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Abstract

Weakly-Supervised Semantic Segmentation (WSSS) us-
ing image-level labels typically utilizes Class Activation
Map (CAM) to generate the pseudo labels. Limited by the
local structure perception of CNN, CAM usually cannot
identify the integral object regions. Though the recent Vi-
sion Transformer (ViT) can remedy this flaw, we observe it
also brings the over-smoothing issue, i.e., the final patch to-
kens incline to be uniform. In this work, we propose Token
Contrast (ToCo) to address this issue and further explore
the virtue of ViT for WSSS. Firstly, motivated by the obser-
vation that intermediate layers in ViT can still retain se-
mantic diversity, we designed a Patch Token Contrast mod-
ule (PTC). PTC supervises the final patch tokens with the
pseudo token relations derived from intermediate layers, al-
lowing them to align the semantic regions and thus yield
more accurate CAM. Secondly, to further differentiate the
low-confidence regions in CAM, we devised a Class Token
Contrast module (CTC) inspired by the fact that class tokens
in ViT can capture high-level semantics. CTC facilitates the
representation consistency between uncertain local regions
and global objects by contrasting their class tokens. Exper-
iments on the PASCAL VOC and MS COCO datasets show
the proposed ToCo can remarkably surpass other single-
stage competitors and achieve comparable performance
with state-of-the-art multi-stage methods. Code is available
at https://github.com/rulixiang/ToCo.

1. Introduction

To reduce the expensive annotation costs of deep seman-
tic segmentation models, weakly-supervised semantic seg-
mentation (WSSS) is proposed to predict pixel-level predic-
tions with only weak and cheap annotations, such as image-
level labels [2], points [4], scribbles [51] and bounding
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Figure 1. The generated CAM and the pairwise cosine simi-
larity of patch tokens (sim. map). Our method can address the
over-smoothing issue well and produce accurate CAM. Here we
use ViT-Base.
boxes [23]. Among all these annotation forms, the image-
level label is the cheapest and contains the least informa-
tion. This work also falls in the field of WSSS using only
image-level labels.

Prevalent works of WSSS using image-level labels typ-
ically derive Class Activation Map (CAM) [53] or its vari-
ants [35] as pseudo labels. The pseudo labels are then pro-
cessed with alternative refinement methods [, 2] and used
to train regular semantic segmentation models. However,
CAM is usually flawed since it typically only identifies the
most discriminative semantic regions, severely weakening
the final performance of semantic segmentation [ 1, 19,43].
The recent works [15,34,47] show one reason is that pre-
vious methods usually generate CAM with CNN, in which
convolution only perceives local features and fails to acti-
vate the integral object regions. To ameliorate this problem
and generate more accurate pseudo labels for WSSS, these
works propose solutions based on the recent Vision Trans-
former (ViT) architecture [ 12], which inherently models the
global feature interactions with self-attention blocks.

However, as demonstrated in [29, 42], self-attention in
VIiT is essentially a low-pass filter, which inclines to re-
duce the variance of input signals. Therefore, stacking self-
attention blocks is equivalent to repeatedly performing spa-
tial smoothing operations, which encourages the patch to-
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kens in ViT to be uniform [16, 36], i.e., over-smoothing.
We observe that the over-smoothing issue particularly im-
pairs the WSSS task, since CAM used to derive pseudo
labels relies on the output features (i.e. patch tokens). As
shown in Figure 1, due to over-smoothing, the pairwise co-
sine similarities of the patch tokens are close to 1, suggest-
ing the learned representations of different patch tokens are
almost uniform. The generated CAM thus tends to assign
different image regions with the monotonous semantic la-
bel. Though several recent works have explored the ViT
architecture for WSSS [34, 39,47], they typically overlook
the over-smoothing issue of patch tokens, leaving this prob-
lem unresolved.

In this work, we empirically observe that ViT smooths
the patch tokens progressively, i.e. the learned representa-
tions in intermediate layers can still preserve the seman-
tic diversity. Therefore, we propose a Patch Token Con-
trast (PTC) module to address the over-smoothing issue by
supervising the final patch tokens with intermediate layer
knowledge. Specifically, in the PTC module, we simply add
an additional classifier in an intermediate layer to extract
the auxiliary CAM and the corresponding pseudo pairwise
token relations. By supervising the pairwise cosine simi-
larities of final patch tokens with the pseudo relations, PTC
can finely counter the over-smoothing issue and thus pro-
duce high-fidelity CAM. As shown in Figure 1, our method
can generate CAM that aligns well with the semantic object
regions. The pairwise cosine similarities also coincide with
the corresponding semantics. In addition, to further differ-
entiate the uncertain regions in generated CAM, inspired by
the property that the class token in ViT can inherently ag-
gregate high-level semantics [6, | 5], we also propose a Class
Token Contrast (CTC) module. In CTC, we first randomly
crop local images from uncertain regions (background re-
gions), and minimize (maximize) the representation differ-
ence between the class tokens of local and global images.
As a result, CTC can facilitate the local-to-global represen-
tation consistency of semantic objects and the discrepancy
between foreground and background, benefiting the integral
and accurate object activation in CAM. Finally, based on the
proposed PTC and CTC, we build Token Contrast (ToCo)
for WSSS and extend it to the single-stage WSSS frame-
work [34].

Overall, our contributions in this work include the fol-
lowing aspects.

* We propose Patch Token Contrast (PTC) to address the
over-smoothing issue in ViT. By supervising the final to-
kens with intermediate knowledge, PTC can counter the
patch uniformity and significantly promote the quality of
pseudo labels for WSSS.

* We propose Class Token Contrast (CTC), which contrasts
the representation of global foregrounds and local uncer-
tain regions (background) and facilitates the object acti-

vation completeness in CAM.

* The experiments on the PASCAL VOC [14] and MS
COCO dataset [26] show that the proposed ToCo can sig-
nificantly outperform SOTA single-stage WSSS methods
and achieve comparable performance with multi-stage
competitors.

2. Related Work

Weakly-Supervised Semantic Segmentation. Weakly-
Supervised Semantic Segmentation (WSSS) using image-
level labels typically generates CAM as the initial pseudo
labels. A typical drawback of CAM is that it usually
only activates the most discriminative regions. To ad-
dress this drawback, recent works proposed various training
schemes, such as erasing [44], online attention accumula-
tion [ 18] and cross-image semantic mining [38]. [7,33,43]
propose to leverage auxiliary tasks to regularize the train-
ing objective, such as visual words learning [33], sub-
category exploration [7], and scale in-variance regulariza-
tion [43]. [24, 49] utilize extra saliency maps as supervi-
sion to suppress the background regions and mine the non-
salient objects. [22,37,46] counter the problem of seman-
tic co-occurrence via distilling knowledge from CLIP [30],
decoupling object context [37] and comparing the out-of-
distribution images [22], respectively. [9, 13,54] contrast the
pixel and prototype representations to encourage the inte-
gral activation of the object regions. Typically, these meth-
ods are built upon the CNN network, inheriting the locality
flaw. In this work, we explore ViT for WSSS to avoid this
drawback and achieve integral object activation.
Vision Transformer for WSSS. Vision Transformer (ViT)
has achieved great success in various vision tasks [5, 12,20,
,48]. Some recent works also introduce ViT to WSSS
[15, 34, 39,47]. Inspired by the property that the class
token in ViT can capture the foreground information [6],
TS-CAM [15] extracts the class-agnostic attention map and
couples it with the naive semantic-aware CAM. [39] pro-
poses to derive the gradients of the attention map and ex-
tracts the attention of class token w.r.t. other tokens as
the class-specific maps. MCTformer [47] embeds multiple
class tokens and enforces them learning the activation maps
of different classes. AFA [34] proposes to learn reliable se-
mantic affinity from the attention blocks to refine the initial
coarse labels. However, these methods typically overlook
the over-smoothing issue of ViT. Besides, they need to mod-
ify the ViT architecture or extract the costly gradients at the
inference stage. In this work, we propose ToCo to solve the
over-smoothing issue without modification to architecture
and further unlock the potential of ViT on the WSSS task.

3. Preliminaries

In this section, we briefly introduce the preliminary
knowledge of class activation map (CAM), Vision Trans-
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Figure 2. The average pairwise cosine similarity of patch to-
kens in each Transformer block. The cosine similarity is com-
puted on the VOC train set. Here we use the ViT-Base (ViT-
B) [12] architecture which includes 12 Transformer blocks.

former (ViT), and over-smoothing in ViT.

3.1. Class Activation Map

CAM [53] is proposed to identify the activated regions
when a classification network predicts an image. Due to its
efficacy and simplicity, CAM has been widely used to gen-
erate the initial pseudo labels for WSSS. Specifically, given
an image, its feature maps F € R"*4 are extracted with a
classification network (CNN or ViT), where hw and d de-
note the number of spatial and channel dimension, respec-
tively. The CAM is computed by weighting and summing
the feature maps with the weights W € R¢* in the clas-
sification layer, where c is the number of semantic classes.
The relu function and max normalization are then applied
to eliminate the negative activation and scale the CAM to
[0, 1]. Therefore, CAM for class c is thus calculated as

relu(M.)

CANe(F, W) = (relu(M.))

Me = W Foi (D)
A background threshold f is usually used to differentiate
the background and foreground regions.

3.2. Vision Transformer & Over-smoothing

An ViT firstly splits an image into patches to form the
initial patch tokens. Then the patch tokens are concatenated
with an extra learnable class token and feed into the Trans-
former encoder to obtain the final patch and class tokens. As
the key component, in each Transformer block, the multi-
head self-attention (MHSA) is used to perform the global
feature interaction. However, due to the low-pass prop-
erty of self-attention [29, 42], after multiple Transformer
blocks, the output patch tokens incline to be uniform, which
severely affects the CAM according to Equation 1.

In Figure 2, we visualized the pairwise cosine similarity
of the patch tokens generated in each Transformer block.
Figure 2 shows that the patch tokens in the late layers are
highly similar, while the early layers can still preserve the

semantic diversity. This observation motivates us to address
the over-smoothing issue by supervising the final layer to-
kens with knowledge from intermediate layers.

4. Methodology

This section elaborates on the proposed method, i.e. To-
ken Contrast (ToCo) for WSSS. We first introduce the over-
all framework of ToCo. Then the Patch Token Contrast
(PTC) and Class Token Contrast (CTC) are proposed to ad-
dress the over-smoothing issue and further exploit the virtue
of ViT for WSSS, respectively. Finally, we present the train-
ing objective of ToCo and how to plug it into the single-
stage WSSS framework.

4.1. Overview

As illustrated in Figure 3, ToCo uses an auxiliary clas-
sification layer in the ViT encoder to produce the auxil-
iary CAM. The auxiliary CAM is subsequently leveraged
to generate the auxiliary pseudo labels and guide the PTC
module. Meanwhile, it’s also used to produce proposals to
crop positive and negative local images for the CTC mod-
ule. The final CAM is obtained with a classification layer
and used to generate the final pseudo labels.

4.2. Patch Token Contrast

The objective of the Patch Token Contrast (PTC) module
is to address the over-smoothing issue of the final patch to-
kens. As aforementioned, since the intermediate layers can
still preserve the semantic diversity of patch tokens, in PTC,
we leverage knowledge from the intermediate layer, i.e. re-
liable pairwise token relations in Figure 3, to supervise the
final patch tokens.

Specifically, an input image X is firstly tokenized to
construct initial patch tokens and then passed through the
Transformer encoder. For a given intermediate layer, the
output patch tokens are denoted as F™ € R"*¢, where
n and d denotes the number of tokens and the feature di-
mension, respectively. As shown in Figure 3, to extract the
semantic-aware knowledge, we add an auxiliary classifica-
tion layer to perform classification and generate CAM. In
practice, we observe that not all intermediate layers produce
satisfactory CAM for supervising PTC, since late layers in-
cline to smooth the patch tokens while early layers may fail
to capture high-level semantics. The choice of the interme-
diate layer will be discussed in Section 5.3.

In the auxiliary classification head, the patch tokens F'™
are firstly aggregated via global max-pooling (GMP) as sug-
gested in [34] and then projected with a fully-connected
layer parameterized with 8™ to calculate the auxiliary clas-
sification loss L7},. Therefore, the auxiliary CAM is com-
puted as

M™ = CAM(F™, ™). )
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Figure 3. The overall framework of ToCo. ToCo firstly uses an additional classification layer (cls. layer) to produce the auxiliary CAM
(auzxz. CAM). In the PTC module, the auz. CAM is used to derive token relations and supervise the pairwise token similarities of final
patch tokens to address the over-smoothing issue. In the CTC module, the class tokens of the negative/positive images will be projected
and contrasted with the global class token to further differentiate the low-confidence regions in CAM. The pseudo label is generated with

the final CAM.

We then use two background thresholds 3;, 8, (0 < 5; <
Br < 1) to segment M™ to the pseudo token label Y™,
which consists of reliable foreground, background and un-
certain regions.

Patch Token Contrast Loss. The generated token label
Y™ is used to derive reliable pairwise relations for super-
vising the final patch tokens. Specifically, if two tokens
share the same semantic label, they are labeled as positive
pairs; otherwise, they are labeled as negative pairs. In ad-
dition, to ensure reliability, we only consider two tokens
that both belong to the reliable foreground or background
regions and ignore the uncertain regions. To remedy the
over-smoothing issue, we maximize the similarity of two fi-
nal patch tokens that belong to positive pairs and minimize
the similarity otherwise. Let F € R"*< be the final layer
patch tokens, the loss function for the PTC module is then
constructed as

1 .
Lpte = NF Z (1 — CosSim(Fy, F;))
Y,i:Yj
) ®
+ = Z CosSim(F;, F;),
Y, #Y;

where CosSim(-,-) computes the cosine similarity and
NT/N~ counts the number of positive/negative pairs.
However, minimizing the original cosine similarity cannot
ensure the diversity [10, 16], since a token pair with mi-
nus cosine similarity (e.g., —1) could be highly correlated.
Therefore, in practice, in Equation 3, we use the absolute
cosine similarity instead of the original form. By minimiz-
ing Equation 3, the representations of positive tokens are
encouraged to be more consistent, while the negative tokens
pairs are more discriminative, so that the over-smoothing is-
sue can be well addressed.

4.3. Class Token Contrast

Addressing the over-smoothing with PTC can drive ViT
to generate compelling CAM and pseudo labels. However,
inevitably, there are still some less discriminative object re-
gions that are hard to differentiate in CAM. Inspired by the
property that class tokens in ViT can aggregate the high-
level semantics [0, 15], we design a Class Token Contrast
(CTC) module to facilitate the representation consistency
between the local non-salient regions and the global object,
which can further enforce more object regions to be acti-
vated in CAM.

As illustrated in Figure 4, given an image, we first ran-
domly crop the local images from the uncertain regions
specified by its auxiliary CAM. Since the class token in
ViT captures the information of semantic objects [0, | 5], the
class tokens of global and local images aggregate the infor-
mation of the global and the local objects, respectively. By
minimizing the difference between global and local class to-
kens, the representation of entire object regions can be more
consistent.

To counter the case that the cropped local images may
contain few/no foreground objects, as shown in Figure 3,
we also crop some local images from background regions.
By maximizing the difference between class tokens of
global image and local background regions, the foreground-
background discrepancy can be also facilitated. In practice,
we randomly crop a fixed number of local images and as-
sign them as positive (from uncertain regions) or negative
(from background regions) with the guidance of Y™ in Sec-
tion 4.2.

Specifically, the global and local class tokens are first
passed through the projection head P9 and P!, respec-
tively, which consist of linear layers and an L2 normaliza-
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Figure 4. Illustration of the crop method in Figure 3.

tion layer. Assuming p denotes the projected global class
token, and Q*/Q~ denotes the set of projected local class
tokens cropped from uncertain/background regions, the ob-
jective of CTC is to minimize/maximize the difference be-
tween p and the local class tokens in QT/Q~. Here we use
the InfoNCE loss [27] as the objective, i.e.

e(qu+/T)

1
Lete = — E lo 5
t N+ = S eTat/n 5 o ePTa™/7) 4 ¢

“

where qt € O, q~ € Q—, N* counts the number of O,
T is the temperature factor, and € is a small positive value
for stability. It’s noted that CTC aims to enforce the local
view representation to align the global view’s. Therefore,
we stop the gradient of the projection head P9. To update
P9, we use the exponential moving average (EMA), i.e.,
09 < ph9 + (1 — p)6', where p is the momentum factor, §9
and 6! are parameters from P9 and P, respectively.

4.4. ToCo for WSSS

Training Objective. As shown in Figure 3, except the to-
ken contrast losses L. and L., the training objective of
the proposed ToCo also includes the classification loss L5
and auxiliary classification loss £]},. Following the com-
mon practice, we use the multi-label soft margin loss for
both L5 and L]},. The optimization objective of ToCo is
the weighted sum of these loss terms:

[«toco - [*cls + [f:-rlls + )\llcptc + )\2£ctc~ (5)

Single-Stage WSSS. We plug the proposed ToCo into the
single-stage WSSS framework. Specifically, the pseudo
labels produced by ToCo are then refined with a pixel-
adaptive refinement module (PAR) [34] to align the low-
level semantic boundaries. The refined pseudo labels will
be used to supervise the segmentation decoder. We use the
common cross-entropy loss as the segmentation loss Lgeg.
The overall training objective should thus include L., i.e.
L = Lipco + A3Lseq. Following previous single-stage
WSSS works [28, 33], we also use an extra regularization
loss term [40] to enforce the spatial consistency of the pre-
dicted segmentation masks.

Method Backbone | train wval

WR38 - 654
WR38 66.9 65.3
WR38 68.2 65.8
WR38 67.1 66.2
MiT-B1 68.7 66.5
ViT-PCM [32] rccvea022 ViT-Bf 67.7 66.0
ViT-PCM + CRF [32] eccvao ViT-B' 71.4 69.3
ToCo ViT-B 72.2 70.5
ToCo' ViT-Bf 736 723

RRM [50] aaar200
1Stage [3] cver2020
AA&LR [52] acMmm021
SLRNet [28] vcvao22
AFA [34] cver2022

Table 1. Evaluation of pseudo labels. { denotes using ImageNet-
21k [31] pretrained parameters.

5. Experiments
5.1. Experimental Settings

Datasets. We evaluate the proposed method on the PAS-
CAL VOC 2012 [14] and MS COCO 2014 dataset [26].
Following common practice, VOC 2012 dataset is further
augmented with the SBD dataset [17]. The train, val,
and test set of the augmented dataset consist of 10582,
1449, and 1456 images, respectively. For COCO 2014
dataset, the train and val set consist of about 82k and
40k images, respectively. In the training stage, we only use
image-level labels. By default, we report mloU as the eval-
uation metric.

Network Architectures. We use the ViT-base (ViT-B) [12]
as the backbone, which is initialized with ImageNet pre-
trained weights [31]. To ensure the backbone accepts input
images of arbitrary size, the pos_embedding will be re-
sized to input size via bilinear interpolation. The projection
heads in the CTC module, i.e. P9 and P! in Figure 3, con-
sist of 3 linear layers and an L2-normalization layer. The
parameters in projection heads are randomly initialized. We
use a simple segmentation head as the decoder, which con-
sists of two 3 x 3 convolutional layers (with a dilation rate
of 5)and a 1 x 1 prediction layer.

Implementation Details. We train ToCo with an AdamW
optimizer. The learning rate linearly increases to 6e~ in the
first 1500 iterations and decays with a polynomial scheduler
for later iterations. The warm-up and decay rates are set as
1e=% and 0.9, respectively. For experiments on the VOC
dataset, the batch size and total iterations are set as 4 and
20k, respectively. The crop size of global and local view
images are 4482 and 962, respectively. Besides, we fol-
low the multi-crop and data augmentation strategy in [6] for
global and local views. By default, the background thresh-
olds (8, Br) are set as (0.25, 0.7). The temperature factors
7 in Equation 4 is 0.5. The momentum factor for the EMA
process in the CTC module is set as 0.9. The weight fac-
tors (A1, A2, Ag) of the loss terms in Section 4.4 are set as
(0.2,0.5,0.1). In the inference stage, following the common
practice in semantic segmentation [8], we use multi-scale
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Figure 5. Visualization of CAM. From left to right, the CAM is generated with CNN baseline, AFA [34], ViT baseline, ViT with PTC,

ViT with PTC and CTC, and the proposed ToCo.

testing and dense CRF processing.

For the experiments on the COCO dataset, the network
is trained for 80k iterations with a batch size of 8. The
background thresholds (5;, 31,) are set as (0.25, 0.65), while
other settings remain the same. The impact of hyper-
parameters will be presented in Section 5.3 and Supplemen-
tary Material.

5.2. Experimental Results

Pseudo Labels. We first visualize the generated CAM with
ToCo in Figure 5. As shown in Figure 5, our method can re-
markably produce more integral and accurate CAM than the
CNN methods and the recent single-stage WSSS method,
i.e. AFA [34]. Compared to the ViT baseline, our ToCo
also remedies the over-smoothing issue well.

We report the quantitative evaluation results of the
pseudo labels generated with CAM in Table 1. The results
are evaluated on the t rain and val set of the VOC dataset
and compared with recent WSSS methods. Since ViT is
initially pretrained on ImageNet-21k, for a fair comparison
with other methods, we also report the results of ToCo with
the ImageNet-1k pretrained weights, i.e. DeiT [41]. Ta-
ble 1 shows that ToCo can produce higher quality pseudo
labels than the competitors with both the ImageNet-1k and
ImageNet-21k pretrained weights. Particularly, ToCo can
significantly outperform ViT-PCM [32] which also uses
ViT-Bf, even though the latter employs additional CRF

ttp://host . robots.ox.ac.uk:8080/anonymous /
KVI9AQH.html

Zhttp://host . robots . ox.ac.uk: 8080 /anonymous /
GNTBBZ.html

voCc |coco

‘ Sup. ‘ Net. ‘
‘ ‘ ‘val test‘ val

Multi-stage WSSS methods.

RIB [21] Neutps2021 7+ S|DL-V2|70.2 70.0 -
EPS [24] cver2021 Z+4+S|DL-V2|71.0 71.8 -
L2G [19] cver2022 Z+ S|DL-V2|(72.1 71.7 | 442
RCA [54] cver2022 7+ S|DL-V2|722 728 | 36.8
Du et al. [13] cver2022 Z+4+ S|DL-V2|72.6 73.6 -
RIB [21] Neurtps-2021 DL-V2 |68.3 68.6 | 43.8
ReCAM [ 1] cver2022 DL-V2 |68.4 682 | 45.0
VWL [33] nevaoz DL-V2|69.2 69.2 | 36.2
W-00D [22] cver2022 WR38 [70.7 70.1 -
MCTformer [47] cver2022 WR38 |71.9 71.6 | 42.0
ESOL [25] Neurtps'2022 DL-V2 699 69.3 | 42.6

Single-stage WSSS methods.

SESESESESES

1)

RRM [50] aaaraoz0 T WR38 |62.6 62.9 -
1Stage [3] cver2020 T WR38 [62.7 64.3 -
AFA [33] cver2022 7 |MiT-B1|{66.0 66.3 | 389
SLRNet [28] ucv2022 T WR38 |67.2 67.6 | 35.0
ToCo A ViT-B [69.8 70.5' | 41.3
ToCo' T |ViTB' |71.1 72.2° | 42.3

Table 2. Semantic Segmentation Results. Sup. denotes the su-
pervision type. Z: Image-level labels; S: Saliency maps. Net.
denotes the backbone network (for single-stage methods) and the
semantic segmentation network (for multi-stage methods). { de-
notes using ImageNet-21k [3 1] pretrained parameters.

post-processing.

Semantic Segmentation Results. The semantic segmenta-
tion results on the VOC and COCO datasets are reported
in Table 2. The proposed ToCo achieves 71.1%, 72.2%
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Figure 6. Semantic segmentation results on the VOC and COCO dataset. The last column shows a failure case.

Method | Backbone | val (F) val(Z)| ratio
1Stgae [3] WR38 80.8 627 | 77.59%
AFA [34] MiT-B1 | 78.7 66.0 | 83.86%
SLRNet [28] | WR38 80.8 67.2 | 83.17%
ToC ViT-B 80.5 69.8 | 86.71%
o0 ViT-Bf 82.3 71.1 | 86.39%

Table 3. The fully-supervised counterparts of single-stage
WSSS methods. F / 7 denotes the pixel- / image-level super-
vision. T denotes using ImageNet-21k [31] pretrained parameters.

and 42.3% mloU on the VOC val, test and COCO val
set, respectively, which largely outperform previous single-
stage methods. Particularly, our single-stage ToCo achieves
higher mIoU than multi-stage WSSS methods using image-
level labels only. Other multi-stage methods using extra
saliency maps (Z + S) only slightly outperform ToCo.

In Figure 6, we visualize and compare the predicted seg-
mentation masks of ToCo, AFA [34], and the ground truth
labels. Figure 6 shows ToCo can produce more accurate
segmentation masks than AFA. Our single-stage WSSS re-
sults are also very close to the ground truth.

5.3. Ablation and Analysis

Ablation. To investigate the impact of the proposed PTC
and CTC, in Table 4, we report the performance of the gen-
erated final CAM (M), auxiliary CAM (M™) and the se-
mantic segmentation results (Seg.). The results are evalu-
ated on the VOC val set.

We first show that due to over-smoothing, training a
baseline ViT with the classification loss (i.e. L.) can-
not produce reasonable CAM. Besides, adding an auxil-
iary classifier (i.e. L5 + L7},) can help derive the auxil-
iary CAM from the intermediate layer, but it still cannot
address the over-smoothing issue. The proposed PTC mod-
ule can finely address this issue and significantly improve
the quality of the generated CAM M, i.e. from 27.9% mloU
to 62.5% mloU. Table 4 also shows that the improvements
in the final layer also benefit the intermediate CAM M™,

Method | PTC CTC | Loy Lreg | M M™ | Seg.
Leis 27.8 - —
Ccls + ‘CZILS 27.9 538 -
v 625 57.8| -

N Y 672 60.7| -
LastLes |, /| o 69.9 61.2| 666
v v | v v |705 625] 681

Table 4. Ablation Study. M™: auxiliary CAM from the inter-
mediate layer; M: CAM from the final layer; Seg.: semantic seg-
mentation results.

improving M™ to 57.8% mloU. The CTC module further
improves the quality of pseudo labels by 4.7% mloU. It’s
noted that the segmentation loss also improves the CAM’s
quality, since we use PAR [33] to refine the pseudo labels
which enforce the pseudo labels to align better with the low-
level object boundaries. The regularization term L,  also
brings improvements to the semantic segmentation results.

Analysis of PTC. To demonstrate that PTC addresses the
over-smoothing issue well, in Figure 2, we compare the av-
erage pairwise cosine similarity of patch tokens of ViT with
and without PTC. We show that in the late layers, the av-
erage cosine similarity with PTC is remarkably lower than
the baseline. Note that the cosine similarity values decrease
after the 10 layer, since we choose the 10*" layer to pro-
duce the auxiliary labels and supervise the final CAM. We
also visualize the generated CAM with and without PTC in
Figure 5. Figure 5 shows PTC helps produce reasonable
CAM, which coincides with Table 4.

Analysis of CTC. The motivation of CTC is to encourage
the local-to-global consistency of semantic objects. In Fig-
ure 7, we visualize the attention map of class token w.r.t.
other patch tokens in ToCo. We show that for both the
global and local view, the class token finely captures the
foreground object information. Moreover, the class token
of the local view can learn the less salient regions that are
usually ignored in the global view, which fulfils our inten-
tion. In Figure 5, we also visualize the generated CAM with
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Block M M™ Seg. Size M Seg. Momentum M Seg.

#8 63.5 48.1 60.5 642 68.1 65.5 0 69.2 66.9

#9 67.6 55.1 64.8 802 69.3 67.3 0.1 69.0 67.1

#10 70.5 62.5 68.1 962 70.5 68.1 0.9 70.5 68.1

#11 43.1 45.2 40.3 1122 69.4 67.0 0.99 68.7 66.6
(a) Index of auxiliary block. (b) Crop size of local view. (c) Momentum in EMA.

Table 5. Impact of hyper-parameters. The performance is evaluated on the VOC val set. The default settings are marked in gray .

global

Figure 7. Visualization of the attention map of class token w.r.t.
patch tokens. The brighter region indicates a larger attention
value. Left: the global view image in CTC; Right: the local view
image randomly cropped from the global view in CTC.

CTC (ViT+PTC+CTC) and without CTC (ViT+PTC). Fig-
ure 5 also shows the proposed CTC can help to activate the
less discriminative regions, which accounts for the quanti-
tative improvements in Table 4.

A possible concern is that the objective of CTC may be

limited when the global image includes multiple semantics
but the local images only include partial semantics. How-
ever, as shown in Figure 7, the class token can capture
multi-class semantic information. Therefore, when a lo-
cal image only covers one semantic class, CTC can still
enforce local-global representation consistency, though it’s
not a perfect objective. Moreover, considering the whole
dataset, a semantic class usually co-occurs with multiple
other classes, so the optimization to different classes can
also be neutralized. Figure 5 shows CTC works well on
images with multiple semantics.
Fully-Supervised Counterparts. The single-stage meth-
ods in Table 2 use different backbones. To ensure the fair-
ness of comparison, we report their upper bound perfor-
mance on the VOC val set, i.e. the performance of their
fully-supervised counterparts. Table 3 shows that using
only image-level labels as supervision, ToCo with ViT-B
as backbone achieves 69.8% mloU, which is 86.71% of its
upper bound performance. In further, ToCo with ViT-Bf
as backbone can achieve higher performance. Compared to
ToCo, the previous methods, AFA [34] and SLRNet [28]
only achieve 83.86% and 83.17% of their fully-supervised
counterparts, respectively. Particularly, WideResNet38
(WR38) can achieve comparable performance with ViT-B
under full pixel-level supervision. However, in the WSSS
experiments, ToCo can remarkably outperform SLRNet.

Auxiliary Classifier. Table 5a shows the impact of using
different blocks to produce the auxiliary CAM. Usually, the
shallow blocks cannot capture high-level semantics while
the late blocks encounter the over-smoothing issue. For the
ViT-B backbone used in our experiments (12 Transformer
blocks), we empirically observe that appending the auxil-
iary classifier in the 10" block is a preferred choice.

Local Crop Size. The CTC module compares the represen-
tations of local and global view images to encourage con-
sistency between the discriminative and less-discriminative
object regions. Intuitively, a smaller local image may fail to
include the foreground objects, mismatching the objective.
On the contrary, a larger local image could contain too many
discriminative object regions, also affecting distinguishing
the uncertain regions. In Table 5b, we show that cropping
local images with a size of 962 can achieve the best perfor-
mance.

EMA in CTC. We use EMA to update the parameters of
the global projection head PY in Figure 3. In Table 5c, we
report the impact of the momentum value p in the EMA
process. Table 5¢ shows p = 0.9 is the best choice but other
values can also yield favorable performance.

6. Conclusion

In this work, we aim to address the over-smoothing issue
of ViT and further exploit its virtue for WSSS. Specifically,
we first design a Patch Token Contrast module (PTC). PTC
contrasts the final patch representations with knowledge ex-
tracted from the intermediate layer, which is empirically
proved to counter the over-smoothing issue well. Inspired
by the observation that the class token in ViT can capture
the high-level semantics, we further propose a Class Token
Contrast module (CTC) to contrast the class tokens of the
local and global images, which can facilitate the represen-
tation consistency of the integral object regions. We plug
ToCo into the single-stage WSSS framework and conduct
extensive experiments on the VOC and COCO datasets. The
experimental results show that ToCo can significantly out-
perform other competitors.
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