prompt. Finally, we introduce a novel
multi-layer blending strategy that is vital for achieving high
fidelity minimal edits.

3.1. Background

StyleGAN2 [19] is a state-of-the-art model trained for
generating high-resolution images typically of sizes 1024×
1024 or 512× 512. The network consists of a mapper mod-
ule that maps a random vector z ∈ Z ∼ N (0, 1) to a vector
in w ∈ W space via a multi-layer perceptron (MLP), and a
generator module comprising 18 convolutional blocks.
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TheW+ space, first defined by [2], is a concatenation of
18 different w(l) vectors where l ∈ {1, 2, . . . , 18}. The w(l)

instance in W+-space is first transformed through a layer-
specific affine operation to obtain stylecode s(l) ∈ S, at all
layers of the generator module. The input to the generator
module is a learned tensor of 4×4 resolution. It is gradually
increased to a resolution of 1024× 1024 as the input tensor
is passed down through the layers of the generator.

We denote the constant input tensor as c and the feature
obtained at a layer l as f (l). Further, we denote the W+

code at layer l as the w(l) and a layer in generator mod-
ule as Φ(l). Therefore, f (l) can be expressed as f (l) =
Φ(l)(f (l−1), w(l)), where l ∈ {1, 2, · · · , 18}, c = f (0) and
the generated image I =

∑18
l=1 RGB(l)(f (l)).

In our work, we aim to find a latent vector ∆(l) in
the W+ such that the image generated by the latent code
w(l) +∆(l) applied to every layer of generator results in an
edited image I∗. For simplicity, we denote f∗ and w∗ =
w +∆ as edited features andW+ latent code, respectively.
Therefore, we have f∗(l) = Φ(l)(f∗(l−1), w(l)+∆(l)). A re-
cent study showed that StyleGAN2 learns global attributes
such as position in earlier layers, structural changes in mid-
dle layers, and appearance changes (e.g., color) in the final
set of layers [18, 45]. However, determining the right set of
layers for a given text prompt is challenging and has been
explored only empirically in FEAT [15].

3.2. Co-optimized region and layer selection
(CORAL)

We aim to edit the image to match the text prompt with
minimal changes. To this end, the first step is correctly iden-
tifying the region of interest. Further, given the diversity
and richness of latent space at each layer in the generator,
we posit that the edits to the image can come from multiple
layers of the StyleGAN2 generator.

To address both requirements, we introduce CORAL,
a co-optimized region and layer selection mechanism. In
CORAL, we propose two simple-yet-effective approaches
for learning a soft binary mask m(l) ∈ [0, 1]f

(l)
dim at ev-

ery layer of the generator module with the same height and
width dimensions as the feature resolution at the given layer.
CORAL based on segment-selection. We can use any off-
the-shelf pre-trained semantic segmentation network to de-
termine the region of interest in this approach. Intuitively,
existing image segmentation networks generally capture se-
mantic parts of the image that we are interested in editing,
such as eyes, mouth, and lips. Therefore in many cases, this
problem can be posed as selecting the appropriate segments.
To achieve this, we introduce a matrix e of dimension P×18
where P is the number of classes predicted by the segmen-
tation network. Each entry in the matrix e is in the range
[0, 1], where 1 represents a confident segment selection for
the given text prompt t.
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Figure 4 Overview of CoralStyleCLIP. The only trainable components are
the attention module and the mapper/global direction. Two different vari-
ants of the attention module are summarized as segment selection and con-
volutional attention network (see Section 3.2 for more details).

The matrix e is converted into a spatial mask m(l) by
masking the segments with the confidence values and resiz-
ing the segmentation map to the resolution of the feature
maps at each layer. In the training phase, the parameters
in the matrix e are trained after applying a sigmoid, and
during inference, we apply a prompt-specific threshold τt
to the sigmoid. As depicted in Figure 4, the only train-
able parameters in this pipeline are e. Therefore, this can
achieve desirable edits with high accuracy up to 8x faster
than FEAT [15].

CORAL based on convolutional attention network.
Segment-selection-based CORAL is limited by the seg-
ments available in the pre-trained network. As shown in
results Figure 6-F, the segment-selection method is prone
to over-selection or under-selection of the region of inter-
est. To overcome this limitation, we implement an attention
network that directly predicts the masks m(l) at every layer
of the generator as shown in Figure 4. In this architecture,
we obtain a mask with the exact resolution as that of the
corresponding feature in the layer. Unlike FEAT, we hy-
pothesize that the mask at a layer l should depend only on
the features f (l) available at the current layer since we are
interested in predicting the mask at every layer.

Despite incurring higher training costs from having to
learn the convolutional layers, the masks produced with this
approach are smoother and avoid over/under-selection is-
sues by accurately predicting the correct region of interest.
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3.3. Multi-layer feedforwarded feature blending

CORAL produces soft binary masks m(l) at every layer
of the generator module. These masks blend features such
that the features corresponding to the confident regions are
borrowed from features f∗ generated with updated style
code, and on similar lines, features from non-confident re-
gions are borrowed from original features f of the unedited
image. This ensures that we only modify the regions corre-
sponding to the text prompt and prevents modifications of
non-masked regions. Unfortunately, a 0-mask (completely
black mask) at any layer would throw away any updated fea-
ture information from the previous layers and would propa-
gate the original features f from that point onward.

To prevent this bottleneck, we design a novel multi-layer
feature blending strategy (see Figure 3) that utilizes a paral-
lel pathway where the feature obtained from layer l − 1 is
passed through the generated block Φ twice - once with the
original latent code w and another pathway with updated la-
tent code w+∆ to obtain two feature sets for blending. The
former feature can be viewed as a feature that is not edited
but has all the information propagated from previous layers.
The multi-layer blending strategy expressed in (1), ensures
that no feature information is lost along the way.

f̂∗(l) = Φ(l)(f∗(l−1), w(l) +∆(l))

f̂ (l) = Φ(l)(f∗(l−1), w(l))

f∗(l) = m(l) ⊙ f̂∗(l) + (1−m(l))⊙ f̂ (l) (1)

Intuitively, when the mask is completely blank (which is
often desirable to keep the edits to a minimum), the features
are feedforwarded simply with edits from previous layers.

3.4. Types of latent edits

For a given convolutional layer l, when the learned la-
tent edit ∥∆(l)∥ > 0, the corresponding feature f̂∗(l) in
(1) incorporates attributes which are desirable for seman-
tic alignment with the given text prompt. The mask m(l)

counteracts possible undesirable artifacts through a region-
of-interest-aware interpolation strategy.

The ∆(l) by itself is, however, well studied in [22, 34],
both of which identify a single global direction that can se-
mantically edit images for a given text prompt. Such a sim-
ple parameterization does result in accurate edits for simple
text prompts, as discussed in [34].

Our findings suggest that training time is significantly re-
duced for prompts where a global direction can affect desir-
able changes. However, a more involved image-dependent
non-linear mapper model g(·) as a function of w(l) at every
layer can affect such changes with higher precision.

Therefore, we implemented CORAL for both versions
of latent edits: (i) global direction; (ii) latent mapper. The
latent mapper g(·) is an MLP-based model along the lines

of [34, Section 5], where the w(l) are split into three groups:
coarse (l in 1 to 4), medium (l in 5 to 8) and fine (l in 9 to
18); and each of these groups is processed by a different
MLP2. Our multi-layer feature blending mechanism is in-
dependent of the parametrization of the latent edit, which is
jointly learned with the mask m(l) predictors.

3.5. Loss formulation

We now describe our proposed methods’ training strat-
egy and loss formulation. We are given a text prompt t and
an image with corresponding W+ code w. The goal is to
find the right region of interest using a CORAL framework
and determine the latent vector to help with the image edit.
The only trainable components in our approach are the la-
tent vector ∆ and the parameters in the CORAL framework.
In the case of segment selection, the only trainable compo-
nent in CORAL is the matrix, and in the case of convolu-
tional attention networks, the Conv layers in the attention
network are trainable.
CLIP loss: The first key loss component is the CLIP loss
originally proposed in StyleCLIP [34]. The idea is to use
the pre-trained CLIP model to edit the latent vector such
that the embedding of the image I∗ produced aligns with
the embedding of the text prompt t in CLIP’s latent space.

In addition we also synthesize the image Ĩ , by setting
m

(l)
i,j = 1 ∀i, j, l in (1) and compute its CLIP loss. To un-

derstand this, we can envision I∗ as a sophisticated non-
linear interpolation between I0 and Ĩ using strategies given
in (1). Here I0 is the original unedited image.

By simply imposing a CLIP loss on I∗, Ĩ remains un-
restricted and can potentially contain undesirable artifacts,
as long as I∗ aligns with the text prompt t. However, our
region selectors in Section 3.2 derive their supervision from
Ĩ and might also learn to include these artifacts. Our final
semantic alignment loss is as follows:

Lclip =
1

2

(
DCLIP(I

∗, t) +DCLIP(Ĩ , t)
)

(2)

L2 loss: Controlled perturbations to the latent spaces of a
StyleGAN2 can result in smooth semantic changes to the
generated image. As a result, we optimize the squared Eu-
clidean norm of ∆, i.e., Ll2 = ∥∆∥22, in the W+ space to
prefer latent edits with smaller l2 norms.
ID loss: In order to prevent changes to the identity of a
person during image manipulation, we impose an ID loss
Lid = 1 − ⟨R(I∗),R(I)⟩ using cosine similarity between
the embeddings in the latent space of a pre-trained ArcFace
networkR [10, 22, 34, 40].
Minimal edit-area constraint: We encourage the network
to find an edit with changes to compact image areas. In the
case of segment selection, this is achieved by penalizing the
CORAL matrix e as follows:

2Unlike in [34], we remove the LeakyReLU activation after the final
fully connected layer, as it empirically expedites the optimization.
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Figure 5 Comparison of variants of CORAL differing in complexity with closely related FEAT* [15], StyleCLIP mapper method [34] and StyleMC [22]

Lss
area =

∑
i,j

ei,j (3)

In the case of a convolutional attention network, this is
achieved by imposing the minimal edit constraint directly
on the masks m as follows:

Lcan
area =

∑
l

nl

(∑
i,j

m
(l)
i,j

)
(4)

where nl is a normalizing constant defined per layer to
account for the growing feature dimensions as the feature
passes through the StyleGAN2 generator module.
Smoothness loss: In the case of the convolutional attention
network, it would be desirable to predict a smooth mask.
This is achieved by imposing a total variation loss [15].

Ltv =
∑
i,j,l

∥m(l)
i,j −m

(l)
i+1,j∥

2
2 +

∑
i,j,l

∥m(l)
i,j −m

(l)
i,j+1∥

2
2 (5)

In summary, the loss formulations for the segment selection
and convolutional attention mechanisms are as follows:

Lss = Lclip + λl2Ll2 + λidLid + λareaLss
area (6)

Lcan = Lclip + λl2Ll2 + λidLid + λareaLcan
area + λtvLtv (7)

Both the CORAL module and the latent editor are opti-
mized in an end-to-end fashion using the above losses.

4. Experiments
We evaluate CORAL mainly in the context of human

faces and demonstrate high-quality edits to photo-realistic
faces of size 1024 × 1024 generated by a StyleGAN2 pre-
trained on the FFHQ dataset [18]. We present additional
results on sketch and pixar domains as well as Cars dataset
[23] in Suppl. For both variants of CORAL in Section 3.2,
we compare edits from the global direction and latent map-
per in Section 3.4. All hyperparameter configurations for
(6) and (7) are provided in Suppl.

4.1. Training and inference
The loss functions corresponding to the two different

variants of CORAL are given by (6) and (7). Our ex-
periments were conducted on one NVIDIA Tesla P40 24
GB GPU with a batch size of 3. The latent editor and
CORAL modules are jointly optimized using an Adam op-
timizer [21] while keeping the StyleGAN2 fixed.

For a given text prompt t, a data point is given by a ran-
domly sampled standard normal vector z ∼ Z space, and
the maximum number of iterations is set to 20,000. How-
ever, in Table 1, we note that the training time required
for achieving the desired quality of edit increases as we
switch from segment-selection to a convolutional attention
network, the same as in going from global direction edits to
training a latent mapper.

Furthermore, during inference, we limit the automati-
cally selected regions for editing by setting m(l) ← m(l) ⊙
1{m(l) ≥ τ} where τ is typically 0.85. For applying desir-
able edits and reversing them (see Figure 6-G), we have a
multiplying factor α ∈ [−1.5, 1.5] for the edit direction ∆.

Out of the 18 convolutional blocks and the corresponding
w code per layer, our CORAL strategy and the latent edits,
as well as edits from our baselines, are only performed on
the first 13 layers, which are known to span coarse and fine
controls over diverse attributes [44] such as expressions,
age, style and color of facial hair, and eyes, among others.
Segment selection: Based on ideas from [31], a pre-trained
mixture model is used for performing unsupervised seman-
tic segmentation of the StyleGAN2 generated images into 5
classes per pixel. This model is then used to determine the
region of interest with CORAL based on segment selection.
In Figure 6-E, we also compare with CORAL for a weakly

12700



Curly hair and 
lipstick

-∆ +∆

Attn. Network (Global Dir.)
blue eyes mustache

Attn. Network (Mapper)
bald mustache

Seg. Selection (Global Dir.) Seg. Selection (Mapper)
purple hair happy short curly hair surprised

E. 5-segment network (“lipstick”)

A. B. C. D.

F. G.

happy
curly hair

m
akeup

34-segment network (“lipstick”)

angry

Seg. mask Seg. mask

H.

Figure 6 Each column in figures A to D demonstrates a text-driven edit on an input image along with the corresponding layers and regions selected. As
a limitation of segment selection, we observe over-selection of the region of edit in figure F, which is absent in E. Figure G compares edits along both the
positive and negative direction where we observe intuitive differences between removal and application of makeup, happy vs. unhappy and curly vs. smooth
hair. Finally, Figure H demonstrates the edit regions selected by CORAL across different layers of the StyleGAN2 for a complex prompt.

FEAT*13Input Ours FEAT*13Input Ours

makeup and afro hairstyle curly hair and lipstick

Figure 7 Comparison of CORAL with FEAT∗
13 for multi-faceted prompts.

supervised 34 class DatasetGAN [49] network, trained on
the features of StyleGAN2 network using few shot labels.
Attention network: At each convolutional block l ∈

[1, 2, . . . , 13] of the StyleGAN2, the attention network first
applies 32 different 1×1 convolutional filters upon the spa-
tial features f (l) to reduce the number of channels to 32 fol-
lowed by ReLU [27] activation, after which another 1 × 1
convolutional layer and sigmoid activation are applied to
obtain m(l). We set nl = 1/size[l] in (4), where size[l] is
given based on the height and width of f (l), for example if
the resolution is 32× 32, then nl = 1/32.

4.2. Evaluation

Our method is most closely related to StyleCLIP [34],
StyleMC [22] and FEAT [15]. For a comparison with
CORAL, we run the official implementation of the la-
tent mapper technique of StyleCLIP, as well as a re-
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Table 1 Average Clean-FID [33] and training time to desirable quality.
Text-prompt legend: T1) Happy; T2) Surprised; T3) Blue eyes; T4) Mo-
hawk hairstyle. Method legend: 1) SS Global; 2) SS Mapper; 3) AttnNet-
Global; 4) AttnNet-Mapper; 5) StyleCLIP; 6) StyleMC; 7) FEAT∗

Clean-FID (↓) Avg. TimeT1 T2 T3 T4 Avg.

C
O

R
A

L 1 4.23 4.42 6.73 6.05 5.35 15min
2 3.75 9.28 1.75 2.73 4.38 42min
3 2.22 2.26 3.08 7.20 3.69 1.2hr
4 1.85 6.38 1.38 5.29 3.73 2hr

ot
he

rs 5 6.98 18.14 5.40 22.50 13.26 1.5hr
6 2.93 25.12 22.15 11.30 15.38 20s
7 2.51 9.46 1.93 3.01 4.23 1.8hr

implementation of StyleMC3 which optimizes a single
global direction across multiple images, only for layers of
the StyleGAN2 until resolution 256× 256 (see [22]).

Without an official implementation of FEAT, we evalu-
ate our re-implementation of FEAT denoted by FEAT∗ with
l ∈ {7, 13}. We maintain equivalent settings in the design
of the latent mapper and attention network and only intend
to compare the single-layer FEAT-style blending with our
multi-layer feedforwarded blending (see Figure 3).

4.3. Results
Merits: In Figure 5, we observe that both the StyleCLIP
mapper method and StyleMC result in undesirable edits,
such as irrelevant edits to the background. StyleCLIP also
reduces the age in the first row and affects the neck region.
In the fourth row, we see that in addition to applying the
prompt surprised, it discards the white shirt. StyleMC af-
fects the first three rows’ complexion, facial expression, and
hair color. As also seen in [15], we find that for finer edits
(row 1), FEAT-style blending at layer 13 (FEAT∗

13) is prefer-
able as also with FEAT∗

7 for coarse edits (rows 2-4). We
find that blue eyes results in unwanted edits when blended
at l = 7, and so does mohawk hairstyle at l = 13.

CORAL, however (last four columns in Figure 5), only
affects the relevant regions of interest, which would be the
hair region for long curly hair and mohawk hairstyle, the
eyes and mouth for blue eyes as well as surprised. These
traits persist in Figure 1, and Figure 6-A to D wherein the
edits are incorporated such that the editing area is minimal
and is limited to only the relevant layers. CORAL learns
the layers and regions to edit automatically with no domain
knowledge or repeated trials. The edits are highly accurate.
For example, the prompt mustache does not also affect the
beard, as is apparent from the corresponding masks.

Under the minimality constraints given by (3) and (4),
we observe that for enabling finer edits such as blue eyes
and purple hair, only the latter higher resolution layers (typ-
ically l ≥ 8) are selected, whereas, for coarser structural ed-
its, the earlier smaller layers (typically l ≤ 8) are automati-
cally selected. We clearly see that when CORAL is trained
for complex multi-faceted prompts such as curly hair and

3as per Section 3.2 of their paper

lipstick (see Figure 7 and Figure 6-H), the hair edits come
from earlier layers whereas the lip edits come from last lay-
ers. Furthermore, for such prompts, we found that FEAT
blending fails to preserve realism by introducing noise arti-
facts (see the example for FEAT∗

13 under makeup and afro
hairstyle in Figure 7). This is also seen in Figure 5 for mo-
hawk using FEAT∗

13.
From Table 1, we see that while the Clean-FID [33] of all

our edits remains within acceptable bounds of the initially
generated distribution, the time required to train CORAL
to a desirable edit quality increases with the complexity of
the region, layer selector, and the latent editor combined,
from method 1 to 4. Segment-selection-based CORAL is
significantly faster to train than the attention network.

We also observe that, on average, segment selection has
a higher FID than attention network. Along similar lines,
global edits have a higher FID than latent mapper, except
for surprised, which we attribute to global edits predomi-
nantly affecting the eyes for this prompt, even for StyleMC,
unlike the mapper method which also opens up the mouth.
Limitations: The segment-selection-based approach trains
at a fraction of the time taken by its counterparts, as seen
in Table 1. However, the defined segments of a pre-trained
segmentation model can affect performance. For example,
in Figure 6-F, our semantic segmentation model combines
all the eye and mouth regions into a single semantic seg-
ment. As a result, the text prompt lipstick brightens the skin
tone and removes wrinkles from around the eyes. Alterna-
tively, in Figure 6-E, a different segmentation network with
dedicated classes for lips overcomes this issue.

We also note that the quality of the mustache is superior
in Figure 6-B compared to A. It turns out that unlike our
non-linear mapper which succeeds, the global edits result in
black coloration in the mustache region in many examples.
Ethical aspects: In line with current works, we benchmark
our approach using publicly available celebrity images [34].
Although our approach demonstrates superior edits on di-
verse faces, our approach still inherits biases present in
StyleGAN and CLIP models. Further, a generative model
(e.g., CORAL) could be misused to create fake informa-
tion.

5. Conclusion
CoralStyleCLIP leverages StyleGAN2 and CLIP mod-

els to co-optimize region and layer selection for performing
high-fidelity text-driven edits on photo-realistic generated
images. We demonstrate the efficacy of our generic multi-
layer feature blending strategy across varying complexities
of the latent editors and region selectors, addressing limi-
tations regarding manual intervention, training complexity,
and over- and under-selection of regions along the way. The
CORAL strategy can also enhance interactive editing expe-
rience by utilizing the predicted masks at each layer.

12702



References
[1] Yuval A., Or Patashnik, and Daniel Cohen-Or. Only a matter

of style: age transformation using a style-based regression
model. ACM Trans. Graph., 40(4):45:1–45:12, 2021.

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan: How to embed images into the stylegan latent
space? In ICCV, 2019.

[3] Rameen Abdal, Peihao Zhu, John Femiani, Niloy J. Mitra,
and Peter Wonka. Clip2stylegan: Unsupervised extraction
of stylegan edit directions. In SIGGRAPH. ACM, 2022.

[4] Rameen Abdal, Peihao Zhu, Niloy J. M., and Peter Wonka.
Styleflow: Attribute-conditioned exploration of stylegan-
generated images using conditional continuous normalizing
flows. ACM Trans. Graph., 40(3):21:1–21:21, 2021.

[5] Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli
Shechtman, Dani Lischinski, and Daniel Cohen-Or. Third
time’s the charm? image and video editing with stylegan3.
ECCVw, 2022.

[6] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In CVPR,
2022.

[7] Amit H. B., Rinon Gal, Yuval Alaluf, Ron Mokady, Yotam
Nitzan, Omer Tov, Or Patashnik, and Daniel Cohen-Or.
State-of-the-art in the architecture, methods and applications
of stylegan. Comp. Graph. Forum, 41(2):591–611, 2022.

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019.

[9] Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk.
Editing in style: Uncovering the local semantics of GANs.
CVPR, 2020.

[10] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kot-
sia, and Stefanos Zafeiriou. Arcface: Additive angular mar-
gin loss for deep face recognition. IEEE TPAMI, 2022.

[11] H. Dong, Simiao Yu, Chao Wu, and Y. Guo. Semantic image
synthesis via adversarial learning. ICCV, pages 5707–5715,
2017.

[12] Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans.
Graph., 41(4):141:1–141:13, 2022.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi M., Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron C., and Yoshua
Bengio. Generative adversarial nets. In NeurIPS, 2014.

[14] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable GAN
controls. In NeurIPS, 2020.

[15] Xianxu Hou, Linlin Shen, Or Patashnik, Daniel Cohen-Or,
and Hui Huang. FEAT: face editing with attention. CoRR,
abs/2202.02713, 2022.

[16] Omer Kafri, Or Patashnik, Yuval A., and Daniel Cohen-
Or. Stylefusion: Disentangling spatial segments in stylegan-
generated images. ACM Trans. Graph., Mar 2022.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018.

[18] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
IEEE TPAMI, 43(12):4217–4228, 2021.

[19] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020.

[20] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and
Youngjung Uh. Exploiting spatial dimensions of latent in
GAN for real-time image editing. In CVPR, 2021.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, ICLR, 2015.

[22] Umut Kocasari, Alara Dirik, Mert Tiftikci, and Pinar Ya-
nardag. Stylemc: Multi-channel based fast text-guided im-
age generation and manipulation. In WACV, 2022.

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
2013 IEEE International Conference on Computer Vision
Workshops, ICCV Workshops 2013, Sydney, Australia, De-
cember 1-8, 2013, pages 554–561. IEEE Computer Society,
2013.

[24] Seung H. L., Won Kyoung Roh, Wonmin Byeon, Sang Ho
Yoon, Chan Y. K., Jinkyu Kim, and Sangpil Kim. Sound-
guided semantic image manipulation. CVPR, 2022.

[25] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip
H. S. Torr. Manigan: Text-guided image manipulation. In
CVPR, 2020.

[26] Yahui Liu, Marco De Nadai, Deng Cai, Huayang Li, Xavier
Alameda-Pineda, N. Sebe, and Bruno Lepri. Describe
what to change: A text-guided unsupervised image-to-image
translation approach. ACMMM, 2020.

[27] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Johannes Fürnkranz
and Thorsten Joachims, editors, ICML, 2010.

[28] Seonghyeon Nam, Yunji Kim, and S. Kim. Text-adaptive
generative adversarial networks: Manipulating images with
natural language. In NeurIPS, 2018.

[29] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: towards photorealis-
tic image generation and editing with text-guided diffusion
models. In ICML, 2022.

[30] Weili Nie, Tero Karras, Animesh Garg, Shoubhik Debnath,
Anjul Patney, Ankit B. Patel, and Animashree Anandkumar.
Semi-supervised stylegan for disentanglement learning. In
ICML, 2020.

[31] Daniil Pakhomov, Sanchit Hira, Narayani Wagle, Kemar E.
Green, and Nassir Navab. Segmentation in style: Unsuper-
vised semantic image segmentation with stylegan and CLIP.
CoRR, abs/2107.12518, 2021.

[32] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-
Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-
tilayer selection for GAN inversion and editing. In CVPR,
2022.

[33] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in GAN evaluation.
In CVPR, 2022.

12703



[34] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In ICCV, 2021.

[35] Justin N. M. Pinkney and Chuan Li. clip2latent: Text driven
sampling of a pre-trained stylegan using denoising diffusion
and CLIP. BMVC, 2022.

[36] Alec Radford, Jong W. K., Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from nat-
ural language supervision. In ICML, 2021.

[37] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. CoRR, abs/2204.06125, 2022.

[38] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, 2021.

[39] S. Reed, Zeynep Akata, Xinchen Yan, L. Logeswaran, B.
Schiele, and H. Lee. Generative adversarial text to image
synthesis. In ICML, 2016.

[40] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: A stylegan encoder for image-to-image translation.
In CVPR, 2021.

[41] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020.

[42] Yujun Shen and Bolei Zhou. Closed-form factorization of
latent semantics in gans. In CVPR, 2021.

[43] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian
Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-
höfer, and Christian Theobalt. StyleRig: Rigging StyleGAN
for 3d control over portrait images. CVPR, 2020.

[44] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. In CVPR, 2021.

[45] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.
TediGAN: Text-guided diverse face image generation and
manipulation. CVPR, 2021.

[46] T. Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe
Gan, Xiaolei Huang, and X. He. AttnGAN: Fine-grained text
to image generation with attentional generative adversarial
networks. CVPR, 2018.

[47] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
GAN: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017.

[48] Han Zhang, T. Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N. Metaxas. Stack-
GAN++: Realistic image synthesis with stacked generative
adversarial networks. IEEE TPAMI, 41:1947–1962, 2019.

[49] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-
Francois Lafleche, Adela Barriuso, Antonio Torralba, and
Sanja Fidler. Datasetgan: Efficient labeled data factory with
minimal human effort. In CVPR, 2021.

[50] Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, Chris Tensmeyer,
Tong Yu, Changyou Chen, Jinhui Xu, and Tong Sun. Tigan:

Text-based interactive image generation and manipulation.
In AAAI, 2022.

12704


