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Abstract

Weakly-supervised Temporal Action Localization
(WTAL) attempts to localize the actions in untrimmed
videos using only video-level supervision. Most recent
works approach WTAL from a localization-by-classification
perspective where these methods try to classify each video
frame followed by a manually-designed post-processing
pipeline to aggregate these per-frame action predictions
into action snippets. Due to this perspective, the model
lacks any explicit understanding of action boundaries and
tends to focus only on the most discriminative parts of
the video resulting in incomplete action localization. To
address this, we present PivoTAL, Prior-driven Supervision
for Weakly-supervised Temporal Action Localization,
to approach WTAL from a localization-by-localization
perspective by learning to localize the action snippets
directly. To this end, PivoTAL leverages the underlying
spatio-temporal regularities in videos in the form of
action-specific scene prior, action snippet generation prior,
and learnable Gaussian prior to supervise the localization-
based training. PivoTAL shows significant improvement
(of at least 3% avg mAP) over all existing methods on the
benchmark datasets, THUMOS-14 and ActivitNet-vi.3.

1. Introduction

Temporal action localization (TAL) [5,24,43,46,47,56]
refers to the task of predicting where and what category
of action happens in an arbitrarily long untrimmed video.
While TAL is crucial in a wide variety of applications rang-
ing from sports, robotics, and safety, it is challenging as it
requires the model to develop a strong temporal and spatial
understanding of the video scene and events for effective lo-
calization. Furthermore, fully-supervised TAL relies on the
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Figure 1. Left: Green denotes ground truth action snippets, Purple
denotes true positive action snippets, and denotes false pos-
itive action snippets. We observe that PivoTAL significantly out-
performs Base WTAL by detecting all the ground-truth instances
correctly. Right: Improvement of PivoTAL over the previous state-
of-the-art on THUMOS’ 14 at different IoU thresholds.

availability of expensive dense annotations in terms of the
start and end of each action snippet in the training videos.

Weakly-supervised Temporal Action Localization
(WTAL) serves to mitigate this dependency on dense anno-
tations by operating only on video-level annotations (i.e.,
knowing which actions occur without knowing their precise
locations in a video) during training while still being able to
predict the start and end of the action snippet in test videos.
Several methods [20, 32, 33, 38,45, 50, 53] have attempted
to perform WTAL by employing different techniques
which include Multiple Instance Learning (MIL) [20, 33]
and attention mechanism [45, 50]. However, to the best
of our knowledge, all of these previous works approach
WTAL from a localization-by-classification perspective
where the underlying method tries to classify each video
frame into zero or more action categories followed by a
manually-designed post-processing pipeline to aggregate
these per-frame action predictions into action snippets with
explicit boundaries.

Fig. 1 shows the final action snippet predictions on a
video with Long Jump action from a typical localization-
by-classification method which we refer to as Base WTAL
in the figure. We observe that Base WTAL suffers from some
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challenges. First, the localization-by-classification training
is performed only with the coarse video-level labels, which
encourages the model to focus on the most discriminative
parts of the video, resulting in incomplete and fragmented
action snippets (140-160s for Base WTAL in Fig. 1). There
is also a higher rate of false positives due to the misclassifi-
cation of background that closely resembles foreground (at
~60s for Base WTAL in Fig. 1). Second, since the model is
trained to perform per-frame prediction, it lacks any explicit
notion of action boundaries, thus resulting in a discrepancy
between the classification-based training and localization-
based test objectives. This is generally addressed by in-
corporating carefully-designed post-processing algorithms.
Even though such post-hoc transformations can encode cru-
cial prior knowledge of temporal structure of videos, they
cannot influence the model training for improving the lo-
calization performance directly.

To resolve this discrepancy, we propose PivoTAL,
Prior-driven Supervision for weakly-supervised Temporal
Action Localization. PivoTAL approaches WTAL from
localization-by-localization perspective by learning to lo-
calize the action snippets directly. To this end, PivoTAL in-
troduces a novel algorithm that exploits the inherent spatio-
temporal structure of the video data in the form of action-
specific scene prior, action snippet generation prior, and
learnable Gaussian prior to derive pseudo-action snip-
pets. These pseudo-action snippets act as an additional
source of supervision in PivoTAL to complement the under-
constrained video-level weak-supervision to perform the lo-
calization task.

PivoTAL first employs a Base WTAL Head to per-
form weakly-supervised temporal action localization using
video-level supervision. While doing so, PivoTAL em-
ploys a novel action-specific scene prior in the background
MIL loss to inject action-specific bias into the background
frames to improve action boundaries (at 180s for PivoTAL
in Fig. 1). PivoTAL also complements the per-frame action-
ness scores learned by the model with learnable Gaussian
prior-based actionness scores to incorporate context from
nearby frames and to improve the smoothness of predicted
action snippets (140-160s for PivoTAL in Fig. 1). Next,
PivoTAL creates pseudo-action snippets by employing ac-
tion snippet generation prior and makes them confidence-
aware using the confidence predictions of the Base WTAL
Head. Finally, these pseudo-action snippets are used to train
the Prior-driven Localization Head of the model to predict
the action snippets directly. We conduct extensive experi-
ments on the standard WTAL datasets, THUMOS’ 14 and
ActivityNet-v1.3, achieving 3.2% and 3.0% absolute im-
provement on the average mAP respectively over all pre-
vious methods. This demonstrates PivoTAL’s advantage in
effectively utilizing the priors, leading to a significant im-
provement in the localization performance.

Our work makes the following major contributions,

1. We introduce PivoTAL, the first method to approach
WTAL from a localization-by-localization perspective
by generating pseudo-action snippets as supervision to
localize action snippets directly.

2. In the process, PivoTAL exploits the underlying
spatio-temporal regularities in videos in the form of
action-specific scene prior, action snippet generation
prior, and learnable Gaussian prior to complement
the available weak video-level supervision.

3. PivoTAL significantly outperforms all previous meth-
ods on WTAL benchmarks THUMOS’ 14 and Activi-
tyNet, with 3% or higher absolute increase on average
mAP metric.

2. Related Work

Temporal Action Localization. The fully-supervised
methods for temporal action localization can be broadly di-
vided into two categories: anchor-based methods [3, 46,49,
59] and anchor-free methods [23-26,56]. The anchor-based
methods learn the action boundaries by performing regres-
sion based on a pre-defined set of action proposals. Be-
cause of relying on pre-defined anchors, these methods tend
to perform poorly on actions which are extremely short or
long. The anchor-free methods mitigate this by explicitly
predicting the action offset and probability for each clip.
The primary difference between these methods and Piv-
oTAL is that these methods require expensive per-clip an-
notations while we only use video-level labels.

Weakly-Supervised Temporal Action Localization.
The recent weakly-supervised temporal action localiza-
tion (WTAL) methods can be broadly classified into
two categories: single-stage, and multi-stage methods.
The single-stage WTAL methods can be further divided
into three main categories: MIL-based [20, 33, 35, 40],
attention-based [11, 31, 36, 41, 45, 50], and erasing-
based [19, 34, 55, 61] methods. The MIL-based methods
are the simplest of these single-stage methods which
treat a video as a bag consisting of positive samples (i.e.,
clips corresponding to foreground actions) and negative
samples (i.e., background clips). For training, MIL-based
methods perform top-k positive sample selection and
aggregate their prediction to train with a video-level label.
Attention-based methods try to avoid top-k based hard
selection and perform class-agnostic foreground action-
ness based attentional pooling to aggregate the clip-level
scores to obtain video-level predictions for training. The
erasing-based methods take an adversarial complementary
learning approach [57] to address the WTAL methods’
tendency to focus on the most discriminative parts. To
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Figure 2. PivoTAL Overview: (a) Training pipeline: After processing a video through feature extractor f, we obtain class-agnostic
Actionness and class activation sequences (CAS) scores from the features via Actionness Head and Classifier Head (Base) respectively.
We enhance the CAS scores further using the Actionness scores via Hadamard product and apply foreground, L,4, and background,
Lpg, MIL losses w.r.t video-level weak label. Once we finish training this Base WTAL Head, we apply Snippet Generator SG, including
Binarization, Grouping & Refinement and NMS, on the Base WTAL Head confidence predictions to obtain hard action snippets. Then
we convert them to soft pseudo-action snippets using confidence propagation from Base WTAL Head confidence predictions and perform
per-class confidence normalization. We finally train the Prior-driven Localization Head using the pseudo-action snippets as ground-truth
to predict and localize the action snippets directly. (b) Actionness Score Computation: Our Actionness Head consists of a Learning-
based and a Gaussian prior-based Actionness Head which both process input features to obtain corresponding actionness scores that are
averaged to obtain the final Actionness Scores. We minimize a consistency loss as a regularizer to reduce disagreement between output of
the two Actionness heads. (c) Scene prior in Background MIL loss: We minimize the Background MIL loss between the background-
specific CAS scores (yellow plot, center-left) and the composite background label created by combining foreground and background video
label (center-right) to inject action-specific scene prior. From the bottom frames, we observe that even background frames (photos of the

stadium) are relevant to the foreground actions of Cricket Bowling and Cricket Shot.

this end, these methods try to increase the weight of less
discriminative parts of the video. Our proposed solution is
complementary to all these approaches since we primarily
focus on incorporating existing human priors into training
to perform localization-by-localization.

The multi-stage training-based methods [9,32,38,51,53]
generally take a self-training approach. The primary objec-
tive of these methods is to generate per-clip pseudo-labels
from an initial WTAL model and then perform further train-
ing with those generated pseudo-labels. Technically such
pseudo-label-based self-training can be repeated for multi-
ple iterations [9, 38]. The primary difference between our
work and these methods is that these methods do not uti-
lize the action snippets explicitly and therefore, do not have
an explicit notion of action boundaries. Therefore, this
per-clip pseudo-label-based self-training still falls into the
localization-by-classification category.

3. Method

PivoTAL attempts to solve the under-constrained weakly
supervised temporal action localization (WTAL) task from
a localization-by-localization perspective. Figure 2 pro-
vides an overview of our method.

3.1. Preliminaries

In the WTAL setting, we assume that we have access to a
set of weakly labeled videos V = {v() y()1N | ‘where N
represents the total number of samples, v(¥) represents an
untrimmed input video, and y(*) represents the set of action
classes present in video v(*) with no information about their
precise locations in the video. Specifically, we represent
y(® with a multi-label one-hot encoding such that y*) &
{0,1}¢+1, where C is the total number of action classes
present in the dataset, we add an additional class to model
the background. During inference, the objective is to predict
aset of action snippets A®) = {c;, s, e;}72, for video v(*)
where M is the total number of action snippets, c; is the
predicted class, s; is the start time, and e; is the end time of
a particular action snippet j. We denote v(*) and y(*) with
v and y respectively in the subsequent text for simplicity.

Baseline Approach for WTAL. As shown in Figure 2a,
PivoTAL comprises a Base WTAL Head to perform the
MIL-based WTAL using video-level supervision. Since
we are working with arbitrarily long untrimmed video for
the WTAL task, it is computationally prohibitive to encode
the entire video in a single forward pass through a feature
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encoder. Therefore, following prior works [9, 14, 40, 54],
we split a given video into multiple small clips i.e. v =
{gr}I_, where T is the total number of clips present in
that video. As shown in Figure 2a, we then process these
clips using a feature extractor, f, to obtain the feature em-
beddings s.t. f : g — z,, where z, € R We obtain
the video-level feature, z,, by concatenating all the clip
level features such that z, € R”T*?  Next, we process
these video-level features, z,, using a classifier to project
them into the output space to obtain the class activation se-
quence (CAS) scores, q, s.t. q € RT*(C+D 1n paral-
lel, following prior art [9,38,41], we employ an actionness
score generator modeled using a linear layer to obtain class-
agnostic actionness scores, a, S.t. a € RT*2 where we use
a 2-dimensional output vector for each clip to model both
foreground and background actionness scores (Figure 2a).

For training, we only have access to the video-level la-
bels, y. Therefore, following prior work [16, 20, 40, 41],
we train the network using a multiple instance learning
(MIL) based classification loss. To this end, first, we en-
hance the CAS scores, q, by taking a Hadamard prod-
uct with the class-agnostic foreground actionness scores
arg. Next, we perform top-k selection followed by aver-
age pooling across the temporal dimension to obtain the
video-level foreground classification logits, ¥4 s.t. ¥4 =
1/K S5 topK(as,®q), where ® is the Hadamard prod-
uct operator. Finally, we use cross-entropy loss to optimize
the network parameters as,

C+1
Lig=— Z y(c)logFqe(c). (1)
c=1
While the foreground loss in equation 1 can help to local-
ize the action snippets, the model still underperforms due
to the absence of any explicit loss to reduce false posi-
tives. Therefore, following prior work [37,41,41], we gen-
erate complimentary labels, y;4, by setting the background
class to 1 and all other action classes to 0 in y. Next,
we obtain video-level background logits, $34 s.t. $py =
1/K S5 topK(ap, ® q), where ap, is the background
actionness score. After that, we compute a background loss
Ly in the following manner,
C+1

Log == ybg(c)logFuy(c). )
c=1

We finally optimize the Base WTAL Head, as shown in
Figure 2a, using the combined loss, Lygse = Lg + Lig-
CAS to Action Snippet Generation. As we can see from
Equation 1 and 2, the WTAL objective does not train the
model for localization but instead trains for classifying the
clips, g, to predict the CAS scores. Since the final objective
is to generate action snippets, A, containing explicit start
and end times along with the action label, we need to con-
vert CAS to A. However, this is a non-trivial task since the

network lacks any explicit notion of action boundaries and
the means to aggregate the CAS score to form A.

To address this discrepancy, it is common to introduce
manual priors as post processing to transform CAS scores,
g, into action snippets, A. The transformation involves mul-
tiple steps. First, the CAS scores are binarized with a broad
range of thresholds. This is followed by generating con-
nected components from the binarized CAS scores to form
the initial set of action snippets. Next, some morphological
operations (such as erosion and dilation) are applied to re-
fine the action snippet boundaries. Finally, non-maximum
suppression (NMS) operation is performed to obtain the
best candidate action snippets, A.

As is evident from the above, generating action snippets
from CAS scores involves injecting a series of manual pri-
ors in the WTAL task. We empirically find each of these op-
erations playing a significant role in the downstream perfor-
mance, but at the same time, are rarely being mentioned in
text in existing approaches and are only found in their code
repositories. These priors make it possible to deal with the
under-constrained task of action localization with weak su-
pervision. Therefore, in our work, we incorporate them into
our training pipeline and holistically refer to them as the
snippet generator function, SG s.t. SG : q — A (Fig. 2a).

3.2. Prior-driven Weak Localization

While SG allows for action snippet, A, generation from
model outputs, q, the Base WTAL Head alone is not opti-
mal since it cannot directly output action snippets. More-
over, the priors are introduced after training and cannot in-
fluence model optimization. To address this, PivoTAL in-
troduces prior-driven weak localization by integrating the
action snippet generation prior into WTAL training. We dis-
cuss the potential approaches to do so in the following.
Self-Training with Hard Pseudo-Action Snippets. One
straightforward way to incorporate the priors encoded in
SG into a WTAL method is to perform self-training with
the generated hard pseudo-action snippets so that the net-
work can explicitly learn the action boundaries. However,
this strategy is also not optimal since some of the pseudo-
action snippets generated using manual priors will be noisy.
One way to deal with this noise would be to incorporate a
denoising mechanism into training [8, 17,22,42]. However,
this will require incorporating additional components into
the design, like multiple networks, sample selection, and
subsequent semi-supervised training, etc.

Self-Training with Soft Pseudo-Action Snippets. In con-
trast, in this work, we propose a simple solution that lever-
ages both human priors and the distilled knowledge from
the available video-level weak annotations. To this end,
we perform self-training with the pseudo-action snippets,
A, generated with SG, and also utilize the confidence of
these action snippets obtained from the Base WTAL Head.
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For this, we propagate the Base WTAL Head’s confidence
predictions by setting the confidence of an action snippet
as the average of the confidence scores within the span of
the action snippet. We argue that this confidence-aware
self-training strategy based on pseudo-action snippets, A,
takes advantage of both weak annotations and human pri-
ors. However, this strategy still has one remaining chal-
lenge, neural network predictions are not well calibrated
and tend to be overconfident [7,44], especially on the easy
classes [18,39]. Therefore, a vanilla confidence propagation
from the Base WTAL Head to the action snippets will not
be optimal for the relatively harder and underrepresented
classes. To address this issue, we propose to normalize the
predictive confidence scores for each class independently.

To train based on pseudo-action snippets, we introduce
Prior-driven Localization Head, as shown in Figure 2a. To
train this head, we incorporate two more loss terms besides
the MIL-based classification loss, Ly7;,. Following prior
work on supervised temporal action localization [56], we
use a focal loss [27], Lfocal, for per-clip action classifica-
tion where the target is derived from the pseudo-action snip-
pets. Next, to determine the action boundaries in an anchor-
free manner, we predict the action offsets from each time
step, and to achieve this objective, we use a DIoU based [60]
regression loss, Lpr.y. The target for the regression loss
is also derived from the pseudo-action snippets. There-
fore, our overall localization-by-localization training objec-
tive with the pseudo-action snippets is as follows:

Lioe = Lfocal + Lprov + Lmrr. 3

Even though the proposed solution of learning from both
human priors encoded in SG and weak supervision enables
us to solve the WTAL task in a localization-by-localization
manner, we expect that a WTAL method can benefit further
from additional priors. The primary intuition behind this is
that the pseudo-action snippets are generated from a base
model that focuses on discriminative parts of actions due to
localization-by-classification (Figure 1), and tends to err es-
pecially when the visual information around action bound-
aries is ambiguous. Therefore, injecting priors which can
address such failure cases should improve the quality of the
extracted pseudo-action snippets and the final localization.

3.3. Prior-driven Base WTAL

We inspect the design of the Base WTAL Head to in-
ject additional priors into the learning process. From a high
level, the Base WTAL Head has three main components: (i)
class-agnostic actionness score generation, (ii) foreground
MIL loss (Ly4), and (iii) background MIL loss (Lpg). We
find that the actionness score generation and the background
MIL loss are added to complement the foreground MIL
loss. Therefore, we propose to add additional prior to these
components.

Scene Prior in Background MIL Loss. Understanding
temporal dynamics is essential for temporal action localiza-
tion. Meanwhile, it is well established that spatial informa-
tion can be a strong cue for recognizing actions [10,48,58].
We utilize this observation in the form of an action-specific
scene prior into our objective function. In particular, we
modify our background MIL loss to incorporate a fore-
ground action specific prior. In typical MIL-based WTAL
systems, the background loss is computed on the least prob-
able video clips. However, we expect that even the least
probable video clips contain foreground-related informa-
tion. Therefore, instead of encouraging the model to predict
only background class on the least probable video clips, we
encourage the model to also predict the appropriate fore-
ground class as the second most dominant class. For this,
we generate a composite background label, ¥4, which con-
tains foreground-specific information (Fig. 2c). We formu-
late our modified background loss with scene prior as,

S’bg = QYpg + (1 - a)yv
C+1
£bg = - Z ybg(c) IOg ybg (C), 4
c=1

where, o controls the strength of the background label.

Gaussian Prior for Actionness Prediction. Following
prior works [9,38,41], in the Base WTAL approach, we pre-
dict the class agnostic actionness scores using a linear layer.
The actionness score is generally determined on a per-clip
basis without using any context of nearby clips. One naive
way to improve this would be to incorporate more local
context by utilizing long temporal convolutional kernels or
attention mechanisms. However, effective optimization of
such an actionness predictor is non-trivial since the avail-
able video-level labels lack any clip-level local information.

One of the primary motivations behind adding local con-
text is that the predictions have to be locally consistent. To
enforce this prior explicitly, we model the foreground ac-
tionness scores with learnable Gaussian masks. In particu-
lar, we obtain a second foreground actionness Score, agquss»
by introducing a Gaussian mask prediction branch which
predicts Gaussian kernels {o;, u1;}2_; for each clip to flex-
ibly model the actionness scores (Fig. 2b). We generate
clip-specific local Gaussian masks, G;, from the predicted
parameter {o;, it; }. To effectively preserve the local con-
text in the final actionness scores, ayq..5, W€ perform local
selection from the clip-specific local masks G to generate
Agquss(1) by selecting the value at corresponding it" tem-
poral position from the i*" Gaussian mask, G; as,

Gi:exp(_wf

o
Agauss = {Gz‘(i)}iTzh (@)

. )
i Jj=1
where, 3 controls the variance of the Gaussian mask, G.
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.. mAP@IoU (%) AVG
Supervision  Method 01 02 03 04 05 06 07 | (01:05 (0307 (0.1:0.7)

SSN 1ecvr 17 [59] 603 562 506 408 201 - ; 496 ; ;

Full BSN recor 15 [26] ; - 535 450 369 284 200 - 36.8 -
GTAN cyzrr1s [30] 69.1 637 57.8 472 388 - - 55.3 - -
CleanNet rcov 15 [20] - 370 309 239 139 7.1 5 226 -
RPN a0 [12] 623 570 482 372 279 167 8.1 46.5 276 36.8
TSCN sccvr 20 [53] 634 576 478 377 287 194 102 | 470 28.8 37.8
EM-MIL secv20 [32] 591 527 455 368 305 227 164 | 450 30.4 37.7
A2CL-PT seeyro0 [34] 612 561 481 39.0 30.1 192 106 | 469 294 37.8
HAM-Net ponro: [16] 654 59.0 503 411 310 207 11.1 | 494 30.8 39.8
WUM panreon [21] 675 612 523 434 337 229 121 | 516 32.9 419
AUMN copror [31] 662 619 549 444 333 205 9.0 52.1 324 415
COLA cyprr 21 [54] 662 595 515 419 322 220 131 | 503 32.1 40.9

Weak TS-PCA coerron [28] 676 611 534 434 343 247 137 | 520 33.9 426
UGCT cyer 21 [51] 692 629 555 465 359 238 114 | 540 34.6 436
ASL cypre 21 [33] 670 - 518 - 311 - 114 - - -
CO2-Net yy 51 [11] 701 63.6 545 457 383 264 134 | 544 35.6 44.6
D2-Net rcevron [36] 657 602 523 434 360 - - 51.5 - -
FAC-Net rcovon [13] 67.6  62.1 526 443 334 225 127 | 520 33.1 422
ACG-Net nrr s [52]  68.1  62.6 53.1 446 347 226 120 | 526 33.4 425
ASM-Loc coparzs [9] 712 655 57.1 468 366 252 134 | 554 35.8 45.1
RSKP cyprr 22 [14] 713 653 558 475 382 254 125 | 556 35.9 45.1
DELU gccyr 22 [4] 715 662 565 477 405 272 153 | 565 37.4 46.4
PivoTAL (Ours) 741 69.6 617 521 428 306 167 | 60.1s6 40.8151 49.6:5>

Table 1. Temporal action localization performance comparison with state-of-the-art methods on the THUMOS-14 dataset. PivoTAL
outperforms all existing methods on all different IoU thresholds and achieves at least 3.2% better average mAP than all existing methods.

Even though generating foreground actionness scores
based on Gaussian priors can generate locally smooth ac-
tionness scores, we observe that integrating it with the
learning-based actionness scores is not straightforward. We
experiment with different aggregation strategies and ob-
serve that the performance deteriorates with any of these ag-
gregation strategies. We hypothesize that this happens be-
cause of the inconsistency/disagreement between these two
actionness scores. To resolve this issue, we introduce an
actionness consistency loss as defined below.

£con = Z(afq(z) - agauss(i))2- (6)
Therefore, the overall loss to train the Base WTAL Head is
Ebase = Efg + Ebg + ‘Ccon~

4. Experimental Evaluation

Datasets. We evaluate our method on the two stan-
dard datasets for weakly-supervised action localization:
THUMOS-14 [15] and ActivityNet-v1.3 [1]. THUMOS-
14 contains 20 action classes. We use the 200 untrimmed
videos in the validation set as our training set and test the
model on a set of 212 test videos. ActivityNet-v1.3 contains
200 action classes. We use the 10,024 videos from the train-
ing set to train our model and use the 4,926 videos from the
validation set to test our model.

Implementation Details. To extract clip level features, z,,

following prior works [9,51,54], we use a I3D network [2]
pretrained on the Kinetics-400 [2] dataset. We use both
RGB and optical flow [6] features. We train the WTAL head
for 150 and 50 epochs on THUMOS-14 and ActivityNet-
v1.3 datasets, respectively. We use Adam optimizer with a
learning rate of le — 4. We set the value of a to 0.8, set 3
to 0.1, and set the coefficient of all loss terms to 1.0. For
the prior-driven localization head training, we use a similar
network architecture as [56]. Finally, for a fair comparison,
we do not optimize the parameters of the snippet generator,
SG, but rather use the same parameters as [9].

4.1. Comparison with State-of-the-Art

We compare the performance of PivoTAL with the exist-
ing state-of-the-art methods on the THUMOS-14 dataset in
Table 1. Following prior works [9, 14], we also report re-
sults from a few representative fully-supervised TAL meth-
ods for reference. Table | shows that PivoTAL outperforms
all the previous methods by establishing a new state-of-
the-art with 49.6% avg mAP over IoU thresholds 0.1:0.7.
We can observe that PivoTAL outperforms the existing best
method DELU [4] by more than 3%. Similar improvements
are observed for other avg mAP scores. Note that PivoTAL
is the only method that outperforms all the previous meth-
ods at each individual IoU threshold ranging from 0.1 to
0.7. PivoTAL also significantly outperforms the multi-stage
self-training based methods (ASM-Loc [9], UGCT [51]).
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. . mAP@IoU (%)
Supervision Method 05 075 095 ‘ AVG
TAL-Net copr 15 [3] 382 183 13 20.2
Full BSN ccevr1g [26] 46.5 30.0 8.0 30.0
GTAN cyprr 19 [30] 526 341 89 343
TSCN gceyr 20 [53] 353 214 53 21.7

BaS-Net aza1- 20 [20] 345 225 49 222
A2CL-PT zccvrao [34] 368 220 5.2 22.5
ACM-BANet w20 [35]  37.6 247 6.5 24.4

WUM nanr 21 [21] 370 239 5.7 23.7
weak  AUMN cuerzs [31] 383 235 52 23.5
TS-PCA cyerr 21 [28] 374 235 59 23.7
UGCT cverr o1 [51] 39.1 224 58 23.8
FAC-Net rceyr 21 [13] 376 242 60 24.0
RSKP cyprr 2z [14] 406 246 59 25.0
ASM-Loc cyprr 22 [9] 410 249 62 25.1
PivoTAL (Ours) 451 282 5.0 | 2810

Table 2. Temporal action localization performance comparison
with existing methods on the ActivityNet-v1.3 dataset. PivoTAL
outperforms all existing methods on avg mAP by at least 3.0%.

We compare PivoTAL with existing methods on the more
challenging AcitivityNet-v1.3 dataset in Table 2 and ob-
serve a similar trend where PivoTAL outperforms the exist-
ing best method ASM-Loc [9] by more than 3%. We believe
this is particularly significant given the relatively smaller
improvements reported by other recent methods.

4.2. PivoTAL: Ablation Study

We conducted a comprehensive set of ablation experi-
ments to empirically validate the effectiveness of the dif-
ferent components of PivoTAL, and we report the results
of these experiments in Table 3. Row 1 shows the perfor-
mance of the MIL-based Base WTAL head without any of
our priors. Row 2 demonstrates that adding our Gaussian
prior improves the average mAP by 2.6%. Row 3 shows the
effectiveness of our proposed scene prior, which further im-
proves the performance by 1.3%. Row 4 shows the results
with the incorporation of a prior-driven localization head
with hard pseudo-action snippets. We observed no perfor-
mance improvement over Row 3, which validates our hy-
pothesis that training with hard pseudo-action snippets is
suboptimal due to the noise present in the pseudo-action
snippets generated using manual priors. Row 5 demon-
strates that the incorporation of soft pseudo-action snip-
pets and per-class normalization in the prior-driven localiza-
tion training significantly improves the performance, with
a 6.9% improvement in average mAP. This validates our
hypothesis that confidence propagation (soft pseudo-action
snippets) and per-class normalization are effective in mini-
mizing the influence of any errors in pseudo-labels. Finally,
Row 6 demonstrates that incorporating MIL loss further im-
proves the performance by 3%. We believe that MIL loss is
critical in training the prior-driven localization head since
it further aids in mitigating the potential negative effects
of dense, albeit noisy supervision (soft pseudo-action snip-
pets) via weak, albeit noise-free supervision. These ablation

experiments demonstrate that each design component has a
noticeable impact on the overall performance.

Localization Head

Base |Gaussian|Scene| Hard Pseudo- | Soft Pseudo- MIL AVG
WTAL| Prior |Prior |Action Snippets|Action Snippets mAP

v 35.8

v v 384

v v v 39.7

v v v v 39.0

v v v v 46.6

v v v v v |49.6

Table 3. Ablation studies on the THUMOS-14 dataset showing
the effectiveness of each component of PivoTAL.

4.3. Discussion

Gaussian Prior. We discuss various design aspects of our
Gaussian prior-based actionness score generation. In Piv-
oTAL, we predict one Gaussian mask for each clip and
sample one value from each mask. We experiment with
other designs to achieve the same objective and report the
results in Table. 4a. Row 1 in Table. 4a shows the result for
the case when we predict a single Gaussian mask (global
mask) over the entire video. For global mask, we generate
a single {y, o} for the entire video, making {y;, o}, in
Eq. 5 {u, 0}. We observe that the performance goes down
by 4.4%. This is to be expected since a video will have
multiple actions happening at different times. Row 2 and 3
expand on this idea and try to predict multiple global Gaus-
sian masks (multiple {y, 0}) and we aggregate the action-
ness scores of these multiple global Gaussian masks via av-
eraging. We observe a further performance drop that we be-
lieve is due to the lack of diversity between multiple global
masks and the inadequacy of the global mask predictions
in modeling fine local variations. In Row 4, we model the
Gaussian masks locally and average their contributions to
obtain the video-level actionness scores. Here, local Gaus-
sian mask refers to generating clip specific (hence, local)
T Gaussian parameters {/;,0;}. ; and averaging over T
such that agqyss(1) = 1/T Z]‘T:1 G;(4). We find this de-
sign to be sub-optimal validating the design decision made
in PivoTAL that the Gaussian masks need to be modeled lo-
cally and their contribution will have to be selected locally
to have enough flexibility in modeling. Finally in Row 5,
we replace the Gaussian-prior head with a second learning-
based head (similar to ay,) and observe a 1.4% drop in avg
mAP, further validating the advantage of our Gaussian prior.
Actionness Aggregation. Next, we discuss how to aggre-
gate the two sources of actionness scores (learning based,
gaussian prior based) in PivoTAL. We experiment with dif-
ferent aggregation strategies and report the results in Ta-
ble 4b. The first row shows that the performance goes down
by 4.1% if we take the Hadamard product between these
two actionness scores. This is to be expected since such
an aggregation strategy will only focus on areas where both
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Method AVG mAP
PivoTAL w. global mask (m=1) 452 Method AVG mAP
PivoTAL w. global mask (m=5) 413 : Method AVG mAP
. PivoTAL w. Product 45.5 - -
PivoTAL w. global mask (m=10) 44.0 . PivoTAL w/o consistency loss 47.0
. . PivoTAL w. Max 48.0 . .
PivoTAL w. local mask centered at each clip 43.0 PivoTAL w. Mean 49 6 PivoTAL w. consistency loss 49.6
PivoTAL w. a second learning-based head 48.2 : :
PivoTAL 49.6
(@) (b) (c)

Table 4. Analysis on different (a) Gaussian prior implementation techniques, (b) actionness mask aggregation techniques, and (c) actionness
mask consistency setups on the THUMOS-14 dataset. Our Gaussian prior implementation outperforms all the other baseline solutions.

actionness scores agree. In the second row, we report re-
sults by taking element-wise max and observe that perfor-
mance improves over the Hadamard product-based aggre-
gation strategy but is still 1.6% lower than the mean-based
aggregation strategy used in PivoTAL. We hypothesize that
the max-based aggregation strategy underperforms because
of overpredicting the foreground actionness scores, espe-
cially in the cases where one actionness score is signifi-
cantly higher than the other.

Consistency Loss. Finally, in Table 4c, we investigate the
effectiveness of the proposed consistency loss between the
two actionness scores. We observe that the performance
goes down by 2.6% without any consistency loss. This em-
pirically validates our hypothesis that the two sources of ac-
tionness scores need to be aligned for the best performance.

a0 — "
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Figure 3. Effect of changing « values for the composite back-

ground labels on the THUMOS-14 dataset. We observe that the
performance predictably deteriorates at large and small o values.
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Figure 4. PivoTAL’s prediction with and without scene prior. From
the dotted boxes, we can observe that PivoTAL with scene prior
outputs better-aligned predictions with better action boundaries.

Scene Prior. To enforce the scene prior, we use « to control
the strength of action-specific information in the composite
background labels. Even though the ablation experiments
(Table 3) validated the importance of this prior, here, we
conduct a more fine-grained analysis. We vary the value
of a and report the results on the THUMOS’ 14 dataset in
Fig 3. We report the performance by varying the value of
o from 0.5 to 0.95. We do not use a lower value since we
want the background label to be dominant. We notice that
the performance deteriorates at large and small values of
«. This is to be expected since in both cases either we will
have very little action-specific information or we will sup-
press the background too much and end up with more false
positives. We also observe that a wide range of values (0.65
to 0.80) yield similar results. This validates that PivoTAL
is robust and not sensitive to a particular choice of a.

In Fig 4, we present some qualitative results to further
demonstrate the effectiveness of our action-specific scene
priors. In the first video, we see a Baseball Pitch action hap-
pening. If we look at the foreground and background frames
shown in the top row, we can see that the background (sta-
dium scene) carries a meaningful cue for the foreground ac-
tion. We report the results of PivoTAL without scene pri-
ors in the third row and the last row shows results with the
scene prior. We observe that even though the overall per-
formance of these two variations is not drastically different,
PivoTAL with scene prior can detect the action boundaries
better. We notice the same trend in the second video where
a Diving action is happening, and the pool serves as an in-
formative background. Overall, PivoTAL with scene prior
outputs more confident predictions with better-aligned ac-
tion boundaries. Please refer to Supplementary Materials
for more visual results from PivoTAL.

5. Conclusion

PivoTAL is a novel approach that tackles weakly-
supervised temporal action localization in a localization-by-
localization manner. PivoTAL complements the available
video-level weak supervision with learned priors to capture
the underlying spatio-temporal structure in video data. Em-
pirical studies validated the effectiveness of each compo-
nent in PivoTAL, and results on WTAL benchmark datasets
establish PivoTAL as new state-of-the-art in this area.
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