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Abstract

In a noisy conversation environment such as a dinner
party, people often exhibit selective auditory attention, or
the ability to focus on a particular speaker while tuning out
others. Recognizing who somebody is listening to in a con-
versation is essential for developing technologies that can
understand social behavior and devices that can augment
human hearing by amplifying particular sound sources.
The computer vision and audio research communities have
made great strides towards recognizing sound sources and
speakers in scenes. In this work, we take a step further
by focusing on the problem of localizing auditory attention
targets in egocentric video, or detecting who in a camera
wearer’s field of view they are listening to. To tackle the
new and challenging Selective Auditory Attention Localiza-
tion problem, we propose an end-to-end deep learning ap-
proach that uses egocentric video and multichannel audio
to predict the heatmap of the camera wearer’s auditory at-
tention. Our approach leverages spatiotemporal audiovi-
sual features and holistic reasoning about the scene to make
predictions, and outperforms a set of baselines on a chal-
lenging multi-speaker conversation dataset. Project page:
https://fkryan.github.io/saal

1. Introduction

One of the primary goals of wearable computing devices
like augmented reality (AR) glasses is to enhance human
perceptual and cognitive capabilities. This includes help-
ing people have natural conversations in settings with high
noise level (e.g. coffee shops, restaurants, etc.) by selec-
tively amplifying certain speakers while suppressing noise
and the voices of background speakers. This desired ef-
fect mirrors selective auditory attention (SAA), or humans’
ability to intentionally focus on certain sounds while tuning
out others. People exercise SAA in everyday conversational
settings; at restaurants people tune out the voices at adja-
cent tables, and in group social settings, such as dining at
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Figure 1. We address the novel task of Selective Auditory Atten-
tion Localization in multi-speaker environments: given egocentric
video and multichannel audio, we predict which people, if any,
the camera wearer is listening to. We show our model’s predicted
heatmaps, with red bounding boxes denoting ground truth auditory
attention targets and white boxes denoting non-attended speakers.

a large table or socializing at a party, people often engage
in conversations with smaller subsets of people while oth-
ers converse in close proximity. Being able to determine
which speaker(s) a person is selectively listening to is im-
portant for developing systems that can aid communication
in noisy environments and assist people with hearing loss.

While the computer vision community has made strides
towards understanding conversational dynamics with large-
scale datasets like Ego4D [37], AVA-ActiveSpeaker [78],
VoxConverse [24], and AMI [57], the problem of model-
ing selective listening behavior has not yet been addressed.
In fact, determining auditory attention among competing
sound signals has traditionally been approached using neu-
rophysiological sensing [ |,50]. These approaches involve
a controlled listening task, where competing audio signals
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are played simultaneously and a listener selectively listens
to one. Statistical models are then used to correlate brain
activity and the attended sound signal. However, the sens-
ing approach is obtrusive and currently not feasible for use
in realistic conversational settings in daily life.

In this work, we approach modeling SAA from an ego-
centric audiovisual perspective. The egocentric setting pro-
vides a compelling lens to study social conversational dy-
namics, as it captures both the audio and visual stimuli
present in a scene and how the camera wearer orients their
view in response to them. We hypothesize that the behav-
ior of the wearer that is implicitly captured in the egocentric
video and multichannel audio can facilitate the prediction of
auditory attention targets. To this end, we introduce and for-
mulate the novel task of Selective Auditory Attention Lo-
calization (SAAL), which uses egocentric video and multi-
channel audio to localize the target of auditory attention in
egocentric video. We specifically target multi-speaker con-
versation scenarios where the camera wearer must selec-
tively attend to certain speaker(s) while tuning out others.
This challenging setting is representative of everyday noisy
conversation environments and highlights the complexity of
modeling auditory attention in naturalistic settings.

We propose a deep audiovisual video network for SAAL
that leverages both appearance-based features from the ego-
centric video stream and spatial audio information from
multichannel audio. Our key insight is to extract a spa-
tiotemporal feature representation from each modality and
use a transformer on the fused features to reason holistically
about the scene. Our contributions are:

* We introduce the novel problem of Selective Auditory

Attention Localization (SAAL) as an egocentric multi-
modal learning task.

* We propose a new architecture for SAAL. Our model
extracts spatiotemporal video and audio features and
uses a transformer to refine selection of an attention
target by reasoning globally about the scene.

* We evaluate our approach on a challenging multi-
speaker conversation dataset and demonstrate our
model’s superiority over intuitive baselines and ap-
proaches based on Active Speaker Localization (ASL).

* We conduct thorough experiments to give insight into
our multimodal architecture design, effective multi-
channel audio and visual input representations, and the
relationship between SAAL and ASL.

2. Related Work

Computational Models for Auditory Attention Attention
is typically categorized into two types: bottom-up, where a
stimulus is likely to cause attention due to inherent salient
properties, and top-down, where a person intentionally fo-
cuses on a certain stimulus. Top-down, or selective auditory

attention has been studied by correlating the attended sound
signal with the neural response measured by EEG / MEG
using statistical models [4,17-19,27,33,38,40,65,67,71,74,
], and more recently deep neural networks [36, 58]. This
is done in a controlled listening scenario where competing
sounds, such as audio books, are played at once and a par-
ticipant is instructed to listen to a particular sound. Models
are used to predict which sound source is attended and/or
decode the attended signal. The sources may be combined
into a single channel or played in separate ears, as in the di-
chotic listening task paradigm [20]. Some works have used
acoustic simulation methods to reflect more realistic multi-
speaker environments [17, 33, 89]. However, these studies
have not addressed modeling SAA in in-the-wild social con-
versation scenarios. Beyond using brain activity to predict
auditory attention, Lu et al. develop a head movement-
based approach for predicting the attended speaker in a con-
versation [64]. However, this work focuses on single group
conversations where there is typically only one speaker.

A smaller body of work focuses on modeling bottom-
up auditory attention, or the qualities of a sound signal
that make it likely to be attended to. Works in this do-
main construct representations of audio signals and eval-
uate their ability to reflect human judgment of saliency
[30,49,51,52, 56, 85, 86], distinguish between changes in
perceptual qualities of sound [48], or perform on a down-
stream speech recognition task [47]. In this work, we focus
on top-down, or selective auditory attention.

Active Speaker Detection & Localization Our task builds
upon a rich foundation of work on Active Speaker Detection
(ASD) and Active Speaker Localization (ASL). Recogniz-
ing speech activity is an established problem in computer
vision, with early approaches correlating video and audio
streams [25], or using purely visual features [31,39,79] to
determine if a person is speaking. The AVA-ActiveSpeaker
dataset [78] has accelerated deep learning approaches for
ASD by providing a large-scale dataset and a benchmark.
Methods use deep learning to extract visual features from
a head bounding box track and combine them with features
from monoaural scene audio to classify the person as speak-
ing and audible, speaking and inaudible, or not speaking in
each frame [8-10,26, 54,606, 82,95]. Some approaches ad-
ditionally explicitly model the relationships between multi-
ple people within a scene to refine classification of speak-
ers [8,54,66]. Xiong et al. [93] develop an architecture to
jointly perform ASD and speech enhancement.

Other methods approach the task of ASL, which seeks
to localize speakers spatially within the scene rather than
classifying bounding box tracks [6, 15,22,34,35,76,92,94].
Several use multichannel audio to incorporate directional
audio information [6, 15,22,34,35,92,94]. Recently, Jiang
et al. [46] expanded upon these approaches by developing
a deep model that also leverages multichannel audio to lo-
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Figure 2. Our architecture for predicting auditory attention heatmaps from egocentric video and multichannel audio: the Video Encoder
and Audio Encoder embed spatiotemporal features from the video and spatial audio modalities respectively. The audio and visual features
are fused and passed to the Scene Relation Transformer, which models the relationships between different regions of the scene. Finally,
the features are passed to the convolutional Decoder, which produces the predicted attention heatmaps for the input video frames.

calize speakers in the challenging egocentric setting, which
contains motion blur and rapid changes of field of view
(FOV), using the EasyCom dataset [28]. Our problem set-
ting is different from ASD and ASL in that we seek to deter-
mine which of the speakers the camera wearer is listening
to using egocentric audiovisual cues. Importantly, active
speakers are not necessarily auditorily attended; they can be
background people or nearby people engaged in a different
conversation. Thus, SAAL demands a novel approach.
Modeling of Conversation Dynamics and Social Inter-
actions SAAL is also related to work on modeling so-
cial interactions and conversational dynamics. Prior works
have explored detecting social interactions in egocentric
video [2, 16,32]. The recent Ego4D dataset and benchmark
suite [37] introduces the “Talking to Me” task for identify-
ing which people are speaking to the camera wearer in ego-
centric video. This task is closely related to SAAL in that it
models dyadic conversational behavior between the camera
wearer and people in their FOV. However our task differs by
modeling egocentric listening behavior, particularly in the
presence of multiple speakers. Researchers have also ex-
plored modeling conversational turn taking behaviors [88]
as well as predicting listener motion in dyadic conversa-
tions [70]. To our knowledge, we are the first to address-
the problem of modeling auditory attention using egocentric
video, wearable audio, or both modalities together.
Egocentric Visual Attention Prediction Our problem also
relates to egocentric visual attention prediction, which re-
gresses a heatmap localizing the target of visual attention in
egocentric video. Approaches for this task use eye track-
ing data as ground truth for attention targets and develop
models to predict the attention location from video. Re-

searchers have proposed several vision models for this task
[5,44,59,61,83], including some that jointly model gaze and
action [43,62] or gaze and IMU [84]. Importantly, visual at-
tention and auditory attention are not the same; people will
generally not always look at the person they are convers-
ing with. Rather, SAAL can be considered as an auditory
variant of egocentric visual attention prediction, and SAAL
additionally demands the use of audio cues.
Audiovisual Representation Learning Our work relates to
a larger body of research on learning effective audiovisual
feature representations [3,7, 12,45,55,69,72,73,75] and lo-
calizing sound sources in video [ 1, 13,23,41,42,63,68,77,
,81]. These methods learn semantic correspondences be-
tween visual and audio features, typically using contrastive
training paradigms. In contrast to these approaches, we
leverage multichannel audio and employ a fusion mecha-
nism that enforces spatial alignment between the visual and
spatial audio domains, allowing us to reason globally about
the audiovisual content in different regions of the scene.

3. Method
3.1. Problem Definition

At each time ¢, we predict an auditory attention heatmap
H., given the raw audiovisual input {I,,a,|n = 0...t},
where I,, is an egocentric video frame at time n and a,, is a
multi-channel audio segment aligned with the video frame
I,,. Each pixel H;(%, ) has a value in (0,1) and indicates
the probability of the camera wearer’s auditory attention.
Video I captures the movement of both the camera wearer
and the other people in the scene, as well as information
about their head and body poses, facial expression, mouth
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movement, and overall scene layout. Multichannel audio a,
from a microphone array, captures people’s speech as well
as other spatialized sound sources. We use video from a
180-degree fish-eye camera with resolution 200 x 212 and
audio from a 6-channel microphone array. In this paper, we
demonstrate how to use {I,a} to infer H, where we con-
struct Hyapel by setting all pixels within the head bounding
box of an attended speaker in a frame as 1.

3.2. Model

SAAL is a complex task that involves understanding
both the camera wearer’s behavior and the activity of the
people in the scene. We design a deep multimodal model
for this task to have 4 key abilities: (1) It extracts relevant
visual features such as lip movement, the relative positions
and orientations of heads, and social body language like
when a person looks at the camera wearer. (2) It leverages
multichannel audio to construct a spatial representation of
voice activity occurring around the camera wearer. (3) It
encodes temporal information like how the wearer moves
their head in response to stimuli as well as the movement
of people in the scene and pattern of voice activity. (4) It
reasons globally about the audiovisual content of scene as a
whole to select an attention target; while an active speaker
detector identifies all speakers in a scene, determining at-
tention demands holistic reasoning about different potential
attention targets in a scene to select the most likely one(s).

To this end, our method consists of 4 main components
as shown in Figure 2: the Visual Encoder and Audio En-
coder to extract spatiotemporal features from the video and
multichannel audio inputs respectively, the Scene Relation
Transformer to refine attention localization by modeling the
relationships between audiovisual features in different spa-
tial regions of the scene, and a convolutional Decoder to
produce an auditory attention heatmap for each input frame.
Visual Encoder The Visual Encoder V takes the visual in-
put XV as a stack of 200 x 212 frames over a time interval
T and extracts appearance-based features about the scene.
We construct X" by cropping the people’s heads in the
raw grayscale video frames and filling the background with
black. This representation leverages 1) our focus on conver-
sational attention, and 2) the effectiveness of face detection
methods. The input is a 3D video tensor of head tubes that
represents not only how the people in the scene move, how
they are laid out in space, where they look, their facial ex-
pression, mouth movement, and who they talk to, but also
the head movement of the wearer over time. In our experi-
ments, we compare this representation to using the raw im-
age as well as a binary map of the bounding boxes. We find
that this representation improves performance by removing
background distractions while retaining appearance-based
facial features. Additionally, this representation makes the
model more generalizable to different scenes. We use a 3D

ResNet-18 network [87] as our backbone, which uses 3D
convolutions to capture both spatial and temporal features.
The result of V(XV) is a spatiotemporal visual feature map
ZV of dimension 512 x 1 x 13 x 14, where 512 is the chan-
nel dimension, 1 is the temporal dimension, and 13 and 14
correspond to the height and width. We use 8 frames as
input with temporal stride 3, so each input X" spans a 24
frame window, which is 0.8 seconds in 30fps video.

Audio Encoder The Audio Encoder A extracts spatial au-
dio features from the multichannel audio in the input clip
to encode information about the conversational speech pat-
terns and spatially localize speakers. We process the au-
dio into 2000 sample x 6 channel frames corresponding to
each frame in the video input clip. We construct input fea-
tures X by calculating the complex spectogram with 201
frequency bins, window length 20, and hop length 10 and
stacking these vertically for the 6 channels. We found this
performs slightly better than concatenating along the chan-
nel dimension. We additionally construct a feature repre-
sentation of the cross correlation between all pairs of chan-
nels as used in Jiang et al. [46] and stack the real and com-
plex parts of the spectogram and the channel correlation
features along the channel dimension. We then resize the
audio features to 200 x 212 spatially in order to extract fea-
ture maps that align with the visual domain. Due to the
importance of capturing dense temporal audio features to
predict auditory attention, such as the pattern of speech, we
pass all 24 audio frames in the clip to .4, which uses another
3D ResNet-18 backbone. The resultant feature map Z4 is
of size 512 x 3 x 13 x 14. We average pool the temporal
dimension to 1 to match the dimension of ZV'.

Scene Relation Transformer From A and V, we extract vi-
sual and spatial audio features maps Z" and Z4, which we
concatenate along the channel dimension to form Z4V ¢
1024 x 1 x 13 x 14. We choose to concatenate the features
along the channel dimension because our approach impor-
tantly leverages multichannel audio, which can extract a
spatial representation of voice activity in the scene so that
the visual and audio domains can be spatially aligned.

We use a transformer 7 to further refine this fused mul-
timodal feature map by modeling correlations between the
features in different regions of the scene to holistically se-
lect a likely attention target. As in the transformer litera-
ture [14,29], we treat each spatial location Z:/ " as a spa-
tiotemporal patch of embedded dimension D = 512, and
flatten the feature map into a sequence of length L = 1 x
13x 14 = 182. A learnable position embedding £ € RL*P
is added to preserve absolute and relative positional infor-
mation, which is particularly important for the egocentric
setting where the camera wearer orients their view of the
scene in response to stimuli. The transformer consists of 12
transformer blocks [90] where each computes self-attention
on the audiovisual feature map as Softmax(QK” //D)V,

14666



Split  Total frames

Frames with 1+ attention target

Avg. heads per frame  Avg. speakers per frame

Train 1,416,262
Test 571,027

881,931
367,536

3.05 1.43
3.06 1.45

Table 1. Dataset statistics: our evaluation dataset of multi-speaker conversations is representative of challenging conversation environments
where several people and speakers are present. Note that we use % of these frames for training and evaluation with temporal stride 3.

speaker

4 <« 5

attended
speaker

camera wearer

Figure 3. In our multi-speaker evaluation dataset, participants are
divided into 2 subgroups that converse simultaneously. A person
is labeled as being an auditory attention target if they are both
speaking and within the camera wearer’s conversation group.

where ), K, and V are learned linear projections on the
multimodal spatiotemporal patches. In this way, the model
learns correlations between audiovisual features occurring
in different regions of the scene and can suppress or en-
hance values accordingly to refine attention prediction.
Decoder A decoder consisting of 4 3D tranpose convolu-
tions and 1 final convolutional classifier layer upsamples
the resulting feature map 7~ (ZAV) to produce the attention
class heatmap H yreq Of size 2 X T x H x W. The 2 channels
reflect the not attended and attended classes.

3.3. Implementation & Model Training

We train end-to-end with pixel-wise cross entropy loss.
We initialize V and A with pretrained weights on Kinetics
400 [21]. The transformer consists of 12 transformer blocks
using multi-head self-attention with 8 heads [90]. We use
the Adam optimizer [53] and learning rate le-4. The train-
ing procedure converges quickly in less than 10 epochs.

4. Experimental Results
4.1. Evaluation Dataset & Criteria

To our knowledge there is no existing dataset with as-
sociated labels suited to our task. While egocentric AV
datasets like Ego4D [37] and EasyCom [28] capture ego-
centric conversations, they have few situations with multi-
ple people speaking at the same time, with the result that
SAAL reduces to ASL. To evaluate our approach, we col-
lected a dataset of complex multi-speaker conversations,
where groups converse in close proximity. The dataset con-
sists of 50 participants conversing in groups of 5, where
each person wears a headset with a camera and microphone

array. In total, there are ~20 hours of egocentric video.

In each 10-minute recording, a group of 5 people sits at a
table in a meeting room and is partitioned into two conver-
sational groups. Participants are instructed to only listen to
and engage in conversations with their own group. In this
way, we design a naturalistic social version of traditional
dichotic listening tasks, where participants intentionally fo-
cus on certain speakers while tuning out others. By split-
ting the group into smaller groups, we simulate conversa-
tional layouts that may occur at a large dinner table, coffee
shop, restaurant, or party, where groups of people converse
in close proximity with others. As illustrated in Figure 3,
we construct ground truth auditory attention labels by deter-
mining that the camera wearer is listening to a given person
if they are both speaking and in the wearer’s conversation
group. The dataset was collected under an approved IRB.

Each participant wears a headset that includes an Intel
SLAM camera and a 6-microphone array. We record the
fish-eye grayscale video and the audio from the 6 micro-
phones simultaneously for all the wearers in each session.
We generate speaker activity and head bounding box anno-
tations automatically by using person tracking and wearer
speech detection algorithms, and leveraging synchroniza-
tion between each person’s egocentric audio and video in
each session. We obtain active speaker labels for each per-
son by using their own headset’s microphone array to de-
termine if they are speaking, using a deep model adapted
from [46] trained on synthetic data for the headset’s micro-
phone array configuration. We then use a 3D tracking-by-
detection method that uses camera pose from the SLAM
camera to annotate head bounding boxes and identities for
each person in each egocentric FOV. From these person
tracking results and speaker activity labels for each person,
we have a set of visible head bounding boxes for each ego-
centric frame along with a label for each box indicating if
that person is speaking. We then use the identity tracking
and known conversation group assignments to label if each
person is auditorily attended to by the camera wearer.

Due to the wide 180-degree FOV of the camera, the au-
ditorily attended person is almost always in the FOV, so we
constrain our modeling approach to this scenario. Addi-
tionally, by design of the dataset, there are typically several
people and often multiple speakers within FOV, as shown in
Table 1. Along with the inherent challenges of motion blur
and rapid head movements in the egocentric modality, this
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makes our dataset a rich means for studying auditory atten-
tion in complex and naturalistic conversation environments.
We evaluate the result of auditory attention localization
using mean average precision (mAP) on the task of classi-
fying each person in the FOV as being a target of auditory
attention or not. From the output heatmap Hpreq, We calcu-
late the auditory attention score for each person by taking
the maximum value of Softmax(Hpreq) in channel 1 (the at-
tended class) in the region of their head bounding box. We
split our data and use 70% data for training and 30% for
testing, with no overlapping participants between splits.

4.2. Competing methods

Because SAAL is a new problem, there are no previous
methods that can be used directly to solve this problem. We
therefore compare our approach to several naive baseline
methods as well as a set of baselines that adapt Jiang et al.’s
multichannel audiovisual ASL architecture (MAVASL) [46]
for our task. The methods we compare are the following:

(1) Our proposed method with different audio and visual
input representations: In our experiments, we label varia-
tions of our method as “Ours - [visual] & [audio]”, where
[visual] is the visual input representation type and [audio] is
the audio input representation type. The visual input repre-
sentations we consider are Image (the raw image), Bbox (a
binary map of the bounding boxes), and Heads (the cropped
heads from the raw image on a black background). The au-
dio representations are Channel Corr (the channel correla-
tion features as described in Section 3.2), Channel Corr +
Spectogram (the channel correlation features concatenated
with the real and complex parts of the multichannel spec-
togram), and ASL (active speaker localization output maps
from MAVASL). We report two different training strategies
for using MAVASL to generate ASL maps for our dataset:
ASLynthetic, Which trains the ASL model on synthetic data
created from VTCK [9 1] and EasyCom, and ASL ¢y, which
directly trains the ASL model on our dataset using the ac-
tive speaker labels. In this way, we compare using audio
features constructed from the raw multichannel audio with
using ASL maps generated from an existing model, both
with and without the advantage of tuning to our dataset.

(2) Naive baselines using ground truth ASL labels and
heuristic strategies: We first report the SAAL mAP from
simply selecting all active speakers as being attended using
the ground truth ASL labels (Perfect ASL). We also report
2 baselines that use the center prior, which is the intuition
that the attended person is likely near the center of the FOV
because people often face the speaker they are paying at-
tention to. Similar center prior baselines are used in the
egocentric visual attention literature. We construct 2 center
prior baselines: CP-I finds the head bounding box nearest
to the center of FOV and selects it as the attention target if
they are speaking, and otherwise predicts that there is no at-

tention in the frame. CP-II selects the speaking person clos-
est to the center of the FOV as the target of attention. We
also construct 2 baselines that select the “closest” speaker
based on the size of their bounding box. We can reason that
the person with the largest head bounding box area is likely
the closest to the camera wearer, and if speaking, likely ap-
pears the loudest. We consider 2 baselines based on this
strategy: CS—I selects the “closest” person only if they are
speaking, and CS—II selects the “closest” speaker. We note
that because these methods depend on the dataset’s ground
truth ASL labels, they are not realistic results, and are not a
fair comparison to our method. However, we report them to
demonstrate that Perfect ASL and heuristic strategies per-
form poorly on our evaluation dataset. This clearly implies
that SAAL is a complicated task that demands a novel ap-
proach, and that our evaluation dataset is rich enough to
demonstrate the complexity of this task.

(4) Networks adapted from MAVASL: The first adaption
(MAVASL-I) is to directly use MAVASL to localize active
speakers and use this as the auditory attention heatmap. The
second adaptation (MAVASL-II) directly trains the network
for the task of SAAL instead of ASL. The third adaptation
(MAVASL-III) is similar to (MAVASL-II) but uses a multi-
frame video input (3-frame) to the AV network to further
incorporate temporal information. MAVASL consists of an
Audio Network, which predicts a coarse spatial voice ac-
tivity map from multichannel audio, and an AV Network,
which uses this voice activity map and the image to predict
a final ASL map. For MAVASL-II and III, we achieve best
results by supervising the audio network in MAVASL using
the ASL labels from our dataset and the AV network with
the auditory attention labels. We use Heads as the visual
input representation. Because MAVASL is a frame-based
network, we additionally apply temporal smoothing with a
window size of 10 frames as in the original method.

4.3. Comparison results

As shown in Table 2, our proposed method outperforms
the baselines on mAP, including baselines that leverage
ground truth active speaker labels. We observe that the
Perfect ASL and naive baselines perform poorly on our
dataset, illustrating that reducing the problem of SAAL
to ASL is not viable in complex and challenging conver-
sation environments with multiple speakers. The highest
mAP achieved from adapting Jiang et al.’s ASL architec-
ture is MAVASL-II, which obtains 75.20% mAP. However,
our best approach achieves a gain of 7.74% mAP over this
baseline, demonstrating that the task of SAAL demands a
novel architecture design. We qualitatively compare our re-
sults against these baselines in Figure 4.

From our experiments investigating different combina-
tions of audio and visual input representations, we observe
that the combination of Heads and Channel Corr + Spec-
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Method mAP (%)
Perfect ASL* 47.99
CP-I* 63.55
CP-II* 51.48
CS-I* 53.86
CS-11* 49.47
MAVASL-I 59.11
MAVASL-II 75.20
MAVASLAIII 72.90
Ours—Bbox & ASLynthetic 75.93
Ours—Bbox & ASLcal 74.97
Ours—Bbox & Channel Corr 80.41
Ours-Bbox & Channel Corr + Spectogram 80.31
Ours—Image & ASLgynihetic 72.20
Ours—Image & ASL;ca 70.04
Ours-Image & Channel Corr 76.52
Ours—Image & Channel Corr + Spectogram 76.95
Ours—Heads & ASLgynhetic 76.72
Ours—Heads & ASLca 77.11
Ours—Heads & Channel Corr 82.35

Ours-Heads & Channel Corr + Spectogram 82.94

Table 2. Comparison results on the multi-speaker conversation
dataset. (*) denotes methods that use ground truth ASL, which is
not given to our model.

togram produces the best results. In fact, we observe that
Bbox, the binary bounding box location map, performs bet-
ter as an input representation than the raw image. We can
interpret this result as showing the importance of relative
position and sizes of heads to the problem of SAAL. Chan-
nel Corr and Channel Corr + Spectogram, which contain
information from the raw multichannel audio signal, gen-
erally perform better as the spatial audio input representa-
tion than the pre-computed ASL maps, both real and syn-
thetically trained. We hypothesize that this is because the
role of audio features in determining auditory attention is
greater than just localizing active speakers; SAAL addition-
ally involves correlating different speech signals with the
camera wearer’s egocentric movement, using the wearer’s
own voice activity as an indicator of conversational turn tak-
ing behavior (e.g. whether they are speaking or listening),
and reasoning about the relative volume of different speech
signals. Notably, the pre-computed ASL maps have the ad-
vantage of being spatially aligned with the visual modality,
which the spectograms and channel correlation features do
not have. The performance gains from using Channel Corr
and Channel Corr + Spectogram indicate that our Audio
Encoder is able to learn this alignment and construct a spa-
tial representation of audio activity from these features.

4.4. Analysis

Model ablation We further investigate the contribution of
each component of our best model to its overall perfor-
mance in Table 3. We observe that the visual modality

Method mAP (%)
Visual only 56.81
Visual only + Transformer 57.70
Audio only 76.30
Audio only + Transformer 75.84
Audiovisual 80.10
Audiovisuali_channer + Transformer 71.47
Audiovisualy_channel + Transformer 76.73
Audiovisualy_channer + Transformer 80.99
Audiovisual + Transformer 82.94

Table 3. Model ablation: All studies use Heads as the visual input
and Channel Corr + Spectogram as the audio input.

Method mAP (%)
Audiovisual + Transformer (no spatial alignment) 80.57
Audiovisual + Transformer (spatial alignment) 82.94

Table 4. Spatial modality alignment in the transformer.

alone is much weaker than the spatial audio modality, and
that clearly audio plays an important role. We also ablate
the number of audio channels used, observing that remov-
ing the spatial component of the audio (Audiovisual|_channel
+ Transformer) significantly reduces performance of our
overall model. We see that spatial audio is an important cue
for this task, but using slightly less channels can still achieve
effective performance. Adding the transformer to the audio-
visual features results in a gain of 2.84 mAP, demonstrating
that the transformer improves performance by refining the
embedded audiovisual feature maps through modeling rela-
tionships across spatial regions of the scene.

Results on Unseen Environment We additionally test our
model’s ability to generalize to unseen environments by
evaluating our best model on a subset of data collected in a
room with different acoustic and visual properties. The data
follows the same structure as the main evaluation dataset,
with 5 participants split into 2 conversation subgroups, and
is ~49 minutes. Further details are provided in the supple-
ment. On this unseen environment, our best model achieves
80.43% mAP, demonstrating scene generalizability.
Spatial Modality Alignment in Self-Attention A key fea-
ture of our approach is leveraging multichannel audio to
learn a spatial feature representation of voice activity in
the scene, which we align with the visual representation by
concatenating along the channel dimension. In our trans-
former design, therefore, each spatiotemporal patch of Z4V
contains the visual and audio features for that region. We
validate this choice by designing an additional experiment
where the modalities are not fused before the transformer,
like in VisualBERT [60]. Rather than concatenating Z A and
ZV before flattening them into a sequence of tokens to pass
to 7, we separately create a sequence of 182 tokens each
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Ground truth Ours

MAVASL-II

Perfect ASL CP-I - Perfect ASL

Figure 4. We compare our output heatmaps to competing methods on challenging cases with multiple speakers, the attended speaker being
far from the center, or no auditory attention. Our method performs well in these scenarios and more consistently identifies who is and isn’t
attended than MAVASL-II. Perfect ASL is prone to false positives by selecting all speakers and CPI is prone to false negatives by only
considering the person closest to the center, demonstrating that ASL is not enough to solve SAAL. (Best viewed in color).

Figure 5. Decoupling SAAL & ASL: Without the responsibility
for learning ASL, our model learns to segment the people within
the camera wearer’s conversation group.

from ZY and Z4 and pass these 364 total tokens of dimen-
sion 512 to 7. We concatenate the modalities afterwards.
In this case, the self-attention mechanism is left to discover
alignment between the modalities itself by comparing all
tokens across both modalities. We observe a decrease in
performance, indicating that our choice to explicitly align
the visual and audio modalities spatially contributes to our
model’s ability to use both modalities together successfully.
This result suggests utility in incorporating inductive bias
about the spatial alignment of visual and multichannel audio
modalities into token design for transformer architectures.

Decoupling SAAL & ASL By nature of our dataset de-
sign, we train our model to predict auditory attention as
the intersection of active speakers and people in the cam-
era wearer’s conversation group. To investigate the rela-
tionship between SAAL and ASL, we train a model by
modulating our model’s heatmap for the attended class

with the ground truth ASL labels before calculating loss
and performing backpropagation. The loss is calculated as
Lo E(Hprea * ASLigper, Hiaver)- In this way we eliminate the
responsibility for ASL from our model. The model achieves
92.67% mAP on SAAL, however, this is a purely theoretical
upper bound that relies on perfect ASL. We visualize Hpreq
for our model before it is modulated by ASLj in Figure
5. We observe that our model learns to more generally seg-
ment the camera wearer’s conversation group regardless of
speaking activity, and likely relies on ASLjape to constrain
the heatmaps to the exact bounding box region.

5. Conclusion

We introduce the novel problem of Selective Auditory
Attention Localization (SAAL) and demonstrate that a deep
model is able to perform this task on a challenging multi-
speaker conversation dataset. We propose a multimodal
modeling approach that uses egocentric video and multi-
channel audio to predict a person’s target of auditory at-
tention, combining spatial and temporal features from both
modalities and using a transformer to reason holistically
about the scene. We believe our work is an important step
towards selective sound source enhancement and AR de-
vices that can help people converse in noisy environments.

Acknowledgments: We thank Jacob Donley and Christi
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