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Abstract
Neural radiance fields (NeRF) excel at synthesizing new

views given multi-view, calibrated images of a static scene.
When scenes include distractors, which are not persistent
during image capture (moving objects, lighting variations,
shadows), artifacts appear as view-dependent effects or
’floaters’. To cope with distractors, we advocate a form
of robust estimation for NeRF training, modeling distrac-
tors in training data as outliers of an optimization problem.
Our method successfully removes outliers from a scene and
improves upon our baselines, on synthetic and real-world
scenes. Our technique is simple to incorporate in modern
NeRF frameworks, with few hyper-parameters. It does not
assume a priori knowledge of the types of distractors, and
is instead focused on the optimization problem rather than
pre-processing or modeling transient objects. More results
at https://robustnerf.github.io/public.

1. Introduction
The ability to understand the structure of a static 3D

scene from 2D images alone is a fundamental problem is
computer vision [44]. It finds applications in AR/VR for
mapping virtual environments [6, 36, 61], in autonomous
robotics for action planning [1], and in photogrammetry to
create digital copies of real-world objects [34].

Neural fields [55] have recently revolutionized this clas-
sical task, by storing 3D representations within the weights
of a neural network [39]. These representations are opti-
mized by back-propagating image differences. When the
fields store view-dependent radiance and volumetric ren-
dering is employed [21], we can capture 3D scenes with
photo-realistic accuracy, and we refer to the generated rep-
resentation as Neural Radiance Fields, or NeRF [25]).

Training of NeRF models generally requires a large
collection of images equipped with accurate camera cali-
bration, which can often be recovered via structure-from-
motion [37]. Behind its simplicity, NeRF hides several as-
sumptions. As models are typically trained to minimize
error in RGB color space, it is of paramount importance
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Figure 1. NeRF assumes photometric consistency in the observed
images of a scene. Violations of this assumption, as with the im-
ages in the top row, yield reconstructed scenes with inconsistent
content in the form of “floaters” (highlighted with ellipses). We
introduce a simple technique that produces clean reconstruction
by automatically ignoring distractors without explicit supervision.

that images are photometrically consistent – two photos
taken from the same vantage point should be identical up
to noise. Unless one employs a method explicitly account-
ing for it [35], one should manually hold a camera’s focus,
exposure, white-balance, and ISO fixed.

However, properly configuring one’s camera is not all
that is required to capture high-quality NeRFs – it is also
important to avoid distractors: anything that isn’t persistent
throughout the entire capture session. Distractors come in
many shapes and forms, from the hard-shadows cast by the
operators as they explore the scene to a pet or child casually
walking within the camera’s field of view. Distractors are
tedious to remove manually, as this would require pixel-by-
pixel labeling. They are also tedious to detect, as typical
NeRF scenes are trained from hundreds of input images,
and the types of distractors are not known a priori. If dis-
tractors are ignored, the quality of the reconstruction scene
suffers significantly; see Figure 1.

In a typical capture session, it is difficult to to capture
multiple images of the same scene from the same viewpoint,
rendering distractors challenging to model mathematically.
As such, while view-dependent effects are what give NeRF
their realistic look, how can the model tell the difference
between a distractor and a view-dependent effect?
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Despite the challenges, the research community has de-
vised several approaches to overcome this issue:
• If distractors are known to belong to a specific class (e.g.,

people), one can remove them with a pre-trained seman-
tic segmentation model [35, 43] – this process does not
generalize to “unexpected” distractors such as shadows.

• One can model distractors as per-image transient phe-
nomena, and control the balance of transient/persistent
modeling [23] – however, it is difficult to tune the losses
that control this Pareto-optimal objective.

• One can model data in time (i.e., high-framerate video)
and decompose the scene into static and dynamic (i.e.,
distractor) components [53] – but this clearly only applies
to video rather than photo collection captures.

Conversely, we approach the problem of distractors by mod-
eling them as outliers in NeRF optimization.

We analyze the aforementioned techniques through the
lens of robust estimation, allowing us to understand their be-
havior, and to design a method that is not only simpler to im-
plement but also more effective (see Figure 1). As a result,
we obtain a method that is straightforward to implement, re-
quires minimal-to-no hyper-parameter tuning, and achieves
state-of-the-art performance. We evaluate our method:
• quantitatively, in terms of reconstruction with syntheti-

cally, yet photo-realistically, rendered data;
• qualitatively on publicly available datasets (often fine-

tuned to work effectively with previous methods);
• on a new collection of natural and synthetic scenes, in-

cluding those autonomously acquired by a robot, allow-
ing us to demonstrate the sensitivity of previous methods
to hyper-parameter tuning.

2. Related Work
We briefly review the basics and notation of Neural Ra-

diance Fields. We then describe recent progress in NeRF
research, paying particular attention to techniques for mod-
eling of static/dynamic scenes.

Neural Radiance Fields. A neural radiance field (NeRF)
is a continuous volumetric representation of a 3D scene,
stored within the parameters of a neural network θ. The
representation maps a position x and view direction d to a
view-dependent RGB color and view-independent density:

c(x,d)

σ(x)

}
f(x,d;θ) (1)

This representation is trained from a collection, {(Ci,Ti)},
of images Ci with corresponding calibration parame-
ters Ti (camera extrinsics and intrinsics).

During training the calibration information is employed
to convert each pixel of the image into a ray r=(o,d), and
rays are drawn randomly from input images to form a train-
ing mini-batch (r∼Ci). The parameters θ are optimized to

correctly predict the colors of the pixels in the batch via the
L2 photometric-reconstruction loss:

Lrgb(θ) =
∑
i

Er∼Ci

[
Lr,i

rgb(θ)
]

(2)

Lr,i
rgb(θ) = ||C(r;θ)−Ci(r)||22 (3)

Parameterizing the ray as r(t) = o + td, the NeRF model
image C(r;θ) is generated pixel-by-pixel volumetric ren-
dering based on σ(·) and c(·) (e.g., see [25, 42]).

Recent progress on NeRF models. NeRF models have re-
cently been extended in several ways. A major thread has
been the speedup of training [15, 27] and inference [6, 13],
enabling today’s models to be trained in minutes [27], and
rendered on mobile in real-time [6]. While initially re-
stricted to forward-facing scenes, researchers quickly found
ways to model real-world 360◦ scenes [4,59], and to reduce
the required number of images, via sensor fusion [35] or
hand-designed priors [28]. We can now deal with image
artifacts such as motion blur [22], exposure [24], and lens
distortion [14]. And the requirement of (precise) camera
calibrations is quickly being relaxed with the introduction
of techniques for local camera refinement [8, 19], or direct
inference [58]. While a NeRF typically represents geometry
via volumetric density, there exist models custom-tailored
to predict surfaces [29, 51], which can be extended to use
predicted normals to significantly improve reconstruction
quality [50, 57]. Given high-quality normals [47], infer-
ring the (rendering) structure of a scene becomes a possibil-
ity [5]. We also note recent papers about additional appli-
cations to generalization [56], semantic understanding [48],
generative modeling [33], robotics [1], and text-to-3D [31].

Modeling non-static scenes. For unstructured scenes
like those considered here, the community has focused
on reconstructing both static and non-static elements from
video. The most direct approach, treating time as an
auxiliary input, leads to cloudy geometry and a lack of
fine detail [11, 54]. Directly optimizing per-frame la-
tent codes as an auxiliary input has proved more effec-
tive [17, 30, 53]. The most widely-adopted approach is to
fit a time-conditioned deformation field mapping 3D points
between pairs of frames [18, 49] or to a canonical coordi-
nate frame [9, 10, 20, 32, 45]. Given how sparsely space-
time is sampled, all methods require careful regularization,
optimization, or additional training signals to achieve ac-
ceptable results.

Relatively little attention has been given to removing
non-static elements. One common approach is to segment
and ignore pixels which are likely to be distractors [35, 43].
While this eliminates larger objects, it fails to account for
secondary effects like shadows. Prior attempts to model dis-
tractors as outliers still leave residual cloudy geometry [23].
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Figure 2. Ambiguity – A simple 2D scene where a static object (blue) is captured by three cameras. During the first and third capture
the scene is not photo-consistent as a distractor was within the field of view. Not photo-consistent portions of the scene can end up being
encoded as view-dependent effects – even when we assume ground truth geometry.

3. Method
The classical NeRF training losses (3) are effective for

capturing scenes that are photometrically consistent, lead-
ing to the photo-realistic novel-view synthesis that we are
now accustomed to seeing in recent research. However,
“what happens when there are elements of the scene that
are not persistent throughout the entire capture session?”
Simple examples of such scenes include those in which an
object is only present in some fraction of the observed im-
ages, or may not remain in the same position in all observed
images. For example, Figure 2 depicts a 2D scene compris-
ing a persistent object (the truck), along with several tran-
sient objects (e.g., people and a dog). While rays in blue
from the three cameras intersect the truck, the green and or-
ange rays from cameras 1 and 3 intersect transient objects.
For video capture and spatio-temporal NeRF models, the
persistent objects comprise the “static” portion of the scene,
while the rest would be called the “dynamic”.

3.1. Sensitivity to outliers
For Lambertian scenes, photo-consistent structure is

view independent, as scene radiance only depends on the
incident light [16]. For such scenes, view-dependent NeRF
models like (1), trained by minimizing (3), admit local
optima in which transient objects are explained by view-
dependent terms. Figure 2 depicts this, with the outgoing
color corresponding to the memorized color of the outlier
– i.e. view-dependent radiance. Such models exploit the
view-dependent capacity of the model to over-fit observa-
tions, effectively memorizing the transient objects. One can
alter the model to remove dependence on d, but the L2
loss remains problematic as least-squares (LS) estimators
are sensitive to outliers, or heavy-tailed noise distributions.

Under more natural conditions, dropping the Lambertian
assumption, the problem becomes more complex as both
non-Lambertian reflectance phenomena and outliers can be
explained as view-dependent radiance. While we want the
models to capture photo-consistent view-dependent radi-
ance, outliers and other transient phenomena should ideally
be ignored. And in such cases, optimization with an L2

loss (3) yields significant errors in reconstruction; see Fig-
ure 1. Problems like these are pervasive in NeRF model fit-
ting, especially in uncontrolled environments with complex
reflectance, non-rigidity, or independently moving objects.

3.2. Robustness to outliers
Robustness via semantic segmentation. One way to re-
duce outlier contamination during NeRF model optimiza-
tion is to rely on an oracle S that specifies whether a given
pixel r from image i is an outlier, and should therefore be
excluded from the empirical loss, replacing (3) with:

Lr,i
oracle(θ) = Si(r) · ||C(r;θ)−Ci(r)||22 (4)

In practice, a pre-trained (semantic) segmentation network
S might serve as an oracle, Si=S(Ci). E.g., Nerf-in-the-
wild [23] employed a semantic segmenter to remove pixels
occupied by people, as they are outliers in the context of
photo-tourism. Urban Radiance Fields [35] segmented out
sky pixels, while LOL-NeRF [33] ignored pixels not be-
longing to faces. The obvious problem with this approach
is the need for an oracle to detect arbitrary distractors.

Robust estimators. Another way to reduce sensitivity to
outliers is to replace the conventional L2 loss (3) with a ro-
bust loss (e.g., [2, 41]), so that photometrically-inconsistent
observations can be down-weighted during optimization.
Given a robust kernel κ(·), we rewrite our training loss as:

Lr,i
robust(θ) = κ(||C(r;θ)−Ci(r)||2) (5)

where κ(·) is positive and monotonically increasing. Mip-
NeRF [3], for example, employs an L1 loss κ(ϵ)=|ϵ|, which
provides some degree of robustness to outliers during NeRF
training. Given our analysis, a valid question is whether we
can straightforwardly employ a robust kernel to approach
our problem, and if so, given the large variety of robust ker-
nels [2], which is the kernel of choice.

Unfortunately, as discussed above, outliers and non-
Lambertian effects can both be modelled as view-dependent
effects (see Figure 3). As a consequence, with simple appli-
cation of robust estimators it can be difficult to separate sig-
nal from noise. Figure 4 shows examples in which outliers
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Figure 3. Histograms – Robust estimators perform well when the
distribution of residuals agrees with the one implied by the esti-
mator (e.g., Gaussian for L2, Laplacian for L1). Here we visualize
the ground-truth distribution of residuals (bottom-left), which is
hardly a good match with any simple parametric distribution.

are removed, but fine-grained texture and view-dependent
details are also lost, or conversely, fine-grained details are
preserved, but outliers cause artifacts in the reconstructed
scene. One can also observe mixtures of these cases in
which details are not captured well, nor are outliers fully
removed. We find that this behaviour occurs consistently
for many different robust estimators and parameter settings.

Training time can also be problematic. The robust es-
timator gradient w.r.t. model parameters can be expressed
using the chain rule as

∂κ(ϵ(θ))

∂θ

∣∣∣∣
θ(t)

=
∂κ(ϵ)

∂ϵ

∣∣∣∣
ϵ(θ(t))

· ∂ϵ(θ)
∂θ

∣∣∣∣
θ(t)

(6)

The second factor is the classical NeRF gradient. The first
factor is the kernel gradient evaluated at the current er-
ror residual ϵ(θ(t)). During training, large residuals can
equivalently come from high-frequency details that have not
yet been learnt, or they may arise from outliers (see Fig-
ure 4 (bottom)). This explain why robust optimization, im-
plemented as (5), should not be expected to decouple high-
frequency details from outliers. Further, when strongly ro-
bust kernels are employed, like redescending estimators,
this also explains the loss of visual fidelity. That is, because
the gradient of (large) residuals get down-weighted by the
(small) gradients of the kernel, slowing down the learning
of these fine-grained details (see Figure 4 (top)).

3.3. Robustness via Trimmed Least Squares
In what follows we advocate a form of iteratively

reweighted least-squares (IRLS) with a Trimmed least
squares (LS) loss for NeRF model fitting.

Iteratively Reweighted least Squares. IRLS is a widely
used method for robust estimation that involves solving a
sequence of weighted LS problems, the weights of which
are adapted to reduce the influence of outliers. To that end,

Figure 4. Kernels – (top-left) Family of robust kernels [2], includ-
ing L2 (α=2), Charbonnier (α=1) and Geman-McClure (α=−2).
(top-right) Mid-training, residual magnitudes are similar for dis-
tractors and fine-grained details, and pixels with large residuals
are learned more slowly, as the gradient of re-descending kernels
flattens out. (bottom-right) A too aggressive Geman-McClure in
down-weighting large residuals removes both outliers and high-
frequency detail. (bottom-left) A less aggressive Geman-McClure
does not effectively remove outliers.

at iteration t, one can write the loss as

Lr,i
robust(θ

(t)) = ω(ϵ(t−1)(r)) · ||C(r;θ(t))−Ci(r)||22
ϵ(t−1)(r) = ||C(r;θ(t−1))−Ci(r)||2 (7)

For weight functions given by ω(ϵ)=ϵ−1 ·∂κ(ϵ)/∂ϵ one can
show that, under suitable conditions, the iteration converges
to a local minima of (5) (see [41, Sec. 3]).

This framework admits a broad family of losses, includ-
ing maximum likelihood estimators for heavy-tailed noise
processes. Examples in Figure 4 include the Charbonnier
loss (smoothed L1), and more aggressive redescending esti-
mators such as the Lorentzian or Geman-McClure [2]. The
objective in (4) can also be viewed as a weighted LS objec-
tive, the binary weights of which are provided by an oracle.
And, as discussed at length below, one can also view several
recent methods like NeRFW [23] and D2NeRF [53] through
the lens of IRLS and weighted LS.

Nevertheless, choosing a suitable weight function ω(ϵ)
for NeRF optimization is non-trivial, due in large part to the
intrinsic ambiguity between view-dependent radiance phe-
nomena and outliers. One might try to solve this problem
by learning a neural weight function [40], although gener-
ating enough annotated training data might be prohibitive.
Instead, the approach taken below is to exploit inductive
biases in the structure of outliers, combined with the sim-
plicity of a robust, trimmed LS estimator.

Trimmed Robust Kernels. Our goal is to develop a weight
function for use in iteratively weighted LS optimization that
is simple and captures useful inductive biases for NeRF op-
timization. For simplicity we opt for a binary weight func-
tion with intuitive parameters that adapts naturally through
model fitting so that fine-grained image details that are not
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Figure 5. Algorithm – We visualize our weight function computed by residuals on two examples: (top) the residuals of a (mid-training)
NeRF rendered from a training viewpoint, (bottom) a toy residual image containing residual of small spatial extent (dot, line) and residuals
of large spatial extent (squares). Notice residuals with large magnitude but small spatial extent (texture of the box, dot, line) are included
in the optimization, while weaker residuals with larger spatial extent are excluded. Note that while we operate on patches, we visualize the
weight function on the whole image to facilitate visualization.

outliers can be learned quickly. It is also important to cap-
ture the structured nature of typical outliers, contrary to the
typical i.i.d. assumption in most robust estimator formula-
tions. To this end, the weight function should capture spatial
smoothness of the outlier process, recognizing that objects
typically have continuous local support, and hence outliers
are expected to occupy large, connected regions of an im-
age (e.g., the silhouette of a person to be segmented out
from a photo-tourism dataset).

Surprisingly, a relatively simple weight function embod-
ies these properties and performs extremely well in practice.
The weight function is based on so-called trimmed estima-
tors that are used in trimmed least-squares, like that used in
trimmed ICP [7]. We first sort residuals, and assume that
residuals below a certain percentile are inliers. Picking the
50% percentile for convenience (i.e., median), we define

ω̃(r) = ϵ(r) ≤ Tϵ , Tϵ = Medianr{ϵ(r)} . (8)

To capture spatial smoothness of outliers we spatially
diffuse inlier/outlier labels ω with a 3×3 box kernel B3×3.
Formally, we define

W(r) = (ω̃(r)⊛ B3×3) ≥ T⊛ , T⊛ = 0.5 . (9)

This helps to avoid classifying high-frequency details as
outliers, allowing them to be captured by the NeRF model
during optimization (see Figure 5).

While the trimmed weight function (9) improves the ro-
bustness of model fitting, it sometimes misclassifies fine-
grained image details early in training where the NeRF
model first captures coarse-grained structure. These local-
ized texture elements may emerge but only after very long
training times. We find that stronger inductive bias to spa-
tially coherence allows fine-grained details to be learned
more quickly. To that end, we aggregate the detection of
outliers on 16×16 neighborhoods; i.e., we label entire 8×8
patches as outliers or inliers based on the behavior of W in
the 16×16 neighborhood of the patch . Denoting the N×N
neighborhood of pixels around r as RN (r), we define

ω(R8(r)) = Es∼R16(r) [W(s)] ≥ TR , TR = 0.6 . (10)

Figure 6. Residuals – For the dataset shown in the top row,
we visualize the dynamics of the RobustNeRF training residu-
als, which show how over time the estimated distractor weights
go from being random ((t/T )=0.5%) to identify distractor pix-
els ((t/T )=100%) without any explicit supervision.

The final weight function is the union of the three masks
in Eqns. 8 -10. This robust weight function evolves during
optimization, as one expects with IRLS where the weights
are a function of the residuals at the previous iteration. That
is, the labeling of pixels as inliers/outliers changes during
training, and settles around masks similar to the one an ora-
cle would provide as training converges (see Figure 6).

4. Experiments
We implement our robust loss function in the MultiN-

eRF codebase [26] and apply it to mip-NeRF 360 [4]. We
dub this method “RobustNeRF”. To evaluate RobustNeRF,
we compare against baselines on several scenes containing
different types of distractors. Where possible, we quantita-
tively compare reconstructions to held-out, distraction-free
images; we report three metrics, averaged across held-out
frames, namely, PSNR, SSIM [52], and LPIPS [60].

We compare different methods on two collections of
scenes, i.e., those provided by the authors of D2NeRF, and
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Figure 7. Dataset – Sample training images showing the distrac-
tors in each scene. Statue and Android were acquired manually,
and the others with a robotic arm. In the robotic setting we have
pixel-perfect alignment of distractor vs. distractor-free images.

novel datasets described below. We also present a series of
illustrative experiments on synthetic scenes, shedding light
on RobustNeRF’s efficacy and inner workings.

4.1. Baselines
We compare RobustNeRF to variants of mip-NeRF 360

optimized with different loss functions (L2, L1, and Char-
bonnier). These variants serve as natural baselines for mod-
els with limited or no robustness to outliers.We also com-
pare to D2NeRF, a recent method for reconstructing dy-
namic scenes from monocular video. Unlike our method,
D2NeRF is designed to reconstruct distractors rather than
discard them. While D2NeRF is presented as a method for
monocular video, it does not presuppose temporal continu-
ity, and can be directly applied to unordered images. We
omit additional comparisons to NeRF-W as its performance
falls short of D2NeRF [53]. For more details on model
training, see the supplementary material.

4.2. Datasets – Figure 7
In addition to scenes from D2NeRF, we introduce a set of

natural and synthetic scenes. They facilitate the evaluation
of RobustNeRF’s effectiveness on illustrative use cases, and
they enable empirical analysis under controlled conditions.

Natural scenes. We capture seven natural scenes exempli-
fying different types of distractors. Scenes are captured in
three settings, on the street, in an apartment and in a robotics
lab. Distractor objects are moved, or are allowed to move,
between frames to simulate capture over extended periods
of time. We vary the number of unique distractors from 1
(Statue) to 150 (BabyYoda), and their movements. Unlike
prior work on monocular video, frames are captured with-
out a clear temporal ordering (see Figure 7). The other three
(i.e., Street1, Street2, and Gloss) include view-dependence
effects, the results of which are shown in the supplementary

material. We also capture additional frames without dis-
tractors to enable quantitative evaluations. Camera poses
are estimated using COLMAP [38]. A full description of
each scene in the supplementary material.
Synthetic scenes. To further evaluate RobustNeRF, we
generate synthetic scenes using the Kubric dataset gener-
ator [12]. Each scene is constructed by placing a set of
simple geometries in an empty, texture-less room. In each
scene, a subset of objects remain fixed while the other ob-
jects (i.e., distractors) change position from frame to frame.
By varying the number of objects, their size, and the way
they move, we control the level of distraction in each scene.
We use these scenes to examine RobustNeRF’s sensitivity
to its hyperparameters, see supplementary material.

4.3. Evaluation
We evaluate RobustNeRF on its ability to ignore distrac-

tors while accurately reconstructing the static elements of
a scene. We train RobustNeRF, D2NeRF, and variants of
mip-NeRF 360 on scenes where distraction-free frames are
available. Models are trained on frames with distractors and
evaluated on distractor-free frames.
Comparison to mip-NeRF 360 – Figure 8. On natu-
ral scenes, RobustNeRF generally outperforms variants of
mip-NeRF 360 by 1.3 to 4.7 dB in PSNR. As L2, L1,
and Charbonnier losses weigh all pixels equally, the model
is forced to represent, rather than ignore, distractors as
“clouds” with view-dependent appearance. We find clouds
to be most apparent when distractors remain stationary for
multiple frames. In contrast, RobustNeRF’s loss isolates
distractor pixels and assigns them a weight of zero (see
Figure 6). To establish an upper bound on reconstruction
accuracy, we train mip-NeRF 360 with Charbonnier loss
on distraction-free versions of each scene, the images for
which are taken from (approximately) the same viewpoints.
Reassuringly, RobustNeRF when trained on distraction-free
frames, achieves nearly identical accuracy; see Figure 11.

While RobustNeRF consistently outperforms mip-NeRF
360, the gap is smaller in the Apartment scenes (Statue,
Android) than the Robotics Lab scenes (Crab, BabyYoda).
This can be explained by challenging background geome-
try, errors in camera parameter estimation, and impercep-
tible changes to scene appearance. For further discussion,
see the supplementary material.

Comparison to D2NeRF – Figure 9. Quantitatively, Ro-
bustNeRF matches or outperforms D2NeRF by as much
as 12 dB PSNR depending on the number of unique out-
lier objects in the capture. Results on D2NeRF real scenes
are provided in the supplementary material for qualitative
comparison. In Statue and Android, 1 and 3 non-rigid ob-
jects are moved around the scene, respectively. D2NeRF
is able to model these objects and thus separate them from
the scenes’ static content. In the remaining scenes, a much
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Statue Android Crab BabyYoda
LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

mip-NeRF 360 (L2) 0.36 0.66 19.09 0.40 0.65 19.35 0.27 0.77 25.73 0.31 0.75 22.97
mip-NeRF 360 (L1) 0.30 0.72 19.55 0.40 0.66 19.38 0.22 0.79 26.69 0.22 0.80 26.15
mip-NeRF 360 (Ch.) 0.30 0.73 19.64 0.40 0.66 19.53 0.21 0.80 27.72 0.23 0.80 25.22
D2NeRF 0.48 0.49 19.09 0.43 0.57 20.61 0.42 0.68 21.18 0.44 0.65 17.32
RobustNeRF 0.28 0.75 20.89 0.31 0.65 21.72 0.21 0.81 30.75 0.20 0.83 30.87

mip-NeRF 360 (clean) 0.19 0.80 23.57 0.31 0.71 23.10 0.16 0.84 32.55 0.16 0.84 32.63

Figure 8. Evaluation on Natural Scenes – RobustNeRF outperforms baselines and D2NeRF [53] on novel view synthesis with real-world
captures. The table provides a quantitative comparison of RobustNeRF, D2NeRF and mip-NeRF 360 using different reconstruction losses.
The last row reports mip-NeRF 360 trained on a distractor-free version of each dataset, giving an upperbound for RobustNeRF performance.
We also visualize samples from each scene rendered with each of the methods. See Supplementary Material for more samples.

larger pool of 100 to 150 unique, non-static objects are used
– too many for D2NeRF to model effectively. As a result,
“cloud” artifacts appear in its static representation, similar
to those produced by mip-NeRF 360. In contrast, Robust-
NeRF identifies non-static content as outliers and omits it
during reconstruction. Although both methods use a simi-
lar number of parameters, D2NeRF’s peak memory usage is
2.3x higher than RobustNeRF and 37x higher when normal-
izing for batch size. This is a direct consequence of model
architecture: D2NeRF is tailored to simultaneously model-
ing static and dynamic content and thus merits higher com-
plexity. To remain comparable, we limit image resolution
to 0.2 megapixels for all experiments.

Ablations – Figure 10. We ablate elements of the Robust-
NeRF loss on the crab scene, comparing to an upper bound
on the reconstruction accuracy of mip-NeRF 360 trained
on distractor-free (clean) images from identical viewpoints.
Our trimmed estimator (8) successfully eliminates distrac-
tors at the expense of high frequency texture and a lower
PSNR. With smoothing (9), fine details are recovered, at the
cost of longer training times. With the spatial window (10),
RobustNeRF training time is on-par with mip-NeRF 360.
We also ablate patch size and the trimming threshold (see
Supplementary Material); we find that RobustNeRF is in-
sensitive to trimming threshold, and that reducing the patch
size offsets the gains from smoothing and patching.
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Car Cars Bag Chairs Pillow
LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑

NeRF-W [23] .218 .814 24.23 .243 .873 24.51 .139 .791 20.65 .150 .681 23.77 .088 .935 28.24
NSFF [18] .200 .806 24.90 .620 .376 10.29 .108 .892 25.62 .682 .284 12.82 .782 .343 4.55
NeuralDiff [46] .065 .952 31.89 .098 .921 25.93 .117 .910 29.02 .112 .722 24.42 .565 .652 20.09
D2NeRF [53] .062 .975 34.27 .090 .953 26.27 .076 .979 34.14 .095 .707 24.63 .076 .979 36.58
RobustNeRF .013 .988 37.73 .063 .957 26.31 .006 .995 41.82 .007 .992 41.23 .018 .990 38.95

Figure 9. Evaluations on D2NeRF Synthetic Scenes – Quantitative and qualitative evaluations on the Kubric synthetic dataset introduced
by D2NeRF, consisting of 200 training frames (with distractor) and 100 novel views for evaluation (without distractor).

LPIPS↓ SSIM↑ PSNR↑ Updates to PSNR=30

mip-NeRF 360 (L2) 0.31 0.75 22.97 –
+ robust (8) 0.39 0.60 18.21 –
+ smoothing (9) 0.22 0.81 30.01 250K
+ patching (10) 0.21 0.81 30.75 70K

oracle (clean) 0.16 0.84 32.55 25K

Figure 10. Ablations – Blindly trimming the loss causes details
to be lost. Smoothing recovers fine-grained detail, while patch-
based evaluation speeds up training and adds more detail. Patching
enables the model to reach PSNR of 30, almost 4× faster.

Sensitivity – Figure 11. We find that RobustNeRF is re-
markably robust to the amount of clutter in a dataset. We
define an image as “cluttered” if it contains some num-
ber of distractor pixels. The figure shows how the recon-
struction accuracy of RobustNeRF and mip-NeRF 360 de-
pends on the fraction of training images with distractors,
keeping the training set size constant. As the fraction in-
creases, mip-NeRF 360’s accuracy steadily drops from 33
to 25 dB, while RobustNeRF’s remains steadily above 31
dB throughout. In the distraction-free regime, we find that
RobustNeRF mildly under-performs mip-NeRF 360, both
in reconstruction quality and the time needed for training.
This follows from the statistical inefficiency induced by the
trimmed estimator (8), for which a percentage of pixels will
be discarded even if they do not correspond to distractors.

5. Conclusions
We address a central problem in training NeRF models,

namely, optimization in the presence of distractors, such
as transient or moving objects and photometric phenomena
that are not persistent throughout the capture session.

Figure 11. Sensitivity and Limitations – (left) Reconstruction
accuracy for BabyYoda as we increase the fraction of train im-
ages with distractors. (right) Accuracy vs training time on clean
BabyYoda images (distractor-free).

Viewed through the lens of robust estimation, we for-
mulate training as a form of iteratively re-weighted least
squares, with a variant of trimmed LS, and an inductive
bias on the smoothness of the outlier process. Robust-
NeRF is surprisingly simple, yet effective on a wide range
of datasets. RobustNeRF is shown to outperform recent
state-of-the-art methods [4, 53], qualitatively and quantita-
tively, on a suite of synthetic datasets, common benchmark
datasets, and new datasets captured by a robot, allowing
fine-grained control over distractors for comparison with
previous methods. While our experiments explore robust
estimation in the context of mip-NeRF 360, the Robust-
NeRF loss can be incorporated within other NeRF models.
Limitations. While RobustNeRF performs well on scenes
with distractors, the loss entails some statistical inefficiency.
On clean data, this yields somewhat poorer reconstructions,
often taking longer to train (see Figure 11). Future work
will consider very small distractors, which may require
adaptation of the spatial support used for outlier/inlier de-
cisions. It would also be interesting to learn a neural weight
function, further improving RobustNeRF; active learning
may be useful in this context. Finally, it would be inter-
esting to include our robust loss in other NeRF frameworks.
Acknowledgements We thank Pete Florence and Kon-
stantinos Rematas for helpful feedback, and Tianhao Wu
for help with D2NeRF experiments.
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