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Abstract

This paper advances the fine-grained sketch-based im-
age retrieval (FG-SBIR) literature by putting forward a
strong baseline that overshoots prior state-of-the-arts by
≈11%. This is not via complicated design though, but by
addressing two critical issues facing the community (i) the
gold standard triplet loss does not enforce holistic latent
space geometry, and (ii) there are never enough sketches to
train a high accuracy model. For the former, we propose a
simple modification to the standard triplet loss, that explic-
itly enforces separation amongst photos/sketch instances.
For the latter, we put forward a novel knowledge distilla-
tion module can leverage photo data for model training.
Both modules are then plugged into a novel plug-n-playable
training paradigm that allows for more stable training.
More specifically, for (i) we employ an intra-modal triplet
loss amongst sketches to bring sketches of the same in-
stance closer from others, and one more amongst photos to
push away different photo instances while bringing closer a
structurally augmented version of the same photo (offering
a gain of ≈4-6%). To tackle (ii), we first pre-train a teacher
on the large set of unlabelled photos over the aforemen-
tioned intra-modal photo triplet loss. Then we distill the
contextual similarity present amongst the instances in the
teacher’s embedding space to that in the student’s embed-
ding space, by matching the distribution over inter-feature
distances of respective samples in both embedding spaces
(delivering a further gain of ≈4-5%). Apart from outper-
forming prior arts significantly, our model also yields satis-
factory results on generalising to new classes. Project page:
https://aneeshan95.github.io/Sketch PVT/

1. Introduction
Sketch [7, 17, 39] has long established itself as a worthy

query modality that is complementary to text [16, 23, 26].
Conceived as a category-level retrieval task [10,18], sketch-
based image retrieval (SBIR) has recently taken a turn to a
“fine-grained” setting (i.e., FG-SBIR), where the emphasis
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Figure 1. (left) A strong FG-SBIR baseline with strong PVT [74]
backbone trained on intra-modal triplet loss, stabilised by EMA.
(right) It additionally leverages unlabelled photos to enrich its la-
tent space by distilling instance-wise discriminative knowledge of
a teacher pre-trained on unlabelled photos.

is on fully utilising the faithful nature of sketches to conduct
instance-level retrieval [70, 81].

Despite great strides made in the field, without excep-
tion, all existing FG-SBIR models [60, 82] work around a
cross-modal triplet objective [81] to learn a discriminative
embedding to conduct retrieval. The general intuition has
always been to make a sketch sit closer to its paired photo
while pushing away non-matching ones (Fig. 1). However,
a conventional triplet setup does not enforce sufficient sepa-
ration amongst different photos or sketch instances – largely
because the conventional objective fails to retain the holistic
latent space geometry, being overly restrictive on learning
within-triplet feature separation.

For that and as our first contribution, we utilise an intra-
modal triplet objective in both modalities, in addition to
the regular cross-modal [81] triplet objective. For sketch, a
query-sketch (anchor), is brought closer to another sketch of
the same target-photo (positive) while distancing it from a
sketch of any non-matching photo (negative). For the photo
modality, as there is only one uniquely paired photo (an-
chor), we treat a morphologically augmented version of the
photo as positive, and a non-matching one as negative. Im-
portantly, we show that the best morphological operations
are those that operate on visual attributes bearing relevance
with information exclusive to sketches (e.g., shape) Fig. 1.

The other, perhaps more pressing problem, facing the
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community is that of sketch data scarcity – there are just
not enough sketches for the extra performance gain [5, 6].
Instead of going for the more explicit route of photo to
pseudo sketch synthesis [4], we vote for the simple and
more implicit route of leveraging unlabelled photos. For
that, we adapt a knowledge distillation setup – we first train
a model on unlabelled photos only via an intra-modal triplet
loss, then distill its instance-wise discriminative knowledge
to a FG-SBIR model. This apparently simple aim is how-
ever non-trivial to train owing to our cross-modal setup
as naively using standard knowledge distillation paradigms
involving logit distillation [33] from teacher’s embedding
space to the student’s would be infeasible. For a cross-
modal problem like ours, we need to preserve the instance-
wise separation amongst photos, as well as corresponding
sketches. For that, we propose to preserve the contextual
similarity between instances and their nearest neighbours,
modelled as a distribution over pairwise distances, from the
pre-trained teacher (photo model), to that of the student
(FG-SBIR). Inspired from recent literature, we introduce
a novel distillation token into our PVT-backboned student,
that is dedicated towards distilling contextual similarity.

However fitting this token into the existing PVT-
architecture is non-trivial. Unlike other vision transformers
like ViT [25], PVT employs a reshape operation [74], to re-
shape the resultant individual patch tokens at one level back
to the feature map, for input to the next level. It follows
that adding a token here naively would break this operation.
We thus use our distillation token only during input to the
transformer layer at each level [74], and set the modified
token aside before the reshaping operation. A residual con-
nection [70] thereafter connects this modified token as input
to the transformer layer at the next level. Engaging the dis-
tillation token at every level like ours, helps it imbibe the
inductive bias modelled by the pyramidal structure of PVT,
thus facilitating better distillation.

Finally, on the back of a pilot study (Sec. 3), we uncover
a widespread problem with standard triplet loss training –
that training is highly unstable, reflected in the highly os-
cillating evaluation accuracies noted at every 100th training
iteration. For that, we take inspiration from literature on
stabilising GAN training [78] on Exponential Moving Av-
erage [78] – a strategy that employs a moving average on
model parameters iteratively, with a higher priority (mathe-
matically exponential) to recent iterations over earlier ones.

To sum up: (i) We propose a strong baseline for FG-
SBIR, that overshoots prior arts by ≈10% (ii) We achieve
this by putting forward two simple designs each tackling a
key problem facing the community: inadequate latent space
separation, and sketch data scarcity. (iii) We introduce a
simple modification to the standard triplet loss to explic-
itly enforces separation amongst photos/sketch instances.
(iv) We devise a knowledge distillation token in PVT [74]

that facilitates better knowledge distillation in training from
unlabelled data. Finally, apart from surpassing prior arts
significantly, our model also shows encouraging results on
generalising to new classes, without any paired sketches.

2. Related Works
Fine-grained SBIR (FG-SBIR): FG-SBIR aims at re-
trieving one particular photo from a gallery of specific-
category corresponding to a query-sketch. Initially pro-
posed as a deep triplet-ranking based siamese network [81],
FG-SBIR has progressively improved via attention-based
modules with a higher order retrieval loss [70], textual
tags [16,68], self-supervised pre-training [50], hierarchical
co-attention [61], cross-category generalisation [49], and
reinforcement learning [9]. Overall, they aim to learn a
joint embedding space so as to reduce the cross-modal gap
[29, 61], typically using a triplet ranking loss [81] that aims
to bring a sketch closer to its paired photo while distancing
it from others. Some have optimised target-photo rank [9],
fused classification loss with ranking [34], used multi-task
attribute loss [69], or other loss modules in self-supervised
pretext tasks [5,50] for efficiency. Others addressed sketch-
specific traits like style-diversity [62], data-scarcity [4] and
redundancy of sketch-strokes [6] in favor of better retrieval.
Arguing against such complex frameworks, we aim for a
simpler yet stronger FG-SBIR pipeline, that can generalise
well across categories even in low-data regime.
Transformers in Computer Vision: Transformers [73]
are end-to-end neural networks that leverage self-attention
mechanism [14] for modelling sequential data. Vision
transformers [24, 43, 74] win over traditional CNNs [66] in
their ability to model long-range dependencies in sequential
data (here, visual patches) thus learning a stronger feature
representation than CNNs [24]. Since the seminal work of
ViT [24] that introduced image patches as input to trans-
former layers, it has been improved further via convolu-
tion components [76], attention-guided knowledge distilla-
tion for data-efficiency [72] and a feature pyramid [74, 75]
modeling inductive bias. Common applications include ob-
ject detection [12], image super-resolution [77], image syn-
thesis [36], etc. Despite their recent usage in fine-grained
image recognition [35, 42], only few have employed trans-
formers in encoding sketches [22, 63] Such transformers
however have not been used for FG-SBIR. In this paper, we
adapt transformers for the first time in FG-SBIR to propose
a strong baseline that would outperform existing state-of-
the-arts and we hope research would progress further con-
sidering our baseline as a standard baseline.
Training from Unlabelled Data: Mainly two frontiers
of research have emerged in taking advantage of unlabelled
data – self-supervised and semi-supervised learning. The
former spans over a large literature [37], including gener-
ative models [27] like VAEs [38], contrastive learning ap-
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Figure 2. Left: Training stability of a baseline vs ours. Study on variable data-size (center) and cross-category generalisation (right).

proaches [15, 30], clustering [13], etc. Furthermore, several
pre-text self-supervised tasks have been explored like im-
age colorization [85], in-painting [54], etc. Recent appli-
cations in sketch include a pre-text task of solving jigsaw
puzzles [50], and learning from the dual representative na-
ture of sketches [4,5]. Semi-supervised learning aims at ex-
ploiting large unlabeled data together with sparsely labeled
data to improve model performance. Common approaches
include entropy minimization [28], pseudo-labeling [67], or
consistency regularization [47]. While pseudo-labeling em-
ploys confident prediction [67] from trained classifiers to
create artificial labels [40] for unlabelled data, consistency
regularisation learns a classifier by promoting consistency
in predictions between different views of unlabeled data, ei-
ther via soft [48] or hard [67] pseudo-labels. Recently, data
scarcity in SBIR was handled, by generating more sketches
for unlabelled photos [4] in a semi-supervised setup.

We focus on one of its related paradigm of knowledge
distillation [2] that aims at transferring knowledge of a pre-
trained teacher network to a student. While some lever-
age output logits [2] others focus on hidden layers [59] or
attention-maps [84] of pre-trained teachers for the same.
Improvising further, self-distillation [3] employed the same
network for both student and teacher models, whereas a
multi-exit strategy [55] optimised compute via multiple-
exits at different depths for adaptive inference. Common
applications include object detection [21], semantic seg-
mentation [32], depth-estimation [56], etc. Contrarily, FG-
SBIR demands: (a) instance level discrimination (b) cross-
modal one-to-one correspondence. As collecting sketch-
photo labelled pairs is costly, we train a teacher from abun-
dant unlabelled photos. The instance-discrimination thus
learned in photo space, is distilled to a student FG-SBIR
model to make it more discriminative.

3. Pilot Study: Delving deeper into FG-SBIR
Training stability: Being an instance-level cross-modal
retrieval problem, training an FG-SBIR [61] model is often
found to be unstable, as evaluation accuracy oscillates sig-
nificantly during training. Hence, it is evaluated frequently
to capture the best accuracy. Being the first to consider this,
we first analyse by plotting (Fig. 2) test-set evaluation at
every 100 training-steps of an existing baseline FG-SBIR
model with VGG-16 backbone, trained over standard triplet

loss [81]. Towards reducing such instability, we design a
stronger baseline model, which we hope will be a standard
baseline for future research.
Variable dataset size: Existing literature shows FG-
SBIR model performance to suffer from scarcity of training
sketch-data [4]. This leads us to wonder if unlabelled photos
can be leveraged to train an FG-SBIR model to reduce the
data annotation bottleneck on sketches for training. Con-
sequently, we conduct a study to analyse how an FG-SBIR
model performs when training data-size is varied. Accord-
ingly we compute and plot the performances of existing and
our stronger baselines (Sec. 4) on varying dataset-size in
Fig. 2. As both baselines, perform poorly on decreasing
labelled training data, we explore if unlabelled photos can
boost performance in such a scenario. We thus design a dis-
tillation strategy from unlabelled photos, following which,
our method at ≈50% training data, matches the accuracy
(32.03%) of an existing baseline at 100% training data (red
square in Fig. 2), thereby justifying our paradigm.
Classes without any sketch-photo pairs: Besides train-
ing data scarcity, generalisation to unseen classes for multi-
category FG-SBIR [8], is also one of the challenging issues
in FG-SBIR. Considering a realistic scenario, sketch-photo
pairs might not always be available for all classes, how-
ever photos pertaining to such classes can be curated fairly
easily. Therefore, given a model trained on classes having
sketch-photo pairs, we aim to discover how well can it per-
form on classes lacking paired sketches. We thus conduct
a small pilot study by taking the first 25 classes (alphabet-
ically) from Sketchy [64] – 15 seen training (sketch-photo
pairs available) and 10 testing (only photos available), in an
FG-SBIR setting. Fig. 2 shows baseline model to perform
significantly better on classes with access to sketch-photo
pairs but fails poorly on classes lacking paired sketches.
The main challenge therefore is to leverage the knowledge
of classes having unlabelled photos, to preserve the model’s
accuracy. In doing so, our method maintains a stable per-
formance via its knowledge distillation paradigm.

4. A Stronger FG-SBIR baseline
Overview: Unlike CNN-based existing FG-SBIR baselines
[70, 81] that learn a strong sketch-embedding function over
a cross-modal triplet loss, we enhance the paradigm with
three distinct modifications: (i) Employ vision transformer,
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Figure 3. Using PVT as a backbone, a teacher pre-trained on unlabelled photos, distills the contextual similarity among features in its latent
space to a student, which also learns a discriminative latent via cross- and intra-modal triplet losses. Distillation occurs via a learnable
distillation token (shown as inset) introduced in the student’s PVT backbone, in three ways: (i) from unlabelled photos, (ii) labelled photos
and (iii) by aligning sketches to their paired photos in student-space by distilling contextual similarity of labelled photos in teacher-space.

particularly PVT [74] as our backbone after thorough anal-
ysis (Sec. 6), as unlike CNNs having local receptive fields,
vision transformers ensure a global receptive field, mod-
elling better feature representations. (ii) Besides cross-
modal triplet loss [81], we formulate an intra-modal triplet
loss that helps in discriminative learning. (iii) Towards in-
creasing training stability we follow GAN-literature where
training GANs are often unstable [78], in employing Expo-
nential Moving Average (EMA) to our paradigm [78].
Architecture: In a nutshell, PVT [74] generates fea-
ture maps at different scales by operating on an image
I ∈ RH×W×3 (sketch/photo) over multiple (m) levels.
Given input Il ∈ RHl−1×Wl−1×Cl−1 at level l ∈ [1,m]:
(a) a patch-embedding layer extracts patch-wise features

(pi ∈ R
Hl−1

pl
×

Wl−1
pl
×Cl−1 ; i ∈ [1, Hl−1Wl−1

p2l
]) of patch-size

pl × pl. (b) They are passed via a transformer layer to ob-
tain patch-tokens, which (c) are reshaped to a down-scaled

feature map Fl ∈ R
Hl−1

pl
×

Wl−1
pl
×Cl as input for next level

(Il+1). Following [74] we use m = 4 levels, keeping pl = 4
per level, to obtain the global average pooled final feature
fI ∈ Rd for retrieval.
Cross-modal (CM) Triplet Loss: Taking independent em-
bedding of a sketch (fs) as anchor, traditional [81] cross-
modal triplet loss LCM

Tri aims to minimise its distance from
its paired photo embedding (fp) while maximising that from
a non-matching one (fn) in a joint embedding space. Using
mCM as the margin hyperparameter and δ(·, ·) as a distance
function where δ(a, b) = ||a− b||2, we have,

LCM
Tri = max{0,mCM + δ(fs, fp)− δ(fs, fn)} (1)

Intra-modal (IM) Triplet Loss: Despite separating
sketches from non-matching photos, LCM

Tri often pushes vi-
sually similar photos closer, resulting in sub-optimal la-
tent space. Consequently, we focus on intra-modal feature-

separation via two sets of intra-modal triplet losses. Hav-
ing multiple sketches per photo, we take features of query-
sketch as the anchor (fs), another sketch of the same tar-
get photo (p) as its positive (fs+ ), and that of a random
non-matching photo as the negative (fs− ). Given an FG-
SBIR paradigm, as no separately paired positive photo
exists for any photo (p), we curate a structural augmen-
tation of p as fpt = Perspective(Rotate(p)) where
Rotate(·) randomly rotates an image (-45°to +45°), and
Perspective(·) introduces random perspective transfor-
mation on it. Bearing semblance with a sketch, this only af-
fects the structure of an image, instead of its colour/texture.
Taking p as anchor, pT as its positive and a random negative
(n) we compute intra-modal losses, with mp

IM and ms
IM as

respective margin values for photo and sketch modalities.

LIMp

Tri = max{0,mp
IM + δ(fp, fpt)− δ(fp, fn)},

LIMs

Tri = max{0,ms
IM + δ(fs, fs+)− δ(fs, fs−)}

(2)

Exponential Moving Average: Following literature on in-
stability of GAN-training [78], or teacher-training in semi-
supervised contrastive learning [11], we employ EMA [11]
to increase training stability. While uniform average of pa-
rameters stabilises training [78], it gets limited by memory.
A moving average (MA), with exponential priority (EMA)
to recent iterations over earlier ones is thus preferred as,

θtEMA = βθt−1EMA + (1− β)θt (3)

where θ0EMA = θ0, and β is a hyperparameter deciding the
rate at which early iterations fade. With λ1,2 as weighting
hyperparameters, we have our overall training loss:

LTrn = LCM
Tri + λ1L

IMp

Tri + λ2LIMs

Tri (4)

5. Training with Unlabelled Photos via KD
Once we have a stronger baseline, we aim to harness the

learning potential of unlabeled photos, towards training a
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strong FG-SBIR model [4]. We thus employ a knowledge
distillation paradigm [33], that transfers the photo instance
discrimination potential from a pre-trained ‘teacher’ (Ω)
trained on unlabelled photos to our ‘student’ (ϕ) FG-SBIR
model for cross-modal retrieval. Given a limited amount of
labelled sketch-photo pairs DL = {(piL; siL)}

NL
i for our stu-

dent FG-SBIR model, and a larger set of unlabelled photos
DU = {piU}

NU
i , for pre-training our teacher (NU ≫ NL),

our goal is to improve retrieval accuracy of our student FG-
SBIR model, using both DL and DU (no paired sketches).

However applying this KD paradigm is non-trivial to our
setting. While conventional KD usually transfers knowl-
edge via logit-distillation [33] for classification problem,
ours is a cross-modal retrieval setup where the output is
a continuous d-dimensional feature in a joint-embedding
space. Moreover, if one naively regresses between features
from a teacher and student for sketch and photo branches,
it might suffer from incompatibility as the two embedding
spaces are different. Also, if teacher [2] and student embed-
ding dimensions are different, an additional feature transfor-
mation layer [59] is needed to match them. While distilling
through pair-wise distance [4,65] might be an option, it fails
to transfer the structural knowledge of the teacher’s entire
latent space to the student, as it focuses on only one pair
at a time. We thus aim to design a distillation framework
that considers the contextual similarity amongst samples in
the teacher’s embedding space and preserves its structural
knowledge while distilling to the student.

Modified PVT for Distillation: Concretely, our network
involves two models – a teacher Ω(·) pre-trained large-
scale photos, and a learnable FG-SBIR student ϕ(·), both of
which uses PVT [74] as backbone feature extractor. While
the teacher’s backbone PVT remains unchanged, we fol-
low recent transformer literature [72] to introduce a learn-
able distillation token ‘∆’ ∈ Rd, that allows our model to
learn from the output of the teacher, while remaining com-
plementary to the feature extracted from PVT [74]. How-
ever, naively concatenating a token is infeasible, as unlike
other vision transformers [72], PVT involves reshaping (for
down-scaling) a fixed number of individual patch tokens to
the subsequent feature map, which would be imbalanced
on adding one extra token. Therefore, we focus on the
second step of PVT-block [74] involving transformer layer
(Sec. 4), which can accommodate a variable number of to-
kens. Accordingly, at every level, ‘∆’ is fed to the trans-
former layer concatenated with rest of the N image patch
tokens ({pi}Ni=1 ∈ RN×d), to obtain the resultant set of
tokens as {pi}

N+1
i=1 ∈ R(N+1)×d. Before reshaping, ∆ is

excluded to prevent dimensional mismatch, and fed again
similarly to the transformer layer at the next level via a
residual connection (Fig. 3). Being processed at every level,
‘∆’ not only accommodates the output knowledge of the
teacher network but also, imbibes the inductive bias [74]

contributed by the pyramidal structure of PVT. From the fi-
nal layer, the student outputs two features: a discriminative
(f ∈ Rd), and a distillation feature (µ ∈ Rd).
Pre-training Teacher: The teacher Ω(·), is trained on pho-
tos of both labelled and unlabelled sets G = DU ∪Dp

L, over
an intra-modal triplet loss following Eqn. 2.
Training FG-SBIR Student: The student’s discriminative
feature is used to train over a combination (LL

Trn) of cross-
modal and intra-modal triplet losses on labelled data (DL)
following Eqn. 4. Intra-modal triplet loss over unlabelled
photos is leveraged to harness the potential of unlabelled
photos DU with a weighting hyperparameter λ3 as,

Lϕ
Disc = LL

Trn + λ3LU
Tri (5)

In order to transfer [59] the instance-discriminative
knowledge of photo domain from the pre-trained teacher
Ω(·) to improve the cross-modal instance level retrieval of
student FG-SBIR model ϕ(·), we leverage both unlabelled
photos and sketch/photo pairs from labelled data during
knowledge distillation. First, we pre-compute the features
of all the unlabelled photos DU using the frozen teacher
model as FΩ

U = {fΩ
pi}NU

i=1where fΩ
pi = Ω(piU ) ∈ Rd.

Now a very naive way of distillation [33] would be
to pass piU through student model ϕ(·) to obtain the dis-
tillation feature µϕ

pi = ϕ(piU ), and directly regress it
against fΩ

pi considering it as ground-truth. Alternatively,
one may regress the feature-wise distance between two pho-
tos (piU , p

j
U ) in a similar fashion from teacher to student

model [33]. However, we focus on preserving the struc-
ture of the embedding space of the teacher while distilla-
tion to the student. We thus calculate the pairwise distance
of fΩ

pi from its K nearest neighbours {fΩ
pr1 , · · · , fΩ

prK },
as DΩ

pi = {δ(fΩ
pi , fΩ

prj )}Kj=1. Equivalently, we pass piU
and its K-nearest neighbours {pr1 , · · · , prK} via the stu-
dent model to obtain corresponding distillation features µϕ

pi

and {µϕ
pr1 , · · · , µϕ

prK } respectively, thus calculating Dϕ
pi =

{δ(µϕ
pi , µ

ϕ
prj )}Kj=1 similarly. Although one may calculate a

regression loss between [51] DΩ
pi and Dϕ

pi , for better stabil-
ity we model them as probability distribution of pairwise-
similarity amongst K-nearest neighbours in the teacher’s
embedding space. As pairwise similarity is negative of pair-
wise distances, we calculate the temperature (τ ) normalised
softmax (S) [61] probability as Sτ (−DΩ

pi) where,

Sτ (−DΩ
pi)rj =

exp(−δ(fΩ
pi , fΩ

prj )/τ)∑rK
k=1 exp(−δ(fΩ

pi , fΩ
prk )/τ)

(6)

Similarly obtained Sτ (−Dϕ
pi), and Sτ (−DΩ

pi) represent the
structural knowledge of embedding spaces of student ϕ(·)
and teacher Ω(·) respectively. The consistency constraint
can therefore be defined as the Kullback-Leibler (KL) di-
vergence [46] between them as,

LpU

KL = KL(Sτ (−DΩ
pi) || Sτ (−Dϕ

pi)) (7)
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On the other hand, labelled dataset comes with sketch and
photo, where, using the photos we can calculate LpL

KL in a
similar fashion. Given the cross-modal nature of student’s
embedding space [81], we also need to align the sketches
with their paired photos while preserving the existent con-
textual similarity of those photos with their neighbours.
Being trained on photos alone, extracting sketch features
via the teacher Ω(·) to extract sketch-features, would be
a flawed design choice. Considering a sketch-photo pair
(si, pi), we first obtain DΩ

pi using pi. However this time we

use si to calculate Dϕ
si = {δ(µϕ

si , µ
ϕ
prj )}Kj=1. Now, calcu-

lating LsL
KL between these two resultant probabilities implies

maintaining the same contextual similarity for sketches as
that for their paired photos, as guided by the teacher model.
With λ4,5 as respective weighting hyperparameters, the to-
tal distillation loss becomes,

Lϕ
Dist = LpL

KL + λ4LsL
KL + λ5LpU

KL (8)
Summing up, our student model is trained from a weighted
(hyperparameter λ6) combination of two losses as:

Lϕ
trn = Lϕ

Disc + λ6Lϕ
Dist (9)

6. Experiments
Datasets: We use two publicly available datasets, QMUL-
Chair-V2 and QMUL-Shoe-V2 [61,81]. They contain 2000
(400) and 6730 (2000) sketches (photos) respectively with
fine-grained sketch-photo associations. We keep 1275 (300)
and 6051 (1800) sketches (photos) from QMUL-Chair-V2
and QMUL-Shoe-V2 respectively for training while the rest
is used for testing. We also use Sketchy [64] which con-
tains 125 categories with 100 photos each, having at least 5
sketches per photo with fine-grained associations. While,
training uses a standard (90:10) train-test split [64], dur-
ing inference we construct a challenging gallery using pho-
tos across one category for retrieval. Besides such labelled
training data, we use all 50,025 photos of UT-Zap50K [80]
and 7,800 photos [50] collected from shopping websites,
including IKEA, Amazon and Taobao, as unlabelled photos
for shoe and chair retrieval, respectively. For Sketchy we
use its extended version with 60,502 additional photos [41]
introduced later for training from unlabelled data.
Implementation Details: ImageNet [20] pre-trained PVT-
Large [74] model extracts features from 224 × 224 resized
images, keeping patch-size (pl) of 4 at each level and 1, 2,
5, and 8 spatial-reduction-attention heads [74] in 4 succes-
sive levels, with the final feature (µ and f ) having size 512.
Implemented via PyTorch [53], our model is trained using
Adam-W optimiser [45] with momentum of 0.9 and weight
decay of 5e-2, batch size of 16, for 200 epochs, on a 11 GB
Nvidia RTX 2080-Ti GPU. Initial learning rate is set to 1e-
3 and decreased as per cosine scheduling [44]. Determined
empirically, mCM, ms

IM, mp
IM and τ are set to 0.5, 0.2, 0.3

and 0.01, while λ1→6 to 0.8, 0.2, 0.4, 0.4, 0.7 and 0.5 re-
spectively. Following [61] we use Acc.@q, i.e. percentage
of sketches having true matched photo in the top-q list.

6.1. Competitors
We compare against: (i) State-of-the-arts (SOTA):

Triplet-SN [81] trains a Siamese network on cross-modal
triplet loss to learn a discriminative joint sketch-photo em-
bedding space. While HOLEF-SN [70] uses a spatial at-
tention module over Sketch-a-Net [83] backbone, Jigsaw-
SN [50] employs jigsaw-solving pre-training over mixed
patches of photos and edge-maps followed by triplet-based
fine-tuning for better retrieval. Triplet-RL [9] leverages
triplet-loss based pre-training, followed by RL based fine-
tuning for on-the-fly retrieval. We report its results only on
completed sketches as early retrieval is not our goal. Styl-
eVAE [62] meta-learns a VAE-based disentanglement mod-
ule for a style-agnostic retrieval. Following [4] Semi-sup-
SN trains a sequential photo-to-sketch generation model
that outputs pseudo sketches as labels for unlabelled pho-
tos, to semi-supervise retrieval better.

Table 1. Quantitative comparison of pipelines.

Methods Chair-V2 (%) Shoe-V2 (%)

Top-1 Top-10 Top-1 Top-10

SO
TA

Triplet-SN [81] 47.45 84.32 28.71 71.56
HOLEF-SN [70] 50.41 86.31 31.24 74.61
Jigsaw-SN [50] 53.41 87.56 33.51 76.86
OnTheFly [9] 54.54 88.61 34.10 78.82
StyleMeUp [62] 59.86 89.64 36.47 81.83
Semi-sup-SN [4] 60.20 90.81 39.12 85.21

St
ro

ng
er

B
as

el
in

e

SO
TA

++

Triplet-SN-ours 53.48 87.91 33.78 76.84
HOLEF-SN-ours 55.23 88.61 35.41 78.85
Jigsaw-SN-ours 58.51 88.78 37.64 79.78
OnTheFly-ours 59.18 89.35 38.62 81.97
StyleMeUp-ours 65.85 90.84 40.42 82.94
Semi-sup-SN-ours 66.86 91.12 44.35 86.83

B
ac

kb
on

e
V

ar
ia

nt
s

B-ResNet-18 48.42 85.62 26.61 70.31
B-ResNet-50 47.78 82.34 28.12 70.84
B-InceptionV3 55.41 88.21 34.24 78.56
B-VGG-16 58.23 88.78 35.85 80.92
B-VGG-19 61.46 89.16 37.28 81.01
B-ViT 38.71 72.65 16.28 53.42
B-DeIT 56.25 87.72 35.62 79.05
B-SWIN 66.34 91.03 40.71 82.57
B-CvT 68.42 91.21 41.58 83.14
B-CoAtNet 69.68 91.78 42.63 83.20

Ours-Strong 71.22 92.18 44.18 84.68

U
nl

ab
el

le
d

B-Edge-Pretrain 71.58 90.78 44.62 84.85
B-Edge2Sketch 72.16 91.01 45.18 84.92
B-Regress 72.65 91.32 45.45 85.01
B-RKD 73.02 91.78 46.18 85.12
B-PKT 73.45 91.89 46.66 85.47
Ours-Full 74.68 92.79 48.35 85.62

(ii) SOTA-Augmentation (SOTA++:) To judge how
generic our paradigm is compared to existing frameworks,
we augment the mentioned state-of-the-arts by introducing
our intra-modal triplet objective (Sec. 4) with Exponential
Moving Average in their respective training paradigms.
(iii) Architectural Variants: Using popular CNN architec-
tures like InceptionV3 [71], ResNet-18,50 [31] and VGG-
16,19 [66] as backbone feature extractors, we explore their
potential in FG-SBIR against our strong baseline. Similarly
we also explore a few existing vision transformers as back-
bone feature extractors for our training paradigm, namely,
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B-ViT [24] (ViT-B16 variant), B-DeiT [72] (DEiT-B vari-
ant), B-SWIN [43] (SWIN-B variant), B-CvT [76] (CvT21
variant), and B-CoAtNet [19](CoAtNet3 with 384-dim).
(iv) On training from unlabelled data: Following [4] we
curate a few more baselines that could be used to leverage
unlabelled photos for training. Keeping rest of the paradigm
same, B-Edge-Pretrain [57] naively uses edge-maps of un-
labelled photos to pre-train the retrieval model. Although
edge-maps bear little resemblance to sketches, we similarly
design a baseline B-Edge2Sketch that follows [58] in con-
verting edge-maps of photos to pseudo-sketches as labels
to harness potential of unlabelled photos. As there are no
previous works employing KD for FG-SBIR, we curate a
few baselines offering alternatives on the paradigm of KD.
These methods although repurposed for a cross-modal re-
trieval setting, use our network architecture (Ω,ϕ) during
training. B-Regress - directly regresses between features
computed by teacher and student for both sketches and im-
ages, after matching corresponding feature dimensions via
additional feature transformation layer, over a l2 regression
loss. B-RKD follows [51] to distill the knowledge of rel-
ative pairwise feature-distances of unlabelled photos from
teacher’s embedding space to that of the student, over a
distance-wise distillation loss. Following [52] off-the-
shelf, for unlabelled photos, B-PKT computes the condi-
tional probability density of any two points in teacher’s em-
bedding space [52], which models the probability of any
two samples being close together. Taking ‘N’ such samples,
it obtains a probability distribution over pairwise interac-
tions in that space. Obtaining a similar distribution over the
same samples in student’s embedding space, it minimises
their divergence over a KL-divergence loss.

6.2. Performance Analysis
FG-SBIR pipelines: Tables 1 and 2 compare our meth-
ods against state-of-the-arts and curated baselines. Triplet-
SN [81] and HOLEF-SN [70] score low due to weaker
backbones of Sketch-A-Net [83]. Jigsaw-SN [49] on the
other hand improves performance, owing to self-supervised
Mixed-modal jigsaw solving strategy learning structural in-
formation better. Enhanced by its RL-optimised reward
function OnTheFly [9] surpasses them but fails to ex-
ceed StyleMeUp [62] (2.37%↑ top1 on ShoeV2), thanks
to its complex meta-learned disentanglement module ad-
dressing style-diversity. Unlike others that are restricted to
paired training data, Semi-sup-SN [4] harnesses knowledge
of unlabelled data with its additionally generated pseudo-
sketch labels in achieving comparatively higher perfor-
mance. However, being dependent on the usually unreli-
able quality of generated sketch and the instability of re-
inforcement learning involved, it lags behind our relatively
simpler yet robust knowledge distillation paradigm, boosted
with our better transformer-based feature extractor. Impor-
tantly, when augmenting our ‘strong-baseline’ paradigm to

existing SOTAs, we observe a relative rise in top-1 perfor-
mance of all methods by ≈ 4− 6% overall in SOTA++ sec-
tion (Table 1). Despite costing a minimal memory overhead
(training only), these objectives reward a considerably high
accuracy boost which verifies our method to be an easy-fit
and quite generic to serve as a strong FG-SBIR baseline.

Table 2. Quantitative comparison of pipelines on Sketchy [64].

Methods Sketchy (%) Methods Sketchy (%)
Top-1 Top-5 Top-1 Top-5

Triplet-SN [81] 15.32 34.15 B-InceptionV3 28.71 71.56
HOLEF-SN [70] 16.71 35.92 B-VGG-16 18.84 38.63
Jigsaw-SN [50] 16.74 36.37 B-ViT 7.63 11.23
OnTheFly [9] 04.76 07.81 B-SWIN 32.14 57.68
StyleMeUp [62] 19.62 39.72 B-CoAtNet 33.63 59.31
Triplet-SN-ours 19.48 37.91 B-Edge-Pretrain 34.98 61.32
HOLEF-SN-ours 20.23 38.61 B-Edge2Sketch 35.81 61.74
Jigsaw-SN-ours 21.45 39.56 B-Regress 36.33 62.31
OnTheFly-ours 07.28 12.14 B-RKD 37.02 63.02
StyleMeUp-ours 22.95 45.84 B-PKT 38.62 63.94

Ours-Strong 34.72 65.10 Ours-Full 38.54 71.52

Backbone architectures: Comparing efficiency of CNNs
as backbone feature extractors (B-CNNs) for FG-SBIR, we
find B-VGG19 to perform best, being slightly better than
B-VGG16 (by 3.23%) at an extra memory cost (21mb), and
much better than B-ResNet18 (by 10.67%) mainly due to the
latter’s thinner conv-layers in Top-1 accuracy on ShoeV2.
Among transformers, B-CoAtNet, B-CvT and B-SWIN per-
form much better than B-ViT or B-DeIT thanks to their
heirarchical design and mechanisms like shifting window or
convolutional tokens capturing fine-grained sparse details
of a sketch via local patch-level interaction, thus represent-
ing sketches better unlike other two. Surpassing all others,
with its unique pyramidal structure imbibing inductive bias,
PVT [74] (Ours-Strong,Full) fits optimally to our method.
Training from Unlabelled Data: While B-Edge-Pretrain
offers little gain over our stronger baseline (Ours-Strong),
augmenting edge-maps with B-Edge2Sketch by a selected
subset of strokes, to imbibe the abstractness of sketch, in-
creases accuracy reasonably. Lower scores of B-Regress is
largely due to its metric-based regression across two differ-
ent embedding spaces causing misalignment, whereas at-
tending to one pair at a time, B-RKD [51] fails to preserve
the structural knowledge of the embedding space, thus scor-
ing below B-PKT (by 0.48 top1 on ShoeV2). Although
B-PKT [52] is slightly similar to our paradigm of preserv-
ing the latent space, lacking cross-modal discrimination ob-
jective [81] and therefore being trained on unlabelled data
alone, performs lower than our method which additionally
leverages the potential of labelled sketch-photo pairs.

6.3. Ablation Study
Importance of loss objectives: To justify each loss in our
network of a stronger baseline, we evaluate them in a strip-
down fashion (Table 3). Performance against cross-modal
objective alone (Type-I), increase on aid from intra-modal
objectives (Type-II), as the latter encourages distancing of
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multiple photos visually close to the sketch, based on finer
intra-modal relative discrimination. Adding EMA (Ours)
optimisation [78] ensures smoother convergence of above
objectives with a slight increase (by 2.96%) in accuracy. In
similar spirit we perform experiments on losses of distilla-
tion paradigm (Eqn. 8). Performance using unlabelled data
only (Type-III) rises with added knowledge from labelled
photos (Type-IV). However, without aligning sketches us-
ing LsL

KL it lags behind Ours-Full by 1.14%.
Table 3. Ablative study on QMUL-ShoeV2

Type LCM
Tri LIM

Tri EMA LpU
KL LpL

KL LsL
KL Top-1 (%)

I ✓ - - ✓ ✓ ✓ 43.28
II ✓ ✓ - ✓ ✓ ✓ 45.39
III ✓ ✓ ✓ ✓ - - 46.50
IV ✓ ✓ ✓ ✓ ✓ - 47.21

Ours-Full ✓ ✓ ✓ ✓ ✓ ✓ 48.35

Augmentation Strategy: We design a few experiments to
explore other photo augmentation techniques [1] for LIMp

Tri
(Eqn. 2) like, colour distortion, partial blurring and random
shift in sharpness. Outperforming their respective scores of
46.14%, 47.32% and 47.54% (Acc@1-ShoeV2) our meth-
ods confirms our intuition that morphological augmenta-
tions would better direct the loss objective, as it instills dis-
crimination based on information exclusive to a sketch.
Influence of Distillation Token (∆): To justify its impor-
tance we explore two more designs. (A) Without any ex-
plicit distillation token we perform knowledge distillation
using the same feature used for discriminative learning. (B)
Following [72] we append a learnable token to the input
of the last stage, which after processing acts as the distilla-
tion feature. Although case-B (45.31%) surpasses case-A
(44.71%) by 1.6% in Acc@1 on QMUL-ShoeV2, confirm-
ing the need of a dedicated distillation token, it lags behind
by 3.04% to ours. We argue that our design of engaging
the distillation token at every level via residual connection
instills the inductive bias modelled by the pyramidal down-
scaling, into the distillation token via transformer layers,
thus creating a better representation.
Further Analysis: (i) Although ours is a larger model
than the earlier SOTA of Triplet-SN [81], it offers ≈20-25%
gain while taking similar inference time (0.37ms/ShoeV2).
(ii) Our method takes 44.1 ms per training step compared
56.83 ms of SOTA StyleMeUP [62] , proving itself as a
strong and efficient method. (iii) Although our method
takes more hyperparameters than the simpler Triplet-SN
[81] SOTA, they are quick to tune, and justifies itself with a
boost of ≈25% Acc@1 on Chair-V2 [81].

6.4. Multi-category FG-SBIR via Unlabelled Photos
Our pilot study (Sec. 3) reveals FG-SBIR models to per-
form poorly on classes lacking sketch-photo pairs. This
has been explored in a few recent FG-SBIR works. Apart
from Jigsaw-SN [50] (Sec. 6.1), (CC-Gen) [49] takes a

cross-category (CC) domain-generalisation approach, mod-
elling a universal manifold of prototypical visual sketch
traits that dynamically embeds sketch and photo, to gen-
eralise on unseen categories. Recently, [8] uses a dedi-
cated meta-learning framework that adapts a trained model
to new classes using a few corresponding sketch-photo pairs
as support. However, both methods have access to sufficient
[50] or few [8] sketch-photo pairs of novel classes, unlike
our setup of no paired sketches. This goes beyond the de-
pendency on paired sketches offering a realistic mid-ground
between standard [81] and zero-shot [23] inference setup,
where not all classes have paired sketches, but their photos
can be collected easily. Consequently, following [79] we
split Sketchy [64] as 21 unseen-test classes, and 104 train-
ing classes with a 70:30 training:validation split in the lat-
ter. Unlike existing methods, our student additionally trains
via distillation from photos of 21 unseen classes for better
retrieval accuracy. For retrieval a separate gallery is main-
tained per category, and average top-q accuracy across 21
classes is reported (Table 4). We compare with a few meth-
ods that leverage data of novel classes, besides labelled data
for training: Jigsaw-SN (extending [50]) trains via an aux-
iliary jigsaw-solving task on unlabelled photos without any
fine-tuning (our setup). Adaptive-SN [8] trains on a few
sketch-photo pairs of new classes. B-EdgePretrain and B-
Edge2Sketch trains on edge-maps and synthetic sketches
via [58] from edge-maps of unlabelled photos respectively.
CC-Gen [49] evaluates in zero-shot [23] setup with no data
from novel classes. Consequently CC-gen scores lower (Ta-
ble 4), compared to Jigsaw-SN with its auxiliary jigsaw-
solving task, whereas baselines using edge-maps of unla-
belled images as pseudo-sketches score relatively better.
Even without using real sketch-photo pairs of test-set for
quick-adaptation like Adaptive-SN [8], we achieve a com-
petitive retrieval accuracy (2.47% Acc@1).

Table 4. Cross-category FG-SBIR on Sketchy [64].

Methods Sketchy (%) Methods Sketchy (%)

Top-1 Top-5 Top-1 Top-5

Jigsaw-SN [50] 23.16 44.63 B-Edge-Pretrain 24.81 46.24
Adaptive-SN [8] 32.71 53.42 B-Edge2Sketch 25.74 48.36
CC-Gen [49] 22.73 42.32 Ours-Full 30.24 51.65

7. Conclusion
In this paper we put forth a strong baseline for FG-SBIR
with PVT [74]-backbone, and offer a novel paradigm that at
its core aims at learning from unlabelled data in FG-SBIR
by distilling knowledge from unlabelled photos. While our
proposed intra-modal triplet loss increases feature separa-
tion in model’s latent space, an EMA paradigm stabilises its
training. Importantly, we for the first time introduce a dis-
tillation token in PVT architecture that explicitly caters to
knowledge distillation. Extensive experiments against ex-
isting frameworks and various baselines show our method
to outperform them, thus proving its significance.
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