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Figure 1. Novel Class Discovery for 3D point cloud semantic segmentation seeks to recognise novel classes by clustering unlabelled novel
points with similar semantic features and by exploiting only the knowledge of a set of labelled samples corresponding to the base classes.

Abstract

Novel class discovery (NCD) for semantic segmentation
is the task of learning a model that can segment unlabelled
(novel) classes using only the supervision from labelled
(base) classes. This problem has recently been pioneered
for 2D image data, but no work exists for 3D point cloud
data. In fact, the assumptions made for 2D are loosely
applicable to 3D in this case. This paper is presented to
advance the state of the art on point cloud data analysis
in four directions. Firstly, we address the new problem
of NCD for point cloud semantic segmentation. Secondly,
we show that the transposition of the only existing NCD
method for 2D semantic segmentation to 3D data is sub-
optimal. Thirdly, we present a new method for NCD based
on online clustering that exploits uncertainty quantification
to produce prototypes for pseudo-labelling the points of the
novel classes. Lastly, we introduce a new evaluation pro-
tocol to assess the performance of NCD for point cloud se-
mantic segmentation. We thoroughly evaluate our method
on SemanticKITTI and SemanticPOSS datasets, showing
that it can significantly outperform the baseline. Project
page: https://github.com/LuigiRiz/NOPS.

This project has received funding from the European Union’s Hori-
zon Europe research and innovation programme under grant agreement No
101058589. This work was also partially supported by the PRIN project
LEGO-AI (Prot. 2020TA3K9N), the EU ISFP PROTECTOR (101034216)
project and the EU H2020 MARVEL (957337) project and, it was carried
out in the Vision and Learning joint laboratory of FBK and UNITN.

1. Introduction

As humans, we are fairly skilled in organising new visual
knowledge (novelty) into homogeneous groups, even when
we do not know what we are observing. However, machines
cannot perform this task satisfactorily without our supervi-
sion. The challenge here is mainly in the formulation of
discriminative latent representations of the real world and
in the quantification of the uncertainty when the novelty is
observed [16,40,41]. The work of Han et al. [16] pioneered
the formulation of the Novel Class Discovery (NCD) prob-
lem by defining it as the task that aims to classify the sam-
ples of an unlabelled dataset into different classes, i.e. the
novel samples, by exploiting the knowledge of a set of la-
belled samples, i.e. the base samples. Note that the classes
in the labelled and unlabelled datasets are disjoint.

NCD has been explored in the 2D image domain for
classification [12, 16,41] and later for semantic segmenta-
tion [40]. In particular, Zhao et al. [40] presented the first
approach for NCD for 2D semantic segmentation. Two key
assumptions were made by the authors. Firstly, at most one
novel class is allowed in each image. Secondly, the new
class belongs to a foreground object that can be found via
saliency detection (e.g. a man on a bicycle, where the bi-
cycle is the novel class). Thanks to these assumptions, the
authors could pool the features of each image into a sin-
gle latent representation and cluster the representations of
the whole dataset to discover clusters of novel classes. We
argue that these two are important constraints that are not
applicable to generic 3D data, in particular to point clouds
captured with LiDAR sensors in real-world city-scale sce-
narios. One point cloud can contain more than one novel
class, and the saliency for 3D data cannot be leveraged in
the same way as that for 2D data. Although they are both
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related to the attraction of human fixations, 3D saliency
is more related to the regional importance of 3D surfaces
rather than the foreground/background distinction [30]. Our
motivation in exploring NCD for the 3D setting is mainly
driven by addressing these shortcomings.

In this paper, we explore the new problem of NCD for
3D point cloud semantic segmentation (see Fig. 1). Given
a partially human-annotated dataset, we jointly learn base
and novel semantic classes by clustering unlabelled points
with similar semantic features. We adapt the method of
Zhao et al. [40] (Entropy-based Uncertainty Modeling and
Self-training - EUMS) for point cloud data and use it as
our baseline. We go beyond their formulation and, inspired
by [5], we integrate batch-level (online) clustering in our
method and update prototypes during training in order to
make clustering computationally tractable. Cluster assign-
ments are then used as training pseudo-labels. We also ex-
ploit over-clustering to achieve a higher clustering accuracy
as in EUMS. Because point clouds contain multiple seman-
tic classes, we cannot guarantee that all the classes appear
in the point clouds within each batch, some will be missing.
Therefore, we design a queuing strategy to store important
features over training time, which will be used for pseudo-
labelling in the case of missing classes. We further intro-
duce a strategy for exploiting the pseudo-label uncertainty
to promote the creation of reliable prototypes that we then
exploit to produce higher-quality pseudo-labels. Lastly, we
produce two augmented views of the same point cloud and
impose pseudo-label consistency amongst them. We evalu-
ate our approach on SemanticKITTI [3, 4, 13] and Seman-
ticPOSS [24], introducing an evaluation protocol for NCD
and point cloud segmentation that can be adopted in future
works. We empirically show that our approach largely out-
performs our baseline in both datasets. We also perform an
extensive ablation study to demonstrate the importance of
the different components of our method.

To summarise, our contributions are:

* We address the new problem of NCD for 3D semantic
segmentation;

* We show that the transposition of the only existing
NCD method for 2D semantic segmentation [40] to 3D
data is suboptimal;

* We present a new method for NCD based on online
clustering and uncertainty estimation, which we name
it NOPS (NOvel Point Segmentation);

* We introduce a new evaluation protocol to assess the
performance of NCD for 3D semantic segmentation.

2. Related work

Point cloud semantic segmentation can be performed at
the point level [26], on range view maps [27], and by vox-
elising the input points [43]. Point-level networks pro-

cess the input without intermediate representations. Ex-
amples of these include PointNet [25], PointNet++ [26],
RandLLA-Net [17], and KPConv [33]. PointNet [25] and
PointNet++ [26] are based on a series of multi-layer percep-
tron where PointNet++ introduces global and local feature
aggregation at multiple scales. RandLA-Net [17] uses ran-
dom sampling, attentive pooling, and local spatial encod-
ing. KPConv [33] employs flexible and deformable convo-
lutions in a continuous input space. Point-level networks are
computationally inefficient when large-scale point clouds
are processed. Range view architectures [23] and voxel-
based approaches [10] are more computationally efficient
than their point-level counterpart. The former requires
projecting the input points on a 2D dense map, process-
ing input maps with 2D convolutional filters [27], and re-
projecting predictions to the initial 3D space. SqueezeSeg
networks [35,36], 3D-MiniNet [1], RangeNet++ [23], and
PolarNet [39] are examples of this category. Although they
are more efficient, these approaches tend to lose informa-
tion during the projection and re-projection phase. The lat-
ter includes 3D quantisation-based approaches that discre-
tise the input points into a 3D voxel grid and employ 3D
convolutions [43] or 3D sparse convolutions [ 10, 15] to pre-
dict per-voxel classes. VoxelNet [43], SparseConv [ 14, 15],
MinkowskiNet [10], Cylinder3D [44], and (AF)2-S3Net [9]
are architectures belonging to this category. These ap-
proaches tackle point cloud segmentation in the supervised
settings, whereas we tackle novel class discovery with la-
belled base classes and unlabelled novel classes.

Novel class discovery (NCD) is explored for 2D classifi-
cation [12, 16, 19, 20, 28, 34, 37,41, 42] and 2D segmen-
tation [40]. NCD is more complex than standard semi-
supervised learning [31, 32, 38]. In semi-supervised learn-
ing, labelled and unlabelled samples belong to the same
classes, while in NCD, novel and base samples belong to
disjoint classes. Han et al. [16] pioneered the NCD problem
for 2D image classification. A classification model is pre-
trained on a set of base classes and used as feature extractor
for the novel classes. They then train a classifier for the
novel classes using the pseudo-labels produced by the pre-
trained model. Zhong et al. [41] introduced neighbourhood
contrastive learning to generate discriminative representa-
tions for clustering. They retrieve and aggregate pseudo-
positive pairs with contrastive learning, encouraging the
model to learn more discriminative representations. Hard
negatives are obtained by mixing labelled and unlabelled
samples in the feature space. UNO [12] unifies the two pre-
vious works by using a unique classification loss function
for both base and novel classes, where pseudo-labels are
processed together with ground-truth labels. NCD without
Forgetting [20] and FRoST [28] further extend NCD to the
incremental learning setting. EUMS [40] is the only ap-
proach analysing the NCD problem for semantic segmen-
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Figure 2. Overview of NOPS. We random augment the input point cloud twice and extract point-level features F with the shared model f¢.
F are used to obtain pseudo-labels in the online pseudo-labelling. We forward F to a novel f, and a base f; segmentation layer to output
the novel and base predictions, respectively. We optimise our network by minimising a global objective function based on cross entropy.

tation. Unlike image classification, the model has to clas-
sify each pixel and handle multiple classes in each image.
EUMS consists of a multi-stage pipeline using a saliency
model to cluster the latent representations of novel classes
to produce pseudo-labels. Moreover, entropy-based uncer-
tainty and self-training are used to overcome noisy pseudo-
labels while improving the model performance on the novel
classes. In this work, we tackle the problem of NCD in 3D
point cloud semantic segmentation. Unlike previous works,
our problem inherits the challenges from the fields of 2D
semantic segmentation [7, 8] and 3D point cloud segmenta-
tion [10,23,29]. From 2D semantic segmentation, it inher-
its the additional challenges of multiple novel classes in the
same image and the strong class unbalance. From 3D point
cloud segmentation, we inherit the sparsity of input data,
the different density of point cloud regions and the inabil-
ity to identify foreground and background. The latter are
not present in 2D segmentation [40]. Unlike [40] that use
K-Means, we formulate clustering as an optimal transport
problem to avoid degenerate solutions (i.e. all data points
may be assigned to the same label and learn a constant rep-
resentation) [2,22]. Lastly, related to EUMS, REAL is pro-
posed for open-world 3D semantic segmentation [6], where
both known and unknown points have to be segmented. Un-
like NOPS, all the unknown points belong to a single class
and it is the task of a human annotator to separately label
the novel classes. Then, these labels are used to update the
base model by incrementally learning the novel classes.

3. Proposed approach
3.1. Overview

Given an input point cloud, we produce two augmented
views that are processed with the same deep neural net-
work to extract point-level features. These features are
used to obtain pseudo-labels in the online pseudo-labelling
step through the Sinkhorn-Knopp algorithm [11] (Sec. 3.3).
Concurrently, we process the same features with the last
network layers to segment novel and base classes. These
features are stored in the class-balanced queue to miti-
gate the problem of batches with missing classes (Sec. 3.4).
We exploit pseudo-label values (class probabilities) to filter
out uncertain points, thus adding to the queue only high-
quality points (Sec. 3.5). Lastly, we train our network by
minimising the optimisation objective function through a
swapped prediction task based on the computed pseudo-
labels (Sec. 3.6). Fig. 2 shows the block diagram of NOPS.

3.2. Problem formulation

Let X = {X'} be a dataset of 3D point clouds captured in
different scenes. X is a set composed of a base set A} and
a novel set X,,, s.t. X = A}, U X,,. The semantic categories
that can be present in our point clouds are C = Cp U Cp,,
where Cy, is the set of base classes and C,, is the set of novel
classes, s.t. C;NC,, = (). Each X’ € X is composed of a finite
but unknown number of 3D points X = {(x,¢)}, where
x € R3 is the coordinate of the a point and c is its semantic
class. We know the class of the point (x, ¢), s.t. x € X}, and
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¢ € Cp, but we do not know the class of the point (x, ¢),
s.t. z € X, and ¢ € C,. No points in X, belong to one of
the base classes Cp. As in [16,40,41], we assume that the
number of classes to discover is known, i.e. |C,,| = C,,. We
aim to design a computational approach that trains a deep
neural network fg that can segment all the points of a given
point cloud, thus learning to jointly segment base classes Cp,
and novel classes C,,. © are the weights of our deep neural
network. fg is composed of two heads, fo = feo{fy, fn},
where f; is the segmentation head for the base classes, f,, is
the segmentation head for the novel classes, f; is the feature
extractor network and o is the composition operator (Fig. 2).

3.3. Online pseudo-labelling

We formulate pseudo-labelling as the assignment of
novel points to the class-prototypes learnt during train-
ing [5]. Let P € RP*” be the class prototypes, where D
is the size of the output features from f¢ and p is the num-
ber of prototypes. Let Z € RP*™ be the normalised out-
put features extracted from f¢, where m is the number of
points of the point cloud. m it is not known a priori and it
can differ across point clouds. We aim to find the assign-
ment Q € RP*™ s.t. all the points in the batch are equally
partitioned across the p prototypes. This equipartition en-
sures that the feature representations of the points belonging
to different novel classes are well-separated, thus prevent-
ing the case in which the novel class feature representations
collapse into a unique solution. Caron et al. [5] employs an
arbitrary large number of prototypes p to effectively organ-
ise the feature space produced by f¢. They discard P after
training. In contrast, we learn exactly p = C,, class proto-
types and propose to use P as the weights for our new class
segmentation head f,,, which outputs the C,, logits for the
new classes. In order to optimise the assignment Q, we max-
imise the similarity between the features of the new points
and the learned prototypes as

TpT *
max Tr(Q'P ' Z)+eH(Q) — Q" (1)

where H is the entropy function, € is the parameter that de-
termines the smoothness of the assignment and Q* is our
sought solution. Asano et al. [2] enforce the equipartioning
constraint by requiring Q to belong to a transportation poly-
tope and perform this optimisation on the whole dataset at
once (offline). This operation with point cloud data is com-
putationally impractical. Therefore, we formulate the trans-
portation polytope such that the optimisation is performed
online, which consist of processing only the points within
the batch being processed

1 1
= chxm 1m:71 T]- :*1m )
Q {QE N o lonle, = }
(2)

where 1, represents a vector of ones of dimension x. These
constraints ensure that each class prototype is selected on
average at least m/C), times in each batch. The solution Q*
can take the form of a normalised exponential matrix

T

Q" = diag(a) exp (P€Z) diag(s3), €)

where a and 8 are renormalization vectors that are com-
puted iteratively with the Sinkhorn-Knopp algorithm [11,

]. We then transpose the optimised soft assignment Q* €
Rinxm to obtain the soft pseudo-labels for each of the m
novel points being processed within each batch.

We empirically found that training can be more effective

if pseudo-labels are smoother in the first training epochs and
peaked in the last training epochs. Therefore, we introduce
a linear decay of e during training.
Multi-headed segmentation: A single segmentation head
may converge to a suboptimal feature space, thus producing
suboptimal prototype solutions. To further improve the seg-
mentation quality, we use multiple novel class segmentation
heads to optimise fg based on different training solutions.
Different solutions increase the likelihood of producing a
diverse partitioning of the feature space as they regularise
with each other (they share the same backbone) [18]. In
practise, we concatenate the logits of the base class segmen-
tation head with the outputs of each novel class segmen-
tation head and we separately evaluate their loss for each
novel class segmentation head at training time.

We task our network to over-cluster novel points, using
segmentation heads that output o - C, logits, where o is the
over-clustering factor. Previous studies empirically showed
that this is beneficial to learn more informative features [5,

, 18,22]. We observed the same and concur that over-
clustering can be useful for increasing expressivity of the
feature representations. The over-clustering heads are then
discarded at inference time.

3.4. Class-balanced queuing

Soft pseudo-labelling described in Sec. 3.3 produces an
equipartite matching between the novel points and the class
centroids. However, it is highly likely that batches are sam-
pled with point clouds containing novel classes with differ-
ent cardinalities when dealing with 3D data. It is also likely
that some scenes may contain only a subset of the novel
classes. Therefore, enforcing the equipartitioning constraint
in each batch of the dataset could affect the learning of less-
frequent (long-tail) classes. As a solution, we introduce a
queue Z, containing a randomly extracted portion of the
features of the novel points from the previous iterations.
We use these additional data to mitigate the potential class
imbalance that may occur during training. In practise, we
compute Z < Z @ Z4, where @ is the concatenation op-
erator, and execute the Sinkhorn-Knopp algorithm on this
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augmented version of Z. Then, we retain only the pseudo-
labels for the first m columns of Q*.

3.5. Uncertainty-aware training and queuing

We propose to carefully select novel points for training
fo with fewer but more reliable pseudo-labels and to build
a more effective queue Z,. We perform this selection by
applying a threshold to the class probabilities of the novel
class pseudo-labels. We found that seeking a fixed thresh-
old for all the novel classes, that is also compatible with
the variations of the class probabilities during training, is
impractical. Therefore, we employ an adaptive threshold
based on the class probabilities within each batch.

Our selection strategy operates as follows. Let 7. be the
adaptive threshold for the points of the novel class ¢ € C,.
Firstly, we extract the novel points that have the greatest
class probability for the class c. Secondly, we compute 7
as the p-th percentile of the class probabilities of these novel
points. Lastly, we retain the novel points of class ¢ whose
class probability is above the threshold 7.. We define this
selection strategy as the function

¢ (Fny V) X p = (Fn), 4)

where F, is the set of feature vectors extracted from f¢ and
Y, is the set of class probabilities predicted by the network
for these points. F,, are both processed by the Sinkhorn-
Knopp algorithm to generate our pseudo-labels and added
to Z4 to make it more effective.

3.6. Optimisation objective

We optimise fo by using the weighted Cross Entropy
objective based on the labels ), of the base samples and
the pseudo-labels Y, of the novel samples. We formulate a
swapped prediction task based on these pseudo-labels [5].
Secifically, we begin by generating two different augmen-
tations of X’ that we define as X’ and X”'. We use the
known one-hot labels for ), and the predicted soft pseudo-
labels for 3}” We predict the novel pseudo-labels :)77’1 and
V! of the respective point clouds X’ and X' with our ap-
proach. Then, we enforce prediction consistency between
the swapped pseudo-labels of the two augmentations as

LX) =LV, V") +L"Y), (5)

where )’ = J%UJZ’L (same for V"), Y = )}{)UJ},’L (same for
)"y and £ is the weighted Cross Entropy loss. We use sepa-
rate segmentation heads for base classes and novel classes.
The weights of the loss for the base classes are computed
based on their occurrence frequency in the training set. The
weights of the loss for the novel classes are all set equally
as their occurrence frequency in the dataset is unknown.

4. Adapting NCD for 2D images to 3D

Another contribution of this work is to adapt the method
proposed by Zhao et al. [40] for NCD for 2D semantic seg-
mentation (EUMS) to 3D data. Our empirical evaluation
(see Sec. 5) shows that the transposition of EUMS to the
3D domain has some limitations. In particular, as described
in Sec. 1, EUMS uses two assumptions: I) the novel classes
belong to the foreground and II) each image can contain
at most one novel class. This allows EUMS to leverage
a saliency detection model to produce a foreground mask
and a segmentation model pre-trained on the base classes to
determine which portion of the image is background. The
portion of the image that belongs to both the foreground
mask and the background mask is where features are then
pooled. EUMS computes a feature representation for each
image by average pooling the features of the pixels belong-
ing the unknown portion. The feature representations of all
the images in the dataset are clustered with K-Means by us-
ing the number of classes to discover as the target number
of clusters. EUMS shows that overclustering and entropy-
based modelling can be exploited to improve the results.
The affiliation of a point to its cluster is used to produce hard
pseudo-labels that are in turn used along with the ground-
truth labels to fine-tune the pre-trained model.

With 3D point clouds, there is no concept of foreground
and background (in contrast with I). Our adaptation is de-
signed to discover the classes of all the unlabelled points (in
contrast with II). Therefore, given the unlabelled points of
each point cloud, we randomly extract a subset of these by
setting a ratio (e.g. 30%) with upper bound (e.g. 1K) on the
number of points to select. We compute and collect their
features for all the point clouds in the dataset and apply K-
Means on the whole set of features. Note that this clustering
step is computationally expensive, and we had to use High
Performance Computing to execute it. The subsampling of
the points was necessary to fit the data in the RAM (see
Sec. 5 for a detailed analysis). Once the cluster prototypes
are computed, we produce the hard pseudo-labels. To enrich
the set of pseudo-labels, we propagate the pseudo-label of
each point to its nearest neighbour in the coordinate space.
This allows us to expand the subset of pseudo-labelled ran-
domly selected points. We also implement the other steps
of overclustering and entropy-based modelling to boost the
results. Lastly, we fine-tune our model with these pseudo-
labels. We name our transposition of EUMS as EUMS' and
report its block diagram in the Supplementary Material.

S. Experimental results
5.1. Experimental setup

Datasets. We evaluate our approach on SemanticKITTI [3,
,13] and SemanticPOSS [24]. SemanticKITTI [4] consists
of 43,552 point cloud acquisitions with point-level annota-
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Table 1. SemanticKITTI splits, is defined as KITTI-n’, where n is
the number of novel classes and i is the split index.

Split Novel Classes

KITTI-5° building, road, sidewalk, terrain, vegetation
KITTI-5'  car, fence, other-ground, parking, trunk
KITTI-52  motorcycle, other-vehicle, pole, traffic-sign, truck

KITTI-4®  bicycle, bicyclist, motorcyclist, person

Table 2. SemanticPOSS splits, defined as POSS-n’, where n is the
number of novel classes and 7 is the split index.

Split Novel Classes

POSS-4°  building, car, ground, plants
POSS-3'  bike, fence, person

POSS-32  pole, traffic-sign, trunk
POSS-33  cone-stone, rider, trashcan

tions of 19 semantic classes. Based on the official bench-
mark guidelines [4], we use sequence 08 for validation and
the other sequences for training. SemanticPOSS [24] con-
sists of 2,988 real-world point cloud acquisitions with point-
level annotations of 13 semantic classes. Based on the of-
ficial benchmark guidelines [24], we use sequence 03 for
validation and the other sequences for training.
Experimental protocol for 3D NCD. Similarly to what
proposed by [40] in the 2D domain, we create different
splits of each dataset to validate the NCD performance.
We create four splits for SemanticKITTI and Semantic-
POSS. We refer to these splits as SemanticKITTI-n’ and
SemanticPOSS-n‘, where 7 indexes the split. In each set,
the novel classes and the base classes correspond to unla-
belled and labelled points, respectively. Tabs. 1 & 2 detail
the splits of our datasets. These splits are selected based
on their class distribution in the dataset and on the semantic
relationship between novel and base classes, e.g. in KITTI-
43 the base class motorcycle can be helpful to discover the
novel class motorcyclist. We report additional details about
the selection process in the Supplementary Material.

We quantify the performance by using the mean Inter-
section over Union (mlIoU), which is defined as the average
IoU across the considered classes [4]. We provide separate
mloU values for the base and novel classes. We also re-
port the overall mloU computed across all the classes in the
dataset for completeness.

Implementation Details. We implement our network
based on a MinkowskiUNet-34C network [10]. Point-level
features are extracted from the penultimate layer. The seg-
mentation heads are implemented as linear layers, produc-
ing output logits for each point in the batched point clouds.
We train our network for 10 epochs. We use the SGD opti-
mizer, with momentum 0.9 and weight decay 0.0001. Our
learning rate scheduler consists of linear warm-up and co-

sine annealing, with [7,,,,, = 1072 and Ir,,;,, = 107°. We
train with batch size equal to 4. We employ 5 segmenta-
tion heads, that are used in synergy with an equal number
of over-clustering heads, with o = 3. In ¢, we set p = 0.5
for SemanticKITTI-n? and p = 0.3 for SemanticPOSS-n".
We adapted the implementation of the Sinkhorn-Knopp al-
gorithm [ 1] from the code provided by [5], with the intro-
duction of the queue and an in-place normalisation steps.
Similarly to [5], we set ngsi_iters = 3, While we adopt a
linear decay for €, with €44/t = 0.3, €cng = 0.05.

5.2. Quantitative analysis

Segmentation quality. Tabs. 3 & 4 report the quantitative
results on SemanticPOSS and SemanticKITTI, respectively.
We report the Full supervision setting as our upper bound.

On SemanticPOSS, we outperform EUMST on three out
of four splits with an improvement of 18.3 mloU on POSS-
4% 9.0 mIoU on POSS-3! and 0.6 on POSS-32. In these
splits, NOPS shows a large improvement on all the novel
classes, with the exception of the class fence in POSS-31
and traffic-sign in POSS-33. Differently, we deem the lower
performance in POSS-32 is due to the difficulty and scarce
presence of these novel classes. The advantage of EUMS
is the clustering on the whole dataset that enables a com-
plete visibility of all the novel classes. On average, NOPS
achieves 21.40 mIoU, improving over EUMS of 6.5 mIoU.

On SemanticKITTI, we outperform EUMST on all the
four splits, improving by 12.6 mloU on KITTI-5°, 1.2
mloU on KITTI-5', 4.2mloU on KITTI-5% and 5.3 mloU
on KITTI-4%. NOPS outperforms EUMS' by a large mar-
gin on the majority of the novel classes. Exceptions are
the class sidewalk in KITTI-5°, car in KITTI-51, motorcy-
cle in KITTI-52 and motorcyclist in KITTI-43. On average,
NOPS achieves 22.84 mIoU, improving over EUMS' of 5.8
mloU. Interestingly, NOPS outperforms also the supervised
upper bound on the class trunk in KITTI-5!.
Computational time. NOPS outperforms EUMST in terms
of computational time. Firstly, EUMS requires a pre-
training step and a fine-tuning step, i.e. 30 training epochs
in total. Then, EUMS requires a large amount of memory
(up to 200 GB memory for KITTI-5°) to store the data re-
quired for clustering, taking several hours (50 hrs) to com-
plete the training procedure. Differently, NOPS achieves
superior performance with 10 training epochs, by using less
memory (10 GB max) and a lower computational time (up
to 25 hrs for KITTI-5%). We run these tests using one GPU
Tesla A40-48GB.

5.3. Qualitative analysis

Fig. 3 shows some segmentation results of NOPS and
EUMST on SemanticPOSS and SemaniticKITTI. We can
observe that the predictions of the base classes in the two
datasets are correct for both the models, with just minor er-
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Table 3. Novel class discovery results on SemanticPOSS. NOPS outperforms EUMS' on three out of four splits. Full supervision: model
trained with labels for base and novel classes. EUMS': baseline described in Sec. 4. Highlighted values are the novel classes in each split.

i o o S & & o & » W R & v & mloU

Split ‘ Model ‘ S < & & o Qge & Q\‘§ Q ‘\b Ry 6‘3 & Novel Base All
‘ Full supervision ‘ 4320 71.30 33.00 32.50 44.60 78.50 61.80 73.90 3090 5470 26.70 11.00 19.30 ‘ - - 44.72
POSS-40 EUMST [40] 25.67 3.98 0.56 16.44 2940 36.76 43.84 2846 13.13 26.75 18.18 3.34 1691 | 17.44 2152 20.26
NOPS (Ours) 3547 3035 124 1352 2413 69.14 4470 42.07 19.19 47.65 24.44 8.17 21.82 | 3570 26.57 29.38
POSS-31 EUMST [40] 15.17 6798 28.02 2398 11.88 75.07 3598 7446 2691 4856 26.00 560 23.05 | 21.01 3996 3559
NOPS (Ours) 2935 71.35 2870 1221 394 7824 56.78 7421 1829 38.88 2331 13.74 23.51 | 30.02 3824 36.35
POSS.-32 EUMST [40] 40.14 6945 27.67 13.50 3486 76.03 54.66 7559 527 3922 7.79 8.52 11.85 | 831 4396 35.74
NOPS (Ours) 37.16 71.81 29.74 14.64 2838 77.53 52.09 73.00 11.51 47.11 0.54 1020 14.79 | 895 44.17 36.04
POSS-33 EUMST [40] 41.17 70.68 28.08 434 3827 76.66 3829 7535 2576 3434 2831 0.36 2440 | 13.01 4470 37.38
NOPS (Ours) 38.55 7036 3091 0.00 29.38 7650 5598 71.84 17.03 31.87 26.15 095 2257 | 1094 4393 36.32
Ave | EUMSTL0] | 1494 3754 3224
€ | NOPS (Ours) 21.40 3823 34.52

Table 4. Novel class discovery results on SemanticKITTI. NOPS outperforms EUMS' on all four splits. Full supervision: model trained
with annotations for base and novel classes. EUMS: baseline described in Sec. 4. Highlighted values are the novel classes in each split.

. A O < & v & 5 A N o < > & > & & & X mloU
WO X3 > O & R 5 N & < Q) S <

Split ‘Model ¥ $ T ¢ & &'Q & & & & & ¢ é.&z & & & & | Novel Base All
‘Full supervision‘ 6.30 39.50 85.40 90.00 23.20 20.30 5.70 3.90 18.00 28.90 31.00 40.60 90.90 74.60 62.10 20.50 62.90 46.20 83.90‘ - - 4389
KITTI5 EUMST [40] 5.28 39.96 15.77 79.20 9.03 16.89 2.52 0.07 11.39 1440 12.67 29.17 42.58 26.10 0.05 10.30 47.37 37.92 38.35|24.57 21.08 23.11
2" NoPS (Ours) 5.59 47.76 52.68 82.60 13.76 25.55 136 1.66 14.52 19.80 25.86 32.12 56.74 8.08 23.84 14.28 49.41 36.18 44.17 | 37.10 24.70 29.62
KITTL5! EUMST [40] 7.53 4241 7997 76.77 8.62 19.58 1.39 0.57 12.03 14.14 13.95 40.74 86.32 66.45 56.29 11.97 44.79 20.94 72.40|24.21 37.06 35.62
2 | NOPS (Ours) 7.36 51.23 84.53 50.87 7.27 2893 1.76 0.00 22.20 19.39 30.42 37.61 90.07 72.18 60.75 16.78 57.34 49.25 85.12|25.36 43.09 40.69
KITTI-5? EUMST [40] 8.26 50.78 82.98 88.05 17.88 2.75 232 0.17 3.16 2540 2498 20.20 88.30 71.04 57.85 8.63 27.16 38.36 76.95|12.38 42.22 36.59
NOPS (Ours) 6.72 49.24 86.36 90.79 23.68 2.69 0.58 1.87 15.46 29.48 27.92 36.39 90.26 73.39 61.21 17.83 10.32 46.16 84.29|16.54 44.80 39.72
KITTI-43 EUMST [40] 395 247 80.10 87.21 16.81 14.02 1498 0.31 14.13 20.77 6.80 37.59 86.79 66.50 55.26 16.20 40.62 38.37 76.15| 7.05 43.39 35.74
NOPS (Ours) 2.32 27.83 86.04 89.89 23.06 24.47 292 3.06 18.19 30.09 16.32 39.90 90.65 73.51 61.04 17.40 49.76 44.01 83.18|12.35 48.95 41.24
Av EUMST [40] 17.05 35.94 32.76
& | NOPS (Ours) 22.84 40.38 37.73

rors at the edges of the objects. NOPS shows better segmen-
tation capabilities also when dealing with the novel classes,
being able to properly segment the correct class for the un-
known objects. On the larger objects, such as buildings in
the scenes, some mixing of labels can be observed. Differ-
ently, EUMS nearly fails in correctly recognising the novel
objects, resulting in the inclusion of different classes (either
novel or base) into the same object, e.g. the facade of the
building in POSS-31.

6. Ablation studies

We study the main components of NOPS and its be-
haviour when varying its parameters on SemanticPOSS.
Method components. Fig. 4 shows the performance on
novel and base classes of seven versions of NOPS. The
first three versions use the pre-trained model on the base
classes, while the last four versions use the model trained
from scratch. Each version is defined as follows:

* P: we use a pre-trained model, and we remove Z,, 7,

and the over-clustering heads.

* OC: P + over-clustering heads.

* Q: OC+ Z,, i.e. our queue without class-balancing.

¢ NP: Q without pre-training.

* NP+: NP + our selection function ¢ on the queue.

¢ NP++: NP + 7. on the features used to derive the
pseudo-labels.

* Full: NOPS with all the components activated.

Pre-trained approaches generally underperform their
trained-from-scratch counterparts on the novel classes. This
is visible in the low performance of P, OC and Q. We
have a significant improvement when pre-training is not
used (NP), i.e. we achieve 20.26 mIoU. We can see that the
queue both with and without pre-training is helpful. When
we add the feature selection for the queue and for the train-
ing, i.e. NP+ and NP++, we have improvements, i.e. 20.63
mloU and 20.90 mloU, respectively. The best performance
is achieved with Full. Although we can observe variations
on the performance of the base classes, their information is
retained by the network when we discover the novel ones.

Parameter analysis. We study the behaviour of the per-
centile p in our selection function ¢, when we apply it to
the features both for pseudo-labelling and for the class-
balanced queue Z,. Tab. 5 reports the results on each split of
SemanticPOSS. For each split, we can observe that the per-
formance depends on the number of points and difficulty of
the novel classes. In POSS—4° and POSS-31, lower values
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EUMS' [40] base

EUMS' [40] novel

motorcyclist
bicycle I person B road
Hl motorcycle I Dbicyclist parking
B truck

o
Hl sidewalk
I other-ground

building

terrain
I vegetation pole
N trunk I traffic-sign

Figure 3. Qualitative comparisons on (top) SemanticPOSS and (bottom) SemanticKITTI. We report results on both base and novel classes.
On novel classes, EUMS fails in recognising novel objects with mixed and cluttered predictions, e.g. the facade of building in POSS-3'.
NOPS shows superior segmentation performance on all the novel classes.

Novel classes Base classes

40.20
20.0

38.61
3830 38.24 38.23

P oc Q Np NPy Nby, Fuy P Oc Q Np NPy Npy, Fup

Figure 4. Ablation study with different components and initialisa-
tion strategies on SemanticPOSS. In P, OC and Q, we initialise the
model after base pre-training, and use different configurations of
the over-clustering heads and of our queue balancing. In NP NP+,
NP++ and Full, we begin with Q, we avoid pre-training, and we
use ¢ and 7. incrementally. See Sec. 6 for definition of methods.

of p result in less severe selection. We believe this is related
to the class distribution within these splits. This is in line
with what observed in Tab. 3. In POSS—32 and POSS-33,
we notice a different behaviour, a higher value of p pro-
vides better results. We relate this to the difficulty of the
novel classes in these splits whose noisy pseudo-labels can
benefit from a more rigorous selection of the features.

7. Conclusions

We explored the new problem of novel class discovery
for 3D point cloud segmentation. Firstly, we transposed
the only NCD method for 2D semantic segmentation to 3D
point cloud data, and experimentally found that it has sev-
eral limitations. We discussed that extending 2D NCD ap-
proaches to 3D data (point clouds) is not trivial because the
assumptions made for 2D data are not easily transferable to
3D. Secondly, we presented NOPS, to tackle NCD for point

Table 5. Ablation study showing how different values of p affect
the performance on SemanticPOSS. The lower p is, the less severe
the selection of the features, resulting in better performances for
POSS-4°. Differently, POSS-3® benefits from an higher value of
p, which leads to a more vigorous filtering of the features. POSS-
3" and POSS-3? show the best performances with p = 0.5

Percentile p
0.1 0.3 0.5 0.7 0.9

POSS-4° 30.81 3570 28.77 30.93 26.69
POSS-3' 2833 30.02 3043 2332 1891
POSS-32  8.07 895 1032 1025 7.76
POSS-3% 1055 1094 11.69 1438 13.42

Avg. 19.44 2140 20.30 19.72 16.70

Split

cloud segmentation by using online clustering and exploit-
ing uncertainty quantification to produce pseudo-labels for
the novel points. Lastly, we introduced a new evaluation
protocol to asses the performance of NCD for point cloud
segmentation. Experiments on two different segmentation
dataset showed that NOPS outperforms the compared base-
lines by a large margin. Future research directions could
investigate the extension of our method when base annota-
tions are fewer and/or weakly labelled.

Limitations NOPS limitations include the prior knowledge
on the number of novel classes C), to discover. This could
be a limitation when C,, is not known a-priori and novel
classes may appear in an incremental manner. We believe
that a solution may be to learn novel classes incrementally.
Another limitation is the loss we use to handle class un-
balancing. More recent techniques to handle this drawback
could be further explored.
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