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Abstract 

Despite the increasing popularity of LiDAR sensors, per- 

ception algorithms using 3D LiDAR data struggle with 

the sensor-bias problem . Specifically, the performance of 

perception algorithms significantly drops when an unseen 

specification of the LiDAR sensor is applied at test time 

due to the domain discrepancy. This paper presents a fast 

and flexible LiDAR augmentation method for the seman- 

tic segmentation task called LiDomAug . It aggregates raw 

LiDAR scans and creates a LiDAR scan of any configura- 

tions with the consideration of dynamic distortion and oc- 

clusion, resulting in instant domain augmentation. Our on- 

demand augmentation module runs at 330 FPS , so it can 

be seamlessly integrated into the data loader in the learning 

framework. In our experiments, learning-based approaches 

aided with the proposed LiDomAug are less affected by the 

sensor-bias issue and achieve new state-of-the-art domain 

adaptation performances on SemanticKITTI and nuScenes 

dataset without the use of the target domain data. We also 

present a sensor-agnostic model that faithfully works on the 

various LiDAR configurations. 

1. Introduction 

LiDAR (Light Detection And Ranging) is a modern sen- 

sor that provides reliable range measurements of environ- 

ments sampled from 3D worlds and has become crucial for 

intelligent systems such as robots [3,56], drones [48], or au- 

tonomous vehicles [16, 32]. Therefore, developing resilient 

3D perception algorithms for LiDAR data [21,27,49] is be- 

coming more crucial. 

With the growing interest in LiDAR sensors, various 

LiDAR sensors from multiple manufacturers have become 

prevalent. As a result, popular 3D datasets [5, 7, 16, 17, 22] 

are captured by different LiDAR configurations, which are 

defined by vertical/horizontal resolutions, a field of view, 

and a mounting pose. Due to the difference in sampling pat- 

terns from various LiDAR configurations, the sensor-bias 

problem arises in 3D perception algorithms [46, 54]. For 

example, as shown in Figure 1, we observe a severe per-

 

*Equal contribution

Car Motorcycle PedestrianDrivable

Sidewalk VegetationTerrain

Baseline Ours

 

Figure 1. Data-driven LiDAR semantic segmentation methods of- 

ten show an accuracy drop when they are applied to unseen LiDAR 

configurations. (Left) A result of a baseline approach, where in- 

accurate predictions are highlighted with orange arrows. (Right) 

A result of the baseline approach aided with the proposed LiDo- 

mAug. For both results, we use nuScenes [5] (32 ch.) for the 

training and use SemanticKITTI [2] (64 ch.) for the testing. 

formance drop in LiDAR semantic segmentation task if the 

LiDAR used to collect the test set differs from the LiDAR 

used for the training set. 

Although the sensor-bias problem is crucial, an exist- 

ing solution, such as domain adaptation, is tuned for a spe- 

cific LiDAR configuration, which is suboptimal to design- 

ing a sensible 3D perception method. Specifically, Super- 

vised Domain Adaptation requires massive labeling costs 

to learn to adapt to the new data captured with a target sen- 

sor. Hence, such an approach is often not viable in practice. 

Unsupervised Domain Adaptation [23,24,54] aims to make 

a model adapt to a target domain without using direct an- 

notations. However, there is an accuracy degradation, and 

such approaches require enough collection of target domain 

data. Thus, it is demanding to design a new approach that 

can be applied instantly to an unseen target domain without 

requesting any target domain data. 

By focusing on the widely used cylindrical LiDARs, this 

paper presents a new approach to alleviate the sensor-bias 

problem. The proposed method, called LiDomAug , aug- 

ments the training data based on arbitrary cylindrical Li- 

DAR configurations, mounting pose, and motion distor- 

tions. The proposed on-demand augmentation module runs 

at 330 FPS, which can be regarded as an instant domain
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augmentation . This flexibility, which is a key strength of 

our method, enables us to train a sensor-agnostic model that 

can be directly applied to multiple target domains. 

We demonstrate our method on the task of LiDAR se- 

mantic segmentation. In particular, we tackle the domain 

discrepancy problem when the LiDAR sensors used for 

making the training and the test data are not consistent. In- 

terestingly, learning-based approaches aided with the pro- 

posed LiDomAug outperform the state-of-the-art Unsuper- 

vised Domain Adaptation approaches [9,29,47,50,54] with- 

out access to any target domain data. Our method also beats 

Domain Mapping [4, 28] and Domain Augmentation ap- 

proaches [18,35,52,55], showing the practicality of the pro- 

posed approach. In addition, we show a semantic segmen- 

tation model trained with LiDomAug that works faithfully 

on the various cylindrical LiDAR configurations. 

Our contributions can be summarized as follows: 

• We present an instant LiDAR domain augmentation 

method, called LiDomAug, for LiDAR semantic seg- 

mentation task. Our on-demand augmentation module 

runs at 330 FPS. 

• Our method can augment arbitrary cylindrical LiDAR 

configurations, mounting pose, and entangled motions 

of LiDAR spin and moving platform just from the in- 

put data. We empirically validate that such flexible 

modules are helpful in learning sensor-agnostic Li- 

DAR frameworks. 

• Experiments show that LiDAR semantic segmenta- 

tion networks trained with the proposed LiDomAug 

outperform the state-of-the-art Unsupervised Domain 

Adaptation, Domain Mapping, and LiDAR Data Aug- 

mentation approaches. 

2. Related Work 

2.1. LiDAR Domain Adaptation and Mapping 

Domain Adaptation. A representative direction to al- 

leviate the sensor-to-sensor domain shift issue is to adopt 

domain adaptation approaches [46]. Cross-modal learn- 

ing [23] is exploited to enable controlled information ex- 

change between image predictions and 3D scans. Ad- 

versarial domain adaptation methods are introduced for 

output space [47] or feature space alignment [9] by em- 

ploying sliced Wasserstein discrepancy [29] or boundary 

penalty [24]. 3DGCA [50] aligns the statistics between 

batches from source and target data with geodesic distance. 

A sparse voxel completion network [54] is proposed to learn 

a mapping from the source domain to a canonical domain 

that contains complete and high-resolution point clouds. Li- 

DAR semantic segmentation is performed on the canonical 

domain, and the result is projected to the target domain. 

ConDA [26] and CoSMix [40] also construct an interme- 

diate domain by mixing or concatenating the source and the 

target domains using pseudo-labeled target data to mitigate 

the domain shift issue. GIPSO [41], a recent online adapta- 

tion method, requires an optimization process on target do- 

main data using geometric propagation and temporal regu- 

larization with pseudo labels inferred from a source domain 

model. A common limitation of the above methods is to re- 

quire additional optimization with access to target domain 

data, which hinders their practicality. On the other hand, 

our method only adds slight augmentation overhead in the 

training phase and circumvents the need for target domain 

data. 

Domain Mapping. Our most relevant approach is domain 

mapping that directly transforms the source domain data 

to the target-like LiDAR scan [4, 28] and uses the trans- 

formed data for the training. However, the approach by 

Bešić et al . [4] requires access to target domain data, and 

the method proposed by Langer et al . [28] is computation- 

ally heavy due to mesh operations that recover surfaces and 

check occlusions. Instead, our method can produce various 

LiDAR scans considering multiple LiDAR configurations 

in 330 FPS. Our experiment shows the efficacy of our Li- 

DAR scans on the LiDAR semantic segmentation task. 

2.2. LiDAR Data Augmentation 

Approaches for LiDAR data augmentation have been ex- 

plored in various ways. Inspired by seminal work in im- 

age augmentation [55], augmentation methods for the Li- 

DAR object detection task [10, 11, 13, 14, 20, 30] are pro- 

posed. However, these works are crafted for the detec- 

tion task and assume bounding box labels are provided. 

For the 3D semantic segmentation task, CutMix [55] and 

Copy-Paste [18] extend the successful ideas applied for 2D 

image augmentation. Mix3D [35] aggregates the two 3D 

scenes to make objects implicitly placed into a novel out- 

of-context environment, which encourages the model to fo- 

cus more on the local structure. Recently, PolarMix [52] 

introduces the scene- and object-level mix in cylindrical co- 

ordinates. PolarMix shows an impressive performance gain 

in domain adaptation tasks but is limited to demonstrating 

its synthetic-to-real adaptation capability. To the best of our 

knowledge, our approach is the first work on comprehensive 

LiDAR data augmentation to address the sensor-bias issue, 

and it shows superior performance compared with existing 

3D data augmentation approaches. 

2.3. LiDAR Semantic Segmentation 

Existing approaches for 3D semantic segmentation can 

be categorized into three groups: 2D projection-based, 

point-based, and voxel-based methods. The 2D projection- 

based approaches [25,34,53] project 3D point clouds to 2D 

space and apply a neural network architecture crafted for
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Figure 2. Overview of the proposed LiDomAug pipeline. ➀ A dense 3D world model is constructed from raw LiDAR frames with 

the consideration of unlabeled frames and dynamic objects (Sec. 3.1). ➁ Range maps of arbitrary LiDAR configuration are rendered by 

projecting the world model after applying random pose augmentation (Sec. 3.2). ➂ The distortion induced by LiDAR spin and ego-motion 

is applied (Sec. 3.3). ➃ Range maps are mixed using random azimuth ranges and back-projected to make an output 3D point cloud 

(Sec. 3.4). Note that the on-demand augmentation module that comprises ➁ , ➂ , and ➃ runs at 330FPS. 

image perception. Point-based methods directly work on 

unstructured and scattered point cloud data. Approaches 

in this category utilize point-wise multi-layered percep- 

tron [8, 38], point convolution [31, 33, 45], or lattice con- 

volution [43]. Voxel-based methods handle voxelized 3D 

points. Early work [39, 51] adopts dense 3D convolutions, 

but recent approach [12] regards voxel as a sparse tensor 

and presents an efficient semantic segmentation framework. 

Among these approaches, we select KPConv [45] (point- 

based) and MinkowskiNet [12] (voxel-based) for the se- 

mantic segmentation experiments due to their efficiency and 

fidelity in the field. We apply the proposed LiDomAug to 

the selected networks to see the improvements. 

3. Fast LiDAR Data Augmentation 

We introduce a new augmentation method, called LiDo- 

mAug , that instantly creates a new LiDAR frame consid- 

ering LiDAR mounting positions, various LiDAR config- 

urations, and distortion caused by LiDAR spin and ego- 

motion. In this work, we craft our augmentation approach 

for cylindrical LiDARs. As shown in Fig. 2, our method 

consists of four steps: ➀ Constructing a world model from 

LiDAR frames, ➁ Creating a range map of arbitrary LiDAR 

configurations and poses, ➂ Applying motion distortion to 

the augmented frames caused by ego-motion, and ➃ Scene- 

level & sensor-level mix. The proposed method is flexible 

enough to produce a combined LiDAR frame having multi- 

ple LiDAR configurations. 

3.1. Constructing a 3D World Model 

A LiDAR frame is partial geometric capture of a 3D 

world. Therefore, we can aggregate multiple LiDAR frames 

of similar regions to build a rough 3D world model. In this 

step, we separately care for static scenes and dynamic ob- 

jects by utilizing semantic label annotations on 3D points 

and trajectories of moving objects in the scene. Such infor- 

mation is available in standard LiDAR datasets [15]. 

Static scene. We construct a static world model by aggre- 

gating multiple LiDAR frames using ego-motion. Specifi- 

cally, a set of motion-compensated LiDAR frames P 

w or l d 

t 

is 

built as a world model at time t by aggregating N adjacent 

LiDAR frames. We determine the adjacent LiDAR frames 

using geometric adjacency (based on the LiDAR center co- 

ordinates) rather than temporal adjacency (based on frame 

indices) to cover the 3D scene better. This scheme helps to 

build a denser world map when the ego vehicle revisits the 

same place, formulated as follows:

 

P 

w or l d 

t 

= 

⋃ 

k ∈ Kt 

Tt 

◦ T 

− 1 

t + k( Pt + k) ,

 

(1) 

where the geometrically adjacent set of frames Kt 

= 

argminK 

∑ 

k ∈ K 

|| R⊤ 

t + ktt + k 

− R⊤ 

t 

tt 

||2 

s.t. | K | = N , 

Tt( x ) = Rtx + tt 

is the ego-motion from the world ori- 

gin at time t , and Pt 

is 3D points captured at time t . 

Dynamic objects. When we aggregate 3D points on dy- 

namic objects in the world model, we should avoid unin-
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tended flying points occurring by object-wise motion. To 

alleviate the issue, we leverage temporally consecutive Li- 

DAR frames, not the geometrically adjacent frames, and we 

consider trajectory information of the dynamic objects over 

time. In short, the sparse observations of dynamic objects 

across multiple frames are aggregated by applying inverse 

motions of each dynamic object and ego-motions. 

Label consistency and label propagation. After the world 

model construction, we examine the labeling consistency 

for all the aggregated 3D points in P 

w or l d 

t 

. This verifica- 

tion step is a safeguard to remove noisy points from various 

sources of errors, such as incorrect annotation and inaccu- 

rate ego-motion. To make consistent labels, we examine 

a set of 3D points assigned to a single voxel in the voxel 

grid (10cm). The majority voting determines a represen- 

tative semantic label for each voxel, and we can get clean 

labels. Note that the majority label in a voxel can be prop- 

agated to the unlabeled points in the same voxel. This step 

helps assign pseudo labels to sparsely annotated datasets 

like nuScenes [15] that only provides dense annotations for 

keyframes selected at 2Hz. 

3.2. Creating a Range Map 

Pose augmentation. Once we have a world model, the Li- 

DAR pose is augmented by applying a rigid transformation 

Taug( x ) = Raugx + taug 

to give variations of the LiDAR 

frames. In our experiments, random rotation along the z- 

axis, i.e., Raug 

= Rz( θy aw) , and random translation are 

considered1. The yaw angle θy aw 

and the translation vector 

taug 

are drawn from uniform distributions. 

Randomized LiDAR configurations. A LiDAR frame can 

be expressed as a range map, and the configuration of Li- 

DAR is defined by the vertical field of view ( fup, fdow n) 

and the resolution of the range map ( H , W ). In the case 

of cylindrical LiDARs, the projection Π( x ) → [ u, v , r ]⊤ of 

the 3D points is calculated2 as follows [3, 28]:

 

Π( 

  

x 

y 

z 

 ) = 

  

1

 

2 [1 − (arctan 

y

 

x ) /π ] W 

[1 − (arcsin 

z

 

r 

− fdow n) /f ] H 

|| x ||2 

  = 

  

u 

v 

r 

  ,

 

(2) 

where f = | fup 

| + | fdow n 

| . With Π( · ) , we can project 

the world model x ∈ Taug( P 

w or l d 

t 

) using a given Li- 

DAR configuration. Here, we randomize LiDAR configura- 

tion ( H , W, fup 

, fdow n) to augment LiDAR frames further. 

With this procedure, a range map of random LiDAR config- 

uration can be rendered, and LiDAR patterns not observed

 

1While our method is capable of incorporating arbitrary rotations, it is 

worth noting that most public datasets utilize upright LiDARs . Therefore, 

applying full rotations may result in an unintended severe domain gap. 

2We set the x-axis as the vehicle’s forward direction, the y-axis as the 

left from the vehicle, and the z-axis as the top direction from the ground.
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Figure 3. Implementation of LiDAR distortion induced by entan- 

gled motion. Given movement/rotation velocities, distortion maps 

are generated and used to implement the motion distortion. 

in the training data can be provided. This step is shown to 

be very effective in our experiment. 

The world models are constructed by aggregating Li- 

DAR frames of different viewpoints, which can result in oc- 

clusion from a desired viewpoint. To filter out these points, 

we employ z-buffer-based raycasting [37] that selects the 

nearest 3D points to the desired viewpoint. Therefore, we 

formulate the step for range image rendering as follows:

 

P r j ( Pt) = Z (Π( Taug( P 

w or l d 

t 

))) ,

 

(3) 

where the Z means the z-buffer-based ray-casting. 

3.3. Adding Motion Distortion 

Cylindrical LiDARs have a spinning motion with a fixed 

rate for omnidirectional capture. Also, LiDARs are often 

mounted on a moving platform, such as a vehicle. The two 

entangled motions, i.e., movement of the vehicle and spin- 

ning motion of LiDAR, result in distortion on framed data. 

We observe such distortions from the real LiDAR frames 

(See the supplement). 

More specifically, the rotation of the platform affects the 

effective LiDAR angular velocity, resulting in a gap or over- 

lap between starting and ending points of a single LiDAR 

frame shown in the middle of Fig. 3. If the platform has a 

forward movement, as depicted at the bottom of Fig. 3, the 

starting and ending points are not aligned because each 3D 

point has a different travel distance. Although this distor- 

tion could significantly change the coordinates of 3D points 

in a LiDAR frame, this phenomenon is rarely addressed in 

the literature. 

We formulate the distortion with LiDAR spin angular ve- 

locity ω0, platform rotation angular velocity ω , and platform
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forward movement velocity V under constant velocity as- 

sumption.

 

M ( u′ , v ) = M (
( ω0 

+ ω )

 

ω0 

· u, v ) , (4) 

M ( u, v ) + d ( u ) = M ( u, v ) + V · 

u

 

ω0 

, (5)

 

where M is a range map projection of a LiDAR frame. The 

effective angular velocity is ω + ω0 

for distortion by rota- 

tion, which results in a resampling of each 3D point in the 

range map along u -axis, as shown in Eq. 4. The travel dis- 

tance compensation due to the forward movement is given 

by Eq. 5. These equations lead us to an efficient imple- 

mentation of the distortion in the range map by applying 

coordinate resampling and depth adjustment. 

3.4. Scene-level & Sensor-level Mix 

PolarMix [52] shows a scene-level mix and demonstrates 

strong data augmentation performance. Inspired by this 

work, we propose an extended augmentation module that 

mixes frames of different scenes captured by different Li- 

DARs . As described in Fig. 2, after rendering range maps 

with random LiDAR configurations, we mix the range maps 

using random azimuth angle ranges. The mixed range map 

is transformed to a 3D point cloud using the inverse of the 

projection model Π− 1. Generally, the diversity of training 

data in a single training step is proportional to the batch 

size. The mixing module helps data-driven approaches by 

providing diverse LiDAR patterns in a single batch, reduc- 

ing efforts to keep a large batch size. 

4. Experiment 

We conduct a series of experiments to test the generaliza- 

tion ability over the sensor-bias issue in the domain adap- 

tation setting, in which a different LiDAR sensor is used 

at test time. We compare our method with domain adap- 

tation and data augmentation approaches (Sec. 4.3). Next, 

we demonstrate the effectiveness of our method in training 

a sensor-unbiased model (Sec. 4.4). Last, we perform an 

ablation study on each technical contribution (Sec. 4.5). 

4.1. Implementation details 

In our experiment, as described in Sec. 3.2, the yaw 

angle in the rotation matrix is randomly sampled from a 

uniform distribution, θy aw 

∼ U ( − 

π

 

6 

, 

π

 

6 ) , and each ele- 

ment in the translation vector is drawn from another uni- 

form distribution, taug 

= [ x, y , z ]T where x ∼ U ( − 1 , 1) m, 

y ∼ U ( − 0 . 5 , 0 . 5) m, and z ∼ U ( − 0 . 1 , 0 . 1) m. In addi- 

tion, we set random LiDAR configuration parameters that 

are described in Sec. 3.3 as follows: H ∈ { 1024 , 2048 } px., 

W ∈ [16 , 128] px., fup 

∈ [0 , π / 12) , fdow n 

∈ [ − π / 6 , 0) . 

Note that we sample W , fup, and fdow n 

from certain ranges 

to render arbitrary configurations of LiDARs. The forward 

movement velocity V is sampled from U (0 , 60) km/h, and 

the rotation angular velocity of the vehicle ω is sampled 

from U ( − 

π

 

8 

, 

π

 

8 ) . We mix two augmented LiDAR frames in 

our experiment. 

We implement every module with GPU primitives for 

speed gain. As a result, our method can be seamlessly 

plugged into the data loader in the training pipeline due to 

its efficiency. For example, our method integrated into the 

data loader of MinkNet42 network training adds just 3ms to 

render a new LiDAR frame.3 

4.2. Datasets 

SemanticKITTI [2] is a large-scale dataset for LiDAR se- 

mantic segmentation task built upon the popular KITTI Vi- 

sion Odometry Benchmark [16]. It consists of 22 sequences 

with 19 annotated classes. The dataset was collected by a 

Velodyne HDL-64E that has 64 vertical beams for 26.9◦ 

of vertical field of view (+2.0◦ to -24.9◦) corresponding to 

64 × 2048 range map. Following the standard protocol, we 

use sequences 00 to 10 (19k frames) for training except se- 

quence 08 (4k frames), reserved for a validation set. Since 

SemanticKITTI does not provide the 3D bounding boxes, 

we treat the dynamic objects as a part of the static scene 

when constructing the world models described in Sec. 3.1. 

nuScenes-lidarseg [15] is another large dataset providing 

1,000 driving scenes (850 for training and validation, 150 

for testing), including per-point annotation for 16 cate- 

gories. However, as only the keyframes sampled at 2Hz 

are annotated, the label propagation scheme described in 

Sec. 3.1 is applied. This dataset was captured with a Velo- 

dyne HDL-32E, providing 32 vertical beams for 41.33◦ 

of vertical field of view (+10.67◦ to -30.67◦), resulting in 

32 × 2048 range map. We consider each motion of dynamic 

objects in constructing world models using the given 3D 

bounding box trajectory information. 

Label Mapping. Since the annotated classes in Semantic 

KITTI [2] and nuScene [15] differ, we evaluate only ten 

overlapping categories in our experiments: {Car, Bicycle, 

Motorcycle, Truck, Other vehicles, Pedestrian, Drivable 

surface, Sidewalk, Terrain, and Vegetation} as suggested 

by [54]. We use mean Intersection-over-Union(mIoU) as 

our evaluation metric. 

4.3. Results 

We compare our method with unsupervised domain 

adaptation and domain mapping methods. All the meth- 

ods are trained on SemanticKITTI [2] and evaluated on 

nuScenes [15] (K → N) or vice versa (N → K). Note that our 

approach does not utilize the target dataset nor utilize the

 

3We use a workstation equipped with AMD EPYC 7452 CPU and 

Nvidia GeForce RTX 3090 GPU.
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Unit: mIoU (Rel.%)

 

Backbone 

(# of params)

 

Methods

 

Source → Target

 

K (64) → N (32) N (32) → K (64)

 

Complete 

&Label [54] 

(8.39M)

 

Baseline

 

27.9 23.5

 

FeaDA [9]

 

27.2 ( ↓ 2.5) 21.4 ( ↓ 8.9)

 

OutDA [47]

 

26.5 ( ↓ 5.0) 22.7 ( ↓ 3.4)

 

SWD [29]

 

27.7 ( ↓ 0.7) 24.5 ( ↓ 4.3)

 

3DGCA [50]

 

27.4 ( ↓ 1.8) 23.9 ( ↑ 1.7)

 

C&L [54]

 

31.6 ( ↑ 13.3 ) 33.7 ( ↑ 43.4)

 

Baseline 

+ LiDomAug

 

39.2

 

( ↑ 40.5 )

 

37.9

 

( ↑ 61.3 )

 

(a) Comparison with unsupervised domain adaptation approaches 

Unit: mIoU (Rel.%)

 

Backbone 

(# of params)

 

Methods

 

Source → Target

 

K (64) → N (32) N (32) → K (64)

 

(37.8M) 

MinkNet42 [12]

 

Baseline

 

37.8 36.1

 

CutMix [55]

 

37.1 ( ↓ 1.9) 37.6 ( ↑ 4.2)

 

Copy-Paste [18]

 

38.5 ( ↑ 1.9) 41.1 ( ↑ 13.9)

 

Mix3D [35]

 

43.1 ( ↑ 14.0) 44.7 ( ↑ 23.8)

 

PolarMix [52]

 

45.8 ( ↑ 21.2) 39.1 ( ↑ 8.3)

 

Baseline 

+ LiDomAug

 

45.9

 

( ↑ 21.4 )

 

48.3

 

( ↑ 33.8 )

 

(b) Comparison with data augmentation approaches

 

Table 1. An experiment with domain adaptation settings. We 

train networks with SemanticKITTI (64 ch.) [16] and test with 

nuScenes (32 ch.) [15] (K → N) and vice versa (N → K). Baseline 

with the proposed LiDomAug is more effective than state-of-the- 

art Domain Adaptation and Data Augmentation approaches. 

target LiDAR sensor information . As stated in Sec. 3.2, our 

approach is trained with randomized LiDAR configurations 

described in Sec. 4.1 for this experiment. 

Unsupervised Domain Adaptation. As shown in Table 1- 

(a), our method shows consistent improvement by a large 

margin over the state-of-the-art methods in both adaptation 

settings (K → N and N → K). In the N → K setting, for exam- 

ple, even though the model is trained on sparse data (32-ch) 

than the target domain (64-ch), our augmentation method 

provides more density-varied examples than what is avail- 

able in the source domain, which helps improve the learning 

of sensor-agnostic representations. 

Adversarial domain alignment methods, FeaDA [9], 

OutDA [47], SWD [29], and 3DGCA [50], show similar 

performance with the baseline and reveal the limitation in 

learning sensor-unbiased representations.4 Compared with 

C&L [54] that requires additional back-and-forth mapping 

to the canonical domain at the test time, our augmentation 

method is just applied at the training time, and it does not 

add additional computational burdens at the test time. 

Domain Mapping. Domain Mapping methods [4, 28] try 

to convert the source domain data to target domain data as

 

4As reported in [54], previous domain adaptation methods, namely 

FeaDA, OutDA, SWD, and 3DGCA, are ineffective in handling 3D Li- 

DAR data. For more details, please refer to Sec. 4.2 in [54].

 

Unit: mIoU (Rel.%)

 

Method

 

Retraining

 

Source → Target

 

K (64) → N0103(32)

 

CP [28]

 

No

 

28.8 

MB [28]

 

No

 

30.0 ( ↑ 4.2) 

MB+GCA [28]

 

Required

 

32.6 ( ↑ 13.2) 

CP+GCA [28]

 

Required

 

35.9 ( ↑ 24.7) 

BonnetalPS+AdaptLPS [4]

 

Required

 

37.5 ( ↑ 30.2) 

EfficientLPS+AdaptLPS [4]

 

Required

 

38.5 ( ↑ 33.7)

 

MinkNet42 + LiDomAug

 

No

 

52.4

 

( ↑ 81.9)

 

Table 2. Comparison with domain mapping approaches. We 

follow the evaluation protocol used in [28], i.e., trained on Se- 

manticKITTI (K) and evaluated on a subset of the nuScene (N- 

0103), to ensure a fair comparison. Note that our approach does 

not require retraining and achieves performance improvement. 

closely as possible, so they are required to access the tar- 

get domain data. Some approaches, such as GCA [28] and 

AdaptLPS [4], as shown in Table 2, even require retrain- 

ing networks. On the other hand, as discussed in Sec. 2, 

our method is an effective instant domain augmentation 

approach, which provides diverse LiDAR patterns beyond 

the target domain patterns during training, so it is a good 

alternative to the domain mapping approaches. Table 2 

shows the comparison result. We follow the same eval- 

uation protocol used in [28] for a fair comparison, and 

our model shows superior performance over the state-of- 

the-art (BPS+AdaptLPS) by a large margin (38.5 vs. 52.4 

mIOU), without re-training process required by the other 

approaches. 

Data Augmentation. Although the 3D augmentation meth- 

ods [18,35,52,55] have shown their effectiveness in learning 

a good representation on a single domain , it is rarely stud- 

ied to show the effectiveness of domain adaptation settings 

particularly caused by sensor discrepancy. We experiment 

to see whether the existing LiDAR augmentation methods 

and our approach are good at domain adaptation. 

As shown in Table 1-(b), interestingly, the 3D augmen- 

tation methods [18, 35, 52, 55] are helpful in domain adap- 

tation settings, even though they are not designed for adapt- 

ing to an unseen domain. In particular, Mix3D [35] shows 

impressive improvements (37.8 → 43.1 and 36.1 → 44.7) 

by simply aggregating two 3D scenes. However, we specu- 

late that the point cloud aggregation by Mix3D can induce 

unusual local structures (e.g., two cars overlapped perpen- 

dicularly), which may result in a suboptimal model. 

Furthermore, PolarMix [52], works well in the K → N 

setting (37.8 → 45.8). Our conjecture for the success of 

PolarMix in the K → N setting is that it can provide patterns 

of sparse 3D points similar to those found in nuScenes (32- 

ch) when faraway portions of a KITTI frame (64-ch) are se- 

lected for mixing. However, if the source domain does not
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Unit: mIoU (Rel.%)

 

Backbone

 

Training data

 

Testing data

 

Avg. rank

 

V64

 

V32 V16 O64 O128

 

KPConv [45]

 

V64

 

54.70

 

0.02 ( ↓ 99.95)

 

0.01 ( ↓ 99.98)

 

0.01 ( ↓ 99.98)

 

0.01 ( ↓ 99.98)

 

6.2

 

MinkNet42 [12]

 

V64

 

62.80

 

24.32 ( ↓ 43.65)

 

13.77 ( ↓ 59.64)

 

25.80 ( ↓ 36.76)

 

24.05 ( ↓ 46.14)

 

4.8

 

V32

 

45.59 ( ↓ 27.40)

 

43.16

 

25.35 ( ↓ 25.70)

 

29.05 ( ↓ 28.80)

 

29.28 ( ↓ 34.42)

 

4.0

 

V16

 

33.70 ( ↓ 46.33)

 

29.66 ( ↓ 31.27)

 

34.12

 

34.07 ( ↓ 16.50)

 

31.48 ( ↓ 29.50)

 

4.0

 

O64

 

43.01 ( ↓ 31.51)

 

39.13 ( ↓ 9.34)

 

27.96 ( ↓ 18.05)

 

40.80

 

43.08 ( ↓ 3.516)

 

3.2

 

O128

 

42.25 ( ↓ 32.72)

 

27.41 ( ↓ 36.49)

 

10.54 ( ↓ 69.11)

 

37.81 ( ↓ 7.33)

 

44.65

 

4.4

 

LiDomAug (Rand)

 

61.51

 

( ↓ 2.05)

 

44.73

 

( ↑ 3.64 )

 

33.38

 

( ↓ 2.17)

 

46.54

 

( ↑ 14.07 )

 

48.34

 

( ↑ 8.26 )

 

1.4

 

Table 3. Experiment on the sensor-bias issue of LiDAR semantic segmentation models. We tested KPConv [45] and MinkowskiNet [12] 

models on SemanticKITTI [2] by generating multiple LiDAR configurations using the proposed LiDomAug. ‘LiDomAug (Rand)’ denotes 

that the model is trained with our final method, i.e., with pose-augmentation, randomized LiDAR config., random distortion, and scene- 

level & sensor-level mixing. For each test configuration, the best and

 

the

 

second-best performances are highlighted, the reference cases 

(the LiDAR scans come from the same LiDAR configurations are used at the training and the testing time) are

 

colored in gray . 

provide enough diversity as in the opposite N → K scenario, 

PolarMix shows reduced improvement (36.1 → 39.1). This 

result shows that learning a rich sensor-agnostic representa- 

tion is challenging. Our method aims to reduce the domain 

gap induced by sensor discrepancy by explicitly rendering 

various LiDAR patterns. As a result, our method achieves 

superior performances in both K → N and N → K settings by 

a large margin (37.8 → 45.9 and 36.1 → 48.3). 

4.4. Towards Sensor-agnostic Model 

Our method encourages models to learn a sensor- 

agnostic representation, and no data from the target domain 

is required during training. In this experiment, we discuss 

the effectiveness of our approach in training a model unbi- 

ased to any LiDAR configuration. This experiment is chal- 

lenging to conduct because there is no real-world dataset 

captured by different kinds of LiDARs at once5. Therefore, 

it is not straightforward to configure a dataset of the same 

scene captured with different LiDARs. 

To proceed with this experiment, we use the pro- 

posed LiDomAug to create LiDAR frames of various 

LiDAR configurations from the SemanticKITTI dataset. 

These frames of specific LiDAR configurations were then 

mix-and-matched for training and testing datasets. Specif- 

ically, we create the frames of 16-, 32-, and 64-ch Velo- 

dyne LiDARs [19] (denoted by V16, V32, and V64) and the 

frames of 64- and 128-ch Ouster LiDARs [36] (denoted by 

O64 and O128) based on the manufacturer-provided LiDAR 

specification6. We tested KPConv [45] and Minkowsk- 

iNet [12], which are representative methods in point- and 

voxel-based approaches, respectively. 

In Table 3, we present evaluation results on various Li- 

DAR patterns (columns) of a model trained on a specific Li-

 

5Carballo et al . [6] proposed a multi-lidar dataset, but the dataset is not 

released to the public domain. 

6More detailed configurations are described in the supplement. 

DAR pattern (row). As shown in rows 1-2, the models show 

severe performance drops if the LiDAR got changed at test 

time. For instance, a MinkNet42 [12] model trained on V64 

LiDAR pattern in the second row achieves 62.80 mIoU if 

tested on the same LiDAR. However, the model shows sig- 

nificant performance drops if evaluated on different LiDAR 

patterns (24.32 mIoU on V32, 13.77 mIoU on V16, etc.). 

Especially, KPConv [45] fails under this sensor-discrepancy 

scenario while MinkowskiNet [12] model is less affected. 

We speculate that the U-Net style of architectural design 

makes it resilient to variations of the geometric patterns of 

3D points. Therefore, we choose MinkowskiNet [12] as the 

backbone model for the rest of the experiment. 

We also trained MinkowskiNet [12] models on the other 

LiDAR configurations, such as V32, V16, O64, and O128, 

shown in rows 3-6 of Table 3. As expected in the sensor- 

discrepancy evaluation scenarios, the best performances are 

achieved when the same LiDAR is applied at test time (col- 

ored in gray). Otherwise, the performances fluctuate a lot. 

This result indicates that a data-driven model tends to be bi- 

ased towards a specific LiDAR configuration of the training 

data, which could be a hurdle in deploying them to real- 

world applications. 

As a remedy for the sensor-bias issue, we propose to 

train models with the proposed LiDomAug using random- 

ized LiDAR configurations , shown in row 7 of Table 3. Our 

model gets to learn sensor-agnostic representations since 

LiDomAug provides various LiDAR patterns with realistic 

distortions. Given the no free lunch theorem [42], LiDo- 

mAug (Rand) does not beat all the test settings, especially 

when the LiDAR configuration used for the training and 

testing is the same. Our model, however, achieves the high- 

est generalization ability across the diverse LiDAR configu- 

rations we tested, measured by average rank in the last col- 

umn of Table 3. This result shows that the proposed method 

helps alleviate the sensor bias.
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Unit: mIoU (Rel.%)

 

Training data Pose-Aug Distortion S&S Mix

 

K (64) → N (32)(Sec 3.2) (Sec 3.2) (Sec 3.3) (Sec 3.4)

 

K(64)

 

36.57 ± 0.56

 

K(32)

 

37.05 ± 1.15 ( ↑ 1.31) 

Random

 

40.05 ± 1.03 ( ↑ 9.51) 

Random ✓

 

42.70 ± 0.91 ( ↑ 16.8) 

Random ✓ ✓

 

43.04 ± 0.56 ( ↑ 17.7)

 

Random

 

✓

 

✓

 

✓

 

44.98 ± 1.42 ( ↑ 23.0 )

 

Table 4. Ablation study on the proposed augmentation modules. 

The results are averaged over three runs.

 

Unit: mIoU (Rel.%)

 

Backbone 

(# of params)

 

Methods

 

Source → Target

 

K (64) → N (32) N (32) → K (64)

 

(37.9M) 

SPVCNN [44]

 

Baseline

 

43.4 41.9

 

Baseline 

+ LiDomAug

 

51.7

 

( ↑ 19.1 )

 

51.2

 

( ↑ 22.2 )

 

Table 5. Training with SemanticKITTI [16] and testing with 

nuScenes-lidarseg [15] (K → N). The vice versa is denoted as 

(N → K). We utilize state-of-the-art NAS-based 3D neural network 

architecture (SPVCNN [44]) for this experiment. 

4.5. Ablation Study 

We perform an ablation study on the impact of each pro- 

posed contribution. In this experiment, we train MinkNet42 

models [12] on SemanticKITTI (64 ch.) [2] and test them 

on nuScenes (32 ch.) [15], i.e., K (64) → N (32) scenario. 

Training with randomized LiDARs. We compare models 

trained on three types of LiDAR patterns: (1) the original 

SemanticKITTI dataset, denoted as K(64). (2) 32 ch. Li- 

DAR, created by LiDomAug using SemanticKITTI dataset 

and target nuScene LiDAR specification, denoted as K(32). 

(3) LiDAR scans created by LiDomAug using randomized 

configurations, denoted as Random. As shown in rows 1-3 

of Table 4, K(32) shows improvement over K(64) because 

K(32) resembles the data in the target domain, denoted as 

N(32). Random data provides examples with abundant pat- 

terns to help learn a better representation, achieving addi- 

tional performance gain (36.57 → 40.05). 

Pose augmentation is another effective source of providing 

a diversity of the scan patterns. As shown in Table 4, adding 

pose augmentation to the Random LiDAR inputs leads to 

extra improvement (40.05 → 42.70). 

Distortion induced by entangled motion. In the real 

world, LiDAR data have distortions due to the entangled 

motion of the vehicle and LiDAR. Our distortion module 

implements various degrees of distortion from randomly se- 

lected forward and angular velocities of the vehicle. As this 

module enhances the realism of LiDAR frames, we achieve 

another enhancement (42.70 → 43.04), shown in row 5 of 

Table 4. 

Scene-level & Sensor-level mix module provides extra di- 

versity to a single LiDAR frame by swapping scenes cap- 

tured with different LiDAR configurations. Eventually, the 

final model shown in row 6 of Table 4 learns a better repre- 

sentation from the rich LiDAR frames (43.04 → 44.98). 

NAS-based backbone. We additionally validate that our 

approach can be applied to an advanced 3D neural network, 

SPVCNN [44] that was found by extensive neural architec- 

ture search (NAS). We use the same experimental setting 

used in Sec. 4.3, and we utilize the pre-trained network pro- 

vided by the authors. After fine-tuning the network with the 

proposed LiDomAug, we observe the prediction accuracy 

on the unseen target domain significantly enhanced in both 

K (64) → N (32) and N (32) → K (64) scenarios. 

5. Conclusion 

This paper proposes a new LiDAR augmentation method 

to remedy the sensor-bias issue in LiDAR semantic seg- 

mentation models. Our method efficiently transforms real- 

world LiDAR data to another LiDAR domain having the 

desired configuration. Due to its efficiency, our method can 

be deployed as an online data augmentation module in the 

learning frameworks, which leads us to call our method in- 

stant domain augmentation. Our method does not require 

access to any target data, so it encourages models to learn a 

sensor-agnostic representation by providing random LiDAR 

configurations of data. Extensive experiments show that 

training with our method significantly improves the LiDAR 

semantic segmentation performance in the unseen datasets 

collected by a different LiDAR. 

Limitation and future work. Our method requires ac- 

curate 6-DoF ego-motions to construct the world models, 

but it could be estimated by off-the-shelf LiDAR SLAM 

method [1]. Our method is crafted for a cylindrical LiDAR, 

the most common type utilized in most of the existing pub- 

lic datasets. However, our trivial extension to a more com- 

plex setting, i.e., two LiDAR settings consisting of a solid- 

state LiDAR and a cylindrical LiDAR, shows a promising 

result (see Section E in the supplement). Since our method 

can be used for a generic LiDAR domain augmentation, our 

future work is to apply our method to other 3D perception 

tasks, such as object detection or instance semantic segmen- 

tation. 
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