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Abstract

The existing weakly supervised semantic segmentation
(WSSS) methods pay much attention to generating accu-
rate and complete class activation maps (CAMs) as pseudo-
labels, while ignoring the importance of training the seg-
mentation networks. In this work, we observe that there is
an inconsistency between the quality of the pseudo-labels
in CAMs and the performance of the final segmentation
model, and the mislabeled pixels mainly lie on the bound-
ary areas. Inspired by these findings, we argue that the
focus of WSSS should be shifted to robust learning given
the noisy pseudo-labels, and further propose a boundary-
enhanced co-training (BECO) method for training the seg-
mentation model. To be specific, we first propose to use a
co-training paradigm with two interactive networks to im-
prove the learning of uncertain pixels. Then we propose a
boundary-enhanced strategy to boost the prediction of dif-
ficult boundary areas, which utilizes reliable predictions to
construct artificial boundaries. Benefiting from the design
of co-training and boundary enhancement, our method can
achieve promising segmentation performance for different
CAMs. Extensive experiments on PASCAL VOC 2012 and
MS COCO 2014 validate the superiority of our BECO over
other state-of-the-art methods. 1

1. Introduction
Acquiring precise pixel-wise annotations for semantic

segmentation is quite laborious. To alleviate the high re-
liance on per-pixel labeling, weakly supervised semantic
segmentation (WSSS) has been proposed that only utilizes
image-level class labels to perform pixel-level classifica-
tion. Such a task usually involves two training stages. In
the first stage, a classification model is trained with im-
age labels and then used to generate class activation maps
(CAMs) [72], which as seed regions are further expanded
to the pseudo-labels. In the second stage, the generated
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1The code and models are available at https://github.com/

ShenghaiRong/BECO.
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Figure 1. Pseudo label quality and deeplabv2 performance of
different WSSS methods, evaluated on the PASCAL VOC 2012
train set and val set, respectively. The red circles indicate that the
quality of pseudo-labels and the performance of the segmentation
model is inconsistent. Best viewed in color.

pseudo-labels serve as pixel-wise ground truths (GTs) to
train a segmentation model. Current mainstream meth-
ods [6, 27, 29, 69] believe that more accurate and complete
pseudo-labels tend to train a better semantic segmentation
model, and thus they are mainly dedicated to improving
CAMs in the first stage, where the mean Intersection-over-
Union (mIoU) is used to evaluate the quality of generated
pseudo-labels.

There is a natural question that needs to be asked, i.e.,
Can better pseudo-labels guarantee to train a better seg-
mentation model? To explore the effect of the pseudo-labels
on the second-stage segmentation model, we choose sev-
eral representative WSSS methods and report their mIoUs
of the pseudo-labels on train set and the predictions of
the segmentation models on val set. Figure 1 shows
the results, where the PASCAL VOC2012 dataset [9] is
used and the same segmentation network Deeplab [4] is
adopted. The red circles indicate the inconsistency between
the mIoU of pseudo-labels and the performance of segmen-
tation models. Evidently, the pseudo-labels with a higher
mIoU do not mean a better segmentation model. In fact,
the WSSS approaches inevitably yield noisy pseudo-labels.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Then naively training the model would overfit the noisy la-
bels and the generalization performance of segmentation
networks would be degraded [47]. In this work, we argue
that WSSS needs to pay attention to robust learning with
noisy labels in the second stage other than the pseudo-label
generation in the first stage.

As a corollary, we focus on the second stage of WSSS
and thus mainly consider the critical obstacle, i.e., noises
of pseudo-labels. According to the statistics of real data,
such noises which contain most of the noisy false-positive
background and incompleteness of objects, mainly come
from the semantic boundaries. Inspired by this obser-
vation, we believe that the model performance would be
greatly improved if the boundary pixels can be correctly
predicted. Previous works on learning from noisy labels
mainly focus on the classification task, e.g., robust architec-
ture [5,12,13,59], robust regularization [58,70], loss adjust-
ment [53], and sample selection [14, 18, 40, 54, 67]. How-
ever, the pixel-level learning with noise in WSSS is more
challenging than the robust learning in image classification,
since the key supervisory signal on the boundary area is to-
tally absent and meanwhile these pixels are inherently hard
to be correctly predicted due to semantic confusion caused
by neighboring pixels.

To tackle this issue, we propose a co-training paradigm
in this work to improve the learning of noisy pixels and a
boundary-enhanced strategy to boost the prediction on the
boundary, both of which form our proposed method named
BECO. Specifically, we construct two parallel deep net-
works to perform semantic predictions that are designed to
teach each other about all possibly noisy pixels. Here the
pixel annotations with low confidence are regarded as noisy
labels. Through imposing the consistency of two-network
predictions, it is expected that the semantic information of
uncertain pixels will be rectified as much as possible. As
for the boundaries, we propose to highlight their prediction
by assigning a larger weight in loss. But we need to identify
the boundary pixels with accurate labels, which is required
by training and naturally difficult for WSSS. Inspired by
mixup-like techniques [32, 41], we propose to construct the
boundary pixels by copying and pasting the high-confidence
area in one image to another image. As shown in Figure 2,
the high-confidence pixels tend to lie inside the objects and
can be almost correctly predicted though they are incom-
plete. So we can exploit their pseudo-labels as ground truth
during training. As a result, we construct some artificial
boundaries with accurate labels for different classes of ob-
jects. Benefiting from co-training and boundary enhance-
ment, BECO can alleviate the issue of different noises and
significantly improve the segmentation performance.

In summary, the main contributions of this work are as
follows:

• We show the inconsistency between the quality of the

(a)Original prediction (b)High confidence prediction 

over a threshold

Figure 2. Visualization of predicted segmentation labels. (a) origi-
nal prediction by segmentation model and (b) high-confidence pre-
diction by filtering the output with a threshold. Mislabeled pixels
are concentrated on boundary areas and pixels with high confi-
dence tend to be correct and inside the objects.

pseudo-labels in CAMs and the performance of the
segmentation model, and then suggest the attention of
WSSS should be shifted from the pseudo-label gener-
ation to the robust learning with noisy labels.

• We propose a co-training paradigm to improve the
learning of uncertain pixels, and a boundary-enhanced
strategy to boost the prediction on difficult boundary
areas, which utilizes reliable predictions to construct
artificial boundaries.

• We validate the effectiveness of our method on the
PASCAL VOC 2012 and MS COCO 2014, which out-
performs other state-of-the-art models by a consider-
able margin.

2. Related Work
2.1. Weakly Supervised Semantic Segmentation

Multi-stage methods. For WSSS with image-level labels,
the common pipeline is to utilize CAMs as initial seed areas
to generate pseudo labels, where a classification network
is used, and then use the pseudo labels to train a semantic
segmentation network. However, due to the huge gap be-
tween image-level labels and dense semantic labels, CAMs
usually cannot cover the entire semantic region of the tar-
get class. Consequently, it is difficult to obtain complete
and accurate pseudo labels in WSSS. To tackle this prob-
lem, some methods have been proposed to enhance CAMs,
such as expanding by ensemble [19, 26], erasing and re-
finding [24, 50], improving optimization methods [6, 25],
contrastive representation learning [8, 62], and incorporat-
ing cross-image semantic information [33, 49]. Some other
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works are committed to generating more reliable pseudo
masks on the basis of seed areas [1, 2, 27, 29]. Since the
generated pseudo labels in WSSS do not perform well on
boundaries, some methods introduce extra data in training
or post-processing, e.g., saliency maps [20,22,23,30,57,65],
hard out-of-distribution (OoD) data [28], and contrastive
language-image pre-training (CLIP) model [61].

Other than the generation of pseudo-labels, few meth-
ods focus on how to train the full supervised semantic seg-
mentation model using the pseudo-labels. URN [34] pro-
poses to discover noisy labels via uncertainty estimation,
which is realized by calculating the pixel-wise variance
among the prediction maps under different scales according
to cross-view consistency. Inspired by the early-learning
phenomenon [38], ADELE [37] proposes an approach to
adaptively correct the annotations using the model output.
Different from these approaches, our work explicitly sug-
gests the attention of WSSS should be shifted from the
pseudo-label generation to robust learning with noisy la-
bels, and a boundary-enhanced co-training method is pro-
posed to improve the robust learning, which outperforms
other state-of-the-art methods by a considerable margin.
Single-stage methods. Compared with the multi-stage
methods, the single-stage methods do not have a compli-
cated training process, which aim to train an end-to-end se-
mantic segmentation model supervised by image-level la-
bels. Existing single-stage methods [3,42,43,51,68,71] usu-
ally include multiple modules such as classification and seg-
mentation. The common pipeline is to use CAM or its vari-
ants to estimate pseudo-labels and then employ image-level
labels, pseudo-labels, and semantic affinity to jointly opti-
mize all modules. Since the single-stage approaches com-
bine classification and segmentation during training, it is
difficult to further optimize the segmentation model. Con-
sequently, the current single-stage approaches often result
in inferior performance. In this work, we follow the popu-
lar pipeline decoupling the classification and segmentation
into two stages, and we particularly focus on the second-
stage robust learning.

2.2. Robust Learning with Noisy Labels

Learning with noisy labels is an important task [47] in
machine learning. The methods can be categorized into
four groups according to the involved techniques, i.e., ro-
bust architecture, robust regularization, robust loss design,
and sample selection. The researchers have proposed var-
ious types of robust architecture [5, 12, 13, 59] to model
the noise transition matrix of a noisy dataset. But these
methods do not perform well under a high noise ratio. To
address this, some researchers turn to employ robust reg-
ularization such as data augmentation [46], robust early-
learning [37, 58], and Mixup [70]. As for the design of ro-
bust loss, the loss correction [21, 39, 55] and loss reweight-

ing [53] dynamically adjust the loss weights of different
samples according to their confidence. However, it is chal-
lenging to design a reliable metric to discriminate which
samples are noisy, and thus would suffer from accumulated
error caused by false selection. To avoid false corrections,
recent studies perform sample selection to get the true-
labeled examples from a noisy training dataset, achieving
state-of-the-art performance. In particular, the multi-round
learning [54] iteratively refines the selected examples, and
the co-training [14, 18, 40, 67] leverages multiple networks
to cooperate with each other.

Due to the admirable performance of the co-training
paradigm in these ways, we particularly follow this route.
Different from the previous works [14, 18, 40, 67] focus-
ing on the classification tasks, we tackle the robust seg-
mentation learning in this work. Currently, few works
handle the segmentation task. COPLE-Net [52] devises a
noise-robust framework for medical-imaging segmentation.
ADELE [37] dynamically corrects the noisy annotations by
exploiting early learning phenomenon in semantic segmen-
tation. In contrast to those works on segmentation, we intro-
duce the co-training paradigm to the robust learning of seg-
mentation, which actually provides a new route for WSSS.

3. Methodology
In contrast to conventional WSSS methods, we focus

on the second stage of WSSS and propose a boundary-
enhanced co-training (BECO) framework to address ro-
bust learning from noisy pseudo-labels. The overall struc-
ture of BECO is illustrated in Figure 3. We first in-
troduce the prerequisites in Sec. 3.1. Then we present
our co-training paradigm and boundary-enhanced strategy
in Sec. 3.2 and Sec. 3.3, respectively. At last, the overall
BECO is stated in Sec. 3.4.

3.1. Prerequisites

In this section, we briefly introduce the way to generate
the pseudo-labels in the first stage. In general, a classifica-
tion network is trained with image-level labels and gener-
ates the localization maps via CAM [72] and its improved
version [6, 8, 19, 50]. Some methods [1, 2, 27, 29] further
expand the localization maps to the final score map which
represents the score of pixels belonging to each class. For-
mally, for an image Xi ∈ R

3×H×W , the WSSS methods
yield its final score map Si ∈ R

C×H×W , where H,W is
the spatial size of the image, and C is the number of cate-
gories. Then the assigned pseudo-label Yi can be calculated
by argmax operation along the channel dimension.

In practice, WSSS approaches inevitably yield noisy
pseudo-labels and the mislabeled pixels tend to be low-
confidence predictions. Hence we compute the confidence
mask Mi ∈ R

H×W , which indicates the uncertainty of Yi,
for the following co-training paradigm. With the score map
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Figure 3. Overview of the proposed BECO framework. The whole structure of BECO is a siamese network with two parallel branches.
During training, the model is jointly fed the original images and the boundary-aware images, and is optimized using the proposed co-
training paradigm. Here the outputs are constrained by the proposed boundary-enhanced loss LBECO . During inference, the ensemble of
predictions from two networks is used to predict the segmentation results. Best viewed in color.

as Si, we measure the j-th pixel confidence Hij of Yi. Note
that the score map is derived from the random walk of its
CAM, which represents the score that each pixel belongs
to each foreground class rather than the probability. There-
fore, instead of using the threshold or entropy, we measure
the confidence of Yi by the margin function [17] as

Hij = max
c

(Sc
ij)−max2

c
(Sc

ij), (1)

where the max2(·) denotes the second largest value op-
erator. A larger Hij indicates a higher confidence in the
prediction of the j-th pixel, and versa vise. We regard the
pixels with the top r confidences in the same category as
the high confidence and the rest are as low confidence. Let
Qc

i = {Hij |Yij = c, 0 ≤ c ≤ C} denote the confidence
set of pixels of the class c in Xi, then the confidence mask
Mi = {Mij}HW

j=1 can be formulated by:

Mij =

{
1, if Hij ranks in the top r of Q

Yij

i ,

0, else.
(2)

Here r is a percentage parameter indicating how many pix-
els of each class in Yi are considered high-confidence.

3.2. Co-training Paradigm

After preparation in the first stage, we acquire a semantic
segmentation dataset with images and their corresponding
pseudo-labels and confidence masks. We denote N training
samples in a mini-batch as D = {(Xi,Yi,Mi)}Ni=1. To
improve the learning from noisy pseudo-labels Y , we pro-
pose a co-training framework (denoted by COT) that con-
sists of two deep networks. Each network aims to teach its

peer network on the potentially noisy pixels indicated by
the confidence masks M . Specifically, we construct two
parallel deep networks that share the same architecture f .
The parameters of the two networks are independent and
initialized differently, denoted as θ1 and θ2, respectively.
As shown in Figure 3, these two networks are fed an image
Xi with the same augmentation and output the logits P 1

i

and P 2
i , respectively.

P 1
i = f(θ1,Xi), P 2

i = f(θ2,Xi). (3)

We then perform a pixel-wise argmax operation on P 1
i

(resp. P 2
i ) to generate the predictions Y 1

i (resp. Y 2
i ) in

an online manner.

Conventional WSSS methods train the segmentation
network by minimizing a cross-entropy loss against the
pseudo-labels in the second stage, i.e., LCE(P ,Y ). How-
ever, the noisy pseudo-labels Y subject the networks to ac-
cumulated errors. To address this issue, the proposed co-
training paradigm is designed to impose consistency in the
predictions of the two networks for uncertain pixels. Here
the pixel pseudo-labels with low confidence (i.e., Mij = 0)
are regarded as uncertain labels. And the remaining pixel
annotations with Mij = 1 are regarded as high-confidence
labels. In particular, we use the pseudo-labels Y as the su-
pervision of the two networks on the high-confidence pix-
els. For the low-confidence pixels, we use the online predic-
tions Y 1 (resp. Y 2) from another network as a guide. The
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co-training loss for each network is formulated as follows:

L1
COT =

1

Np

N∑
i=1

HW∑
j=1

(MijLCE(P
1
ij ,Yij)

+(1−Mij)LCE(P
1
ij ,Y

2
ij)),

(4)

L2
COT =

1

Np

N∑
i=1

HW∑
j=1

(MijLCE(P
2
ij ,Yij)

+(1−Mij)LCE(P
2
ij ,Y

1
ij)),

(5)

where Np represents the number of all pixels in a mini-
batch. Finally, the total co-training loss is

LCOT = L1
COT + L2

COT . (6)

3.3. Boundary Construction Strategy

To boost the prediction on difficult boundary areas, we
propose to highlight their predictions by assigning a larger
weight to the co-training loss. Before introducing the
boundary-enhanced method, we elaborate on the boundary
construction strategy, aiming at getting the boundary pixels
along with accurate labels. The way is to copy and paste
the high-confidence area in an image to another image. As
mentioned in Sec. 1, the high-confidence pixels tend to lie
inside the objects and can be almost correctly predicted,
which facilitates the network to learn the true boundary. So
we exploit the ensemble of predictions P i from both net-
works for an input image Xi, which can generate a more
reliable online pseudo-label Y i. And we further filter out
low-confidence pixels below a threshold τ

M ij =

⎧⎪⎨
⎪⎩
1, if k = argmaxc∈C P

c

ij

and softmax(P
k

ij) > τ,

0, otherwise,

(7)

where M i is the confidence mask of Y i.
After acquiring (Y ,M) for images X , we construct

boundary areas by mixing the data within a mini-batch.
Figure 4 illustrates the process of our boundary construc-
tion. Specifically, given a pair of samples (X1,X2) and
their corresponding labels (Y 1,Y 2) and confidence masks
(M1,M2), we randomly select half of the classes present
in Y 1 to obtain a binary mask M c1. This class mask is fur-
ther filtered by confidence mask M1, which produces the
high-confidence class mask M ch1

M ch1 = M c1 ⊗M1, (8)

where ⊗ denotes the spatially element-wise multiplication.
Then M ch1 is used to construct the boundary-aware sam-
ples (X

′
,Y

′
,M

′
) by

X
′
= M ch1 ⊗X1 + (1−M ch1)⊗X2, (9)

Dilation-Erosion

Label1

Image1

Label2

Image2

Mixed label

Mixed image

Boundary

Mask1 Mask2 Mixed mask

Class mask

Figure 4. Illustration of the boundary construction strategy. Best
viewed in color.

Y
′
= M ch1 ⊗ Y 1 + (1−M ch1)⊗ Y 2, (10)

M
′
= M ch1 ⊗M1 + (1−M ch1)⊗M2. (11)

And a binary boundary map B
′

is generated by perform-
ing a subtraction operation between the dilated and eroded
variants of M ch1.

B
′
= Dilation(M ch1)− Erosion(M ch1). (12)

In B
′
, the elements of 1 represent the artificial boundary

pixels in the new image X
′
.

3.4. Boundary-enhanced Co-training Learning

In this section, we present the boundary-enhanced co-
training learning by combining the above two components.
To be specific, for a mini-batch of data (X,Y ,M) which
has N training samples, the proposed boundary construc-
tion strategy transforms X into boundary-aware samples
(X

′
,Y

′
,M

′
,B

′
). For the convenience of description, we

denote the union of the original samples and the newly
generated samples as (X,Y ,M ,B), where the Bi corre-
sponding to the boundary-unknown image Xi is an all-zero
matrix. The BECO model is jointly fed the original images
and the boundary-aware images with a joint ratio of 1 : 1,
and is optimized through the proposed co-training.

To further improve the prediction of the model to the
boundary regions, we propose to reweight the co-training
loss according to the boundary map, i.e., a larger weight
is assigned to the pixels at the boundary. Note that the
boundary map B is generated from the high-confidence
class mask, so B only affects the high-confidence pixels.
Based on Eq. (4) (resp. Eq. (5)), the BECO loss of each
network is reformulated as follows.

L1
BECO = L1

COT +
1

Np

N∑
i=1

HW∑
j=1

λBijMijLCE(P
1
ij ,Yij),

(13)
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L2
BECO = L2

COT +
1

Np

N∑
i=1

HW∑
j=1

λBijMijLCE(P
2
ij ,Yij),

(14)
where λ is a weight controlling the strength of the loss on
the boundary. Eventually, the overall BECO loss is

LBECO = L1
BECO + L2

BECO. (15)

4. Experiments
4.1. Experiment Settings

Datasets and evaluation metrics. We conduct our exper-
iments on the most popular benchmarks in the WSSS, i.e.,
PASCAL VOC 2012 [9] and MS COCO 2014 [36]. Fol-
lowing the previous works [27, 31, 48, 56, 63, 69], the PAS-
CAL VOC 2012 dataset is usually augmented with the SBD
dataset [15]. As a result, 10582 images are used for training,
1449 for validation, and 1456 for test. The dataset consists
of 20 foreground classes and one background class for the
WSSS task. For MS COCO 2014, it contains 81 categories
including a background category, with 82,783 training im-
ages and 40,504 validation images. Only the image-level
ground-truth labels are allowed to be used for the genera-
tion of pseudo-labels. Along the previous works, the mean
Intersection-over-Union (mIoU) is used as the evaluation
metric for all experiments.
Implementation details. Unless otherwise specified, we
use IRN [1], which is the basis for many subsequent WSSS
works, to generate pseudo-labels in the first stage, and ob-
tain the confidence masks with a ratio r=50%. For the
second stage of WSSS, the BECO adopts two standard
DeeplabV3+ [11] as the segmentation networks, each of
which uses ResNet101 [16] as the backbone with an out-
put stride (os) of 16. All backbones are pretrained on Im-
ageNet [7]. In the training phase, the input images are
augmented with random scaling, random horizontal flip-
ping, and randomly cropped into the size of 512. Note that
we do not use some general tricks like multi-scale, os of
8, and COCO pretrained model in training. During infer-
ence, we adopt multi-scale and dense CRF for label refine-
ment by following previous works. We find that all hyper-
parameters introduced by BECO do not need to be heavily
tuned. More details are shown in Appendix A. For all exper-
iments, we use the same hyper-parameters. The threshold τ
used to generate the confidence masks is set as 0.95, the ker-
nel size of dilation and erosion is set as 3, and the boundary
weight λ is 0.2.

We train our model on 2 Nvidia RTX 3090 GPUs with
24 GB memory. SGD is adopted as the optimizer and the
initial learning rate is 10−2 with the polynomial learning
rate decay. The weight decay is 10−4, and the momentum
is 0.9. The BECO model is trained for 80 epochs and 40
epochs on VOC and MS COCO datasets, respectively, with
a common batch size of 16.

4.2. Ablation Study

To certify the effectiveness of BECO, we present exten-
sive ablation studies in this section. All experiments are
conducted on PASCAL VOC 2012 dataset. Our baseline is
a single DeeplabV3+ network trained with pseudo-labels.
Since BECO uses the predictions from two networks, for
fair comparison, we also report the results of an ensemble of
two separately trained networks, denoted by ENSEMBLE.

Table 1. Performance of different pseudo-labels in terms of
mIoU(%) on VOC 2012 val set. BECO*: BECO without label
refinement.

Method
Pseudo-label IRN [1] ReCAM [6] AMN [29]

64.0 67.2 68.8
Baseline 65.1 67.1 67.9

ENSEMBLE 66.2 (+1.1) 67.6(+0.5) 68.3 (+0.4)
COT 68.2 (+2.0) 68.7(+1.1) 70.2 (+1.9)

BECO* 70.9 (+2.7) 70.9 (+2.2) 71.8 (+1.6)
BECO 72.1 (+1.2) 71.9 (+1.0) 73.0 (+1.2)

Analysis of the proposed components with different
pseudo-labels. We evaluate the effectiveness of BECO on
different noisy pseudo-labels in Table 1. Besides IRN [1],
we use the pseudo-labels generated by ReCAM [6] and
AMN [29]. The mIoU of pseudo-labels in the training
set are 64.0%, 67.2%, and 68.8%, respectively. The gap
between our reproduced baseline and paper results in Re-
CAM [6] and AMN [29] is because we do not use tricks
like multi-scale, os 8, and CRF here. As shown in Ta-
ble 1, compared with the baseline, the ENSEMBLE im-
proves the mIoU up to 0.7% on average. Our co-training
paradigm COT outperforms the ENSEMBLE by a consid-
erable margin, i.e., 1.7% on average. By further applying
the boundary-enhanced strategy to COT, BECO* achieves a
2.2% improvement on average compared with the ENSEM-
BLE. The results validate the effectiveness of our proposed
method for different CAMs.

Table 2. Performance of different backbones in terms of mIoU(%)
on VOC 2012 val set. BECO*: BECO without label refinement.

Method ResNet101 MiT-B2
Baseline 65.1 68.7

ENSEMBLE 66.2 (+1.1) 69.0(+0.3)
COT 68.2 (+2.0) 71.0(+2.0)

BECO* 70.9 (+2.7) 73.0(+2.0)
BECO 72.1 (+1.2) 73.7(+0.7)

Effect with different backbones. We also investigate
the effect of our proposed method using different back-
bones. The BECO trains the popular convolutional network
DeeplabV3+ with ResNet101 as the backbone as well as the
latest segmentation transformer SegFormer [60] with MiT-
B2 as the backbone. As shown in Table 2, our proposed
COT and BECO surpasses the ENSEMBLE by 2.0% and
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(a) Image (b) Baseline (c) BECO (d) GT

Figure 5. Visualization of segmentation results on PASCAL VOC
2012 val set.

5.3% mIoU on average respectively, which demonstrates
the superiority of our method.

Table 3. Effect of single network in terms of mIoU(%) on VOC
2012 val set. BECO*: BECO without label refinement.

Method Ensemble Network1 Network2
ENSEMBLE 66.2 65.1 65.5

BECO* 70.9 (+4.7) 70.2(+5.1) 70.7 (+5.2)
BECO 72.1 (+1.2) 71.4(+1.2) 71.8 (+1.1)

Improvement on a single network. Considering that our
co-training paradigm consists of two networks, we investi-
gate the performance of the single network in BECO. We
collect the mIoU of two single networks from ENSEMBLE
and BECO in Table 3. BECO (single) significantly outper-
forms the ENSEMBLE (single), indicating that our method
effectively improves the robust learning of single network
from noisy labels. Moreover, the result of ENSEMBLE is
0.9% higher mIoU than its single network results on aver-
age, while the results of BECO single network are compa-
rable to the BECO. As our co-training paradigm encourages
both networks to learn consistent outputs, the final perfor-
mance of a single network is not much different from that
of their ensemble.
Improvement on boundary prediction. To validate the
prediction of BECO on the boundary areas, we show some
qualitative segmentation results from the PASCAL VOC
2012 val set in Figure 5. Compared with the baseline, our
BECO not only improves the prediction on difficult bound-
ary areas (e.g., the boundary of cow and boat), but also
complements the object segmentation (e.g., the dogs and
the middle bottle). The quantitative results of boundary im-
provement are provided in Appendix A.7.

4.3. Comparison with State-of-the-arts

PASCAL VOC 2012. Table 4 gives the performance com-
parison of the proposed BECO to the state-of-the-art WSSS

Table 4. Performance comparison of WSSS methods in terms of
mIoU (%) on the PASCAL VOC 2012 val and test sets using dif-
ferent segmentation backbones. Sup.: supervision. I: image-level
ground-truth labels. S: off-the-shelf saliency maps.

Method Backbone Sup. Val Test

CNN-based methods.
ICD (CVPR20) [10] ResNet101 I+S 67.8 68.0
EDAM (CVPR21) [57] ResNet101 I+S 70.9 70.6
EPS (CVPR21) [30] ResNet101 I+S 71.0 71.8
AuxSegNet (ICCV21) [63] ResNet38 I+S 69.0 68.6
DRS (AAAI21) [23] ResNet101 I+S 71.2 71.4
SANCE (CVPR22) [31] ResNet101 I+S 72.0 72.9
IRN (CVPR19) [1] ResNet50 I 63.5 64.8
SEAM (CVPR20) [56] ResNet38 I 64.5 65.7
RIB (NIPS21) [25] ResNet101 I 68.3 68.6
PMM (ICCV21) [35] ResNet101 I 68.5 69.0
URN (AAAI22) [34] ResNet101 I 69.5 69.7
PPC (CVPR22) [8] ResNet101 I 67.7 67.4
ReCAM (CVPR22) [6] ResNet101 I 68.5 68.4
AMN (CVPR22) [29] ResNet101 I 69.5 69.6
ADELE (CVPR22) [38] ResNet101 I 69.3 68.8
AEFT (ECCV22) [66] ResNet101 I 70.9 71.7
BECO (single) ResNet101 I 71.8 71.8
BECO ResNet101 I 72.1 71.8

Transformer-based methods.
AFA (CVPR22) [45] MiT-B1 I 66.0 66.3
MCTformer (CVPR22) [64] ResNet38 I 71.9 71.6
ViT-PCM (ECCV22) [44] ResNet101 I 70.3 70.9
BECO MiT-B2 I 73.7 73.5

methods on PASCAL VOC 2012. BECO achieves 72.1%
and 71.8% mIoU using the ImageNet pretrained backbone,
which achieves new state-of-the-art performance for Image-
level WSSS. It outperforms the reported performance of
IRN by 8.6% and 7%, and gets the gain over other IRN-
based methods such as ReCAM [6] (3.6% and 3.4%) and
AMN [29] (2.6% and 2.2%). Besides, the single-network
version of our method can also achieve excellent perfor-
mance, as reported in BECO (single). Compared to the
methods with additional saliency maps (obtained from a
given saliency detection model), e.g., SANCE [31] and
DRS [23], our method also achieves competitive perfor-
mance. Furthermore, our method with the transformer
(MiT-B2) as the backbone outperforms other transformer-
based methods like MCTformer [64]. MCTformer [64]
and ViT-PCM [44] introduce the transformer into the first
stage to improve CAMs for getting better pseudo-labels,
and achieve better performance than the CNN-based meth-
ods. However, they ignore the second-stage segmentation
network (i.e., still using Deeplab with ResNet as the back-
bone). The results in Table 4 show that our BECO can sur-
pass MCTformer by at least 1.8% and 1.9%. In particular,
due to the difficulty of single-stage methods, AFA [45] can-
not achieve similar results as the two-stage methods, even
employing a transformer network as the backbone for clas-
sification and segmentation.
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Table 5. Performance comparison of WSSS methods in terms of
mIoU(%) on the MS COCO val set.

Method Backbone Sup. Val

OC-CSE (ICCV21) [24] ResNet38 I 36.4
CDA (ICCV21) [48] ResNet38 I 33.2
MCTformer (CVPR22) [64] ResNet38 I 42.0
URN (CVPR22) [34] ResNet101 I 40.7
IRN (CVPR19) [1] ResNet101 I 41.4
RIB (NeurIPS21) [25] ResNet101 I 43.8

BECO ResNet101 I 45.1

MS COCO 2014. To further demonstrate the superiority of
our method, we also report the performance on the more
challenging MS COCO 2014 dataset. Table 5 gives the
comparison results on the MS COCO 2014 validation set.
Evidently, BECO achieves a new state-of-the-art of 45.1%
mIoU, indicating the effectiveness of BECO on the large-
scale dataset.

4.4. Discussion

In this section, we further discuss the question raised in
Section 1: Can better pseudo-labels guarantee to train a
better segmentation model? Before answering this ques-
tion, we explore the performance gap of the single network,
the ensemble of two single networks, and BECO among
different pseudo-labels. In particular, Figure 6 shows the
performance gap of ReCAM vs. IRN and AMN vs. IRN,
respectively. Originally, the mIoU of the ReCAM pseudo-
labels is 3.2% higher than that of the IRN pseudo-labels
(ReCAM 67.2% mIoU vs. IRN 64.0% mIoU). However, af-
ter training a single model, the performance gap is reduced
to 0.8%. Evidently, compared with IRN, the better ReCAM
pseudo-labels with a higher mIoU do not bring an evident
improvement to the ensemble model and our BECO. When
the mIoU gap of initial pseudo-labels is increased to 4.8%
(AMN 68.8% mIoU vs. IRN 64.0% mIoU), we can observe
a similar phenomenon that the performance gap is signifi-
cantly reduced by the second-stage learning. Therefore, we
argue that the better pseudo-labels cannot guarantee to train
a better segmentation model.

Moreover, we argue that some regions can also be cor-
rectly predicted even without precise supervision as the
deep network generally possesses some generalization abil-
ity. On these regions, therefore, the better pseudo-labels
provided by some advanced methods cannot further boost
the performance of the segmentation network. As shown
in the first row of Figure 7, the DeeplabV3+ model trained
with IRN pseudo-labels (d) can recognize the area in the
green rectangle, and it does not require precise supervision
on this area like the ReCAM pseudo-labels (c). In addition,
as shown in the second row of Figure 7, though a naively
trained DeeplabV3+ model cannot generalize well (d) on
the area with noisy pseudo-labels (b), our proposed BECO
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m
Io

U

Performance gap comparison on VOC2012

ReCAM-IRN AMN-IRN ReCAM-IRN AMN-IRN

Initial gap Model Performance gap

Figure 6. Illustration of the performance gap of ReCAM and AMN
on PASCAL VOC 2012 compared to IRN.

(a) (b) (c) (d) (e)

Figure 7. Visualization of pseudo-labels and prediction results
on the PASCAL VOC 2012 train set. (a) Input images, (b) IRN
pseudo-labels, (c) ReCAM pseudo-labels, (d) Prediction of the
DeeplabV3+ naively trained with IRN pseudo-labels, and (e) Pre-
diction of BECO trained with IRN pseudo-labels.

still performs well (e) that does not need the help of ReCAM
pseudo-labels (c). The above experimental results illustrate
the importance of the second-stage robust learning of WSSS
again.

5. Conclusion

In this work, we present the inconsistency between the
quality of the pseudo-labels in CAMs and the performance
of the segmentation model, and then suggest that the atten-
tion of WSSS should be shifted from the pseudo-label gen-
eration to the robust learning with noisy labels. We further
propose a boundary-enhanced co-training(BECO) method
for the robust learning of segmentation, which improves
the learning of uncertain pixels and boosts the prediction
of difficult boundary areas. Extensive experiments validate
the effectiveness of our proposed BECO, which achieves
the state-of-the-art performance on the PASCAL VOC 2012
and MS COCO 2014.
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