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Abstract

Pretraining visual models on web-scale image-caption
datasets has recently emerged as a powerful alternative
to traditional pretraining on image classification data.
Image-caption datasets are more “open-domain”, contain-
ing broader scene types and vocabulary words, and re-
sult in models that have strong performance in few- and
zero-shot recognition tasks. However large-scale classi-
fication datasets can provide fine-grained categories with
a balanced label distribution. In this work, we study a
pretraining strategy that uses both classification and cap-
tion datasets to unite their complementary benefits. First,
we show that naively unifying the datasets results in sub-
optimal performance in downstream zero-shot recognition
tasks, as the model is affected by dataset bias: the coverage
of image domains and vocabulary words is different in each
dataset. We address this problem with novel Prefix Condi-
tioning, a simple yet effective method that helps disentangle
dataset biases from visual concepts. This is done by intro-
ducing prefix tokens that inform the language encoder of the
input data type (e.g., classification vs caption) at training
time. Our approach allows the language encoder to learn
from both datasets while also tailoring feature extraction to
each dataset. Prefix conditioning is generic and can be eas-
ily integrated into existing VL pretraining objectives, such
as CLIP or UniCL. In experiments, we show that it improves
zero-shot image recognition and robustness to image-level
distribution shift.

1. Introduction
Supervised classification datasets (e.g., ImageNet [7])

have traditionally been used to pretrain image representa-
tions for use in downstream tasks. However, web-scale
image-caption datasets have recently emerged as a pow-
erful pretraining alternative [13, 20, 31]. Such datasets
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Figure 1. We propose Prefix Conditioning to unify image-caption
(e.g., CC12M [5]) and image classification datasets (e.g., Ima-
geNet21K (IN21K) [7]) for training better zero-shot models. Pre-
fix conditioning improves zero-shot recognition performance by
more than 6% on average when training on ImageNet21K and
CC12M.

are more “open-domain”, containing a wider variety of
scene types and vocabularies than traditional classification
datasets, which are biased towards specific categories in
their fixed label sets. Consequently, models trained on web-
scale image-caption datasets have shown stronger gener-
alization in novel tasks [4, 31] and demonstrated remark-
able performance on few and zero-shot image classification
tasks [31]. Nevertheless, classification datasets are still use-
ful for pre-training as they have a more balanced coverage
of categories, including rare and fine-grained categories,
and a better focus on the labeled objects in each image.

Recent works [43,45] therefore propose to combine cap-
tion and classification datasets for pre-training. [43] convert
classification labels to “label-prompts” by inserting the la-
bel into a template sentence, e.g., “a photo of a <label>.”1

1We use the term prompt to indicate a template sentence filled with a
class name.
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Although training on the caption and label-prompt data
achieves promising results, it does not fully resolve distribu-
tion differences between the open-domain caption data and
the classification data. In particular, it produces a language
embedding entangled with the classification dataset “bias”.
We note that classification datasets tend to be biased in at
least two ways: 1) the images mostly contain single ob-
jects from restricted domains, and 2) the vocabulary is lim-
ited and lacks the linguistic flexibility required for zero-shot
learning. Therefore, the class embedding of “a photo of a
dog” optimized for ImageNet may really mean a photo of
a dog from ImageNet instead, which is biased to ImageNet
and does not generalize well to other datasets. We empiri-
cally show that such dataset biases negatively affect unified
pretraining by reducing the generalization of learned repre-
sentations and thus jeopardizing zero-shot performance.

To recognize diverse concepts in the open domain, the
language model needs to disentangle the dataset bias from
the visual concepts and extract language embeddings gen-
eralizable to the open domain, e.g., the language embed-
ding representing a photo of a dog from an open-domain
dataset, such as image-caption dataset, instead of a photo
of a dog from ImageNet. Given this intuition, we propose to
learn dataset-specific language embeddings, while sharing
knowledge from both datasets during training. We achieve
this by a simple yet effective approach we call Prefix Con-
ditioning. The idea is to learn a dataset-specific text token
(prefix) for each dataset so that the bias of the dataset can
be absorbed into this token, and in return the remaining text
tokens can focus on learning visual concepts. Specifically,
we prepend a different token for each dataset (e.g., image
classification or caption dataset) to the text input token se-
quence during pre-training.

The idea is in part inspired by prefix or prompt tun-
ing [18, 21, 46], which showed that learnable tokens
prepended to the input token sequences of the pre-trained
language models are able to learn task-specific knowledge
and thus can be used to solve downstream tasks by com-
bining the knowledge of pre-trained large language models
and task-specific prefix tokens. Our approach differs from
prompt tuning in two ways: 1) the proposed prefix condi-
tioning is designed to unify image-caption and classification
datasets by disentangling the dataset bias, which is a unique
distinction to prompt-tuning works, 2) our approach is ap-
plied for VL pre-training while the standard prompt tuning
is used in fine-tuning.

In experiments, the proposed simple technique achieves
superior performance on zero-shot evaluation if we use the
prefix of the caption dataset to get the language embedding
at test time as shown in Fig. 1. Meanwhile, inserting the pre-
fix of the classification dataset leads to better performance
on classification data. We also observe a drastic perfor-
mance improvement when combining our prefix condition-

ing with the UniCL [43] objective because of their comple-
mentarity. Our contributions are summarized as follows:

• We propose novel Prefix Conditioning at pre-training
time to unify image-label and image-caption supervision.
It is the first mechanism to use prefixes to condition the
source of the dataset during vision language contrastive
pre-training, rather than post pre-training.

• This simple approach improves zero-shot recognition
performance by more than 6% on average in experiments
on ImageNet21K [7] and CC12M [5].

• Our comprehensive ablation study shows that prefix con-
ditioning enables the model to switch its approach to ex-
tracting language features, e.g., attend to different words.

2. Related Work
Vision-Language Contrastive Learning. Zero-shot

recognition is conventionally solved by learning the rela-
tionship between visual representations and word embed-
dings of the class names [1, 9, 12, 26, 38, 40, 41]. Vision-
language contrastive learning models, such as CLIP [31],
pre-train a model with a large-scale image-caption data
(400M) and achieve a remarkable improvement in zero-shot
recognition. ALIGN [13] demonstrated the effect of scaling
up the size of image-caption data. Various techniques have
been proposed to improve the data efficiency given a rela-
tively small amount of image-caption data (order of 10M).
ALBEF [20] employs model distillation and masked lan-
guage modeling. DeCLIP [22], SLIP [29] and TCL [42]
harness self-supervised contrastive learning. FILIP [44]
uses token-to-token contrastive learning rather than the
global contrastive learning used in CLIP. BLIP [19] gener-
ates pseudo captions to diversify the language modality for
each image. Unlike these works that handle only caption-
style supervision, we focus on the use of label supervision
in vision-language pre-training. Our approach brings or-
thogonal improvement to the aforementioned works as they
seek to improve training on image-caption data.

UniCL [43] and K-Lite [34] unite the image-caption
and image-label supervision by converting labels into text
with pre-defined template sentences. UniCL leverages a
supervised contrastive loss [15] for image-label pairs. K-
Lite [34] utilizes external knowledge from WordNet [28]
and Wikitionary [27]. The input noun is augmented with
the class hierarchy and definition to enrich the supervision.
Our method is complementary to these approaches since
both UniCL and K-Lite do not consider the domain shift
between datasets. In experiments, we observe a significant
performance boost when UniCL is combined with the prefix
conditioning.

Learning with Prompts. Prompt tuning is a popu-
lar technique to adapt a large language model to a spe-
cific task with few training data and low computational
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Figure 2. Left: Prefix conditioning at training time. Dataset-specific token is added to the input tokens with a contrastive learning objective
applied. Right: Prefix conditioning at test time. Given a class name, we construct a class prompt with pre-defined templates and add a
token used to condition real caption during training considering that image-caption dataset covers much wider range of image domains and
vocabulary words than image classification dataset.

cost [10,18,21,23,30]. To avoid tuning all parameters of the
model and using hand-crafted prompts, prefix embeddings
are added to the training input and are the only parame-
ters optimized during fine-tuning. The prefix embedding
can be viewed as the knowledge of the downstream task.
In this paper, since the target task is the zero-shot classi-
fication, the bias of the language embedding needs to be
from the dataset covering a wide range of domains rather
than a specific domain. Therefore, we choose to use the
prefix embedding learned for image-caption dataset during
test time. This technique is also effective in adapting a pre-
trained vision-language model [46, 47] to few-shot classi-
fication by tuning the prompts of the language encoder to
adapt to a downstream task. Additionally, prompt-tuning is
effective in adapting a pre-trained vision model to a target
task [14]. While these works aim to tailor a large pre-trained
model to a specific downstream task with a small amount of
data or low computational cost, our goal here is to condi-
tion a model with the prefix during the pre-training stage by
distinguishing between the image label and image caption
data. This allows a model to effectively share the knowl-
edge obtained from two different types of data sources.

Dataset bias in image recognition. A large-scale image
recognition dataset such as ImageNet [7] is known to be bi-
ased towards a specific image domain. Therefore, a model
trained on such a dataset shows vulnerability to the distri-
bution shift, e.g., shift in object pose [3] and style of the
images [37]. Nevertheless, [16,39] show that adapting only
a linear layer on the pre-trained models can improve per-
formance on the downstream tasks with distribution shifts.
This indicates the importance of having a good classifier on
top of image encoders, such as linear classifiers generated
by language encoders with preconditioning in our work. [8]

propose a method for domain generalization. They condi-
tion image recognition models with the domain embedding,
which discriminates the input image domains, and demon-
strate the importance of the domain-specific image classi-
fier. Our prefix conditioning can be seen as an attempt to
de-bias the linear classifier to obtain a domain-specific clas-
sifier and adapt it from the classification to the captioning
domain. Also, [2, 17] approach the dataset bias in image
classification by de-biasing image representations. By con-
trast, we tackle the problem in the framework of vision-
language learning, disentangle the dataset bias in the lan-
guage embedding and utilize the classifier obtained by the
caption domain. We note that while captioning datasets can
also have data biases, they tend to be more open-domain
than existing classification datasets.

3. Method
In this section, we introduce the Prefix Conditioning

technique for pretraining a deep learning model on both
image-caption and image-label (classification) data. In
Sec. 3.1, we discuss our problem setting and the back-
ground of contrastive learning with image-caption data. In
Sec. 3.2, we explain the details of our training approach,
and in Sec. 3.3 our inference procedure.

3.1. Preliminaries
Setup. Suppose we have access to two datasets: (i) an

image label dataset SL = {(xn, t
P
n , yn)}NL

n=1, where x ∈ X
is the image and tP ∈ P is a prompt-style language de-
scription based on its class label y ∈ Y , and (ii) a dataset of
image-caption pairs SC = {(xn, t

C
n )}NC

n=1, where tC ∈ T
is a caption. We assume that t is the tokenized language de-
scription. For each imagex, an image encoder model fθ pa-
rameterized by θ extracts a visual representation ṽ ∈ Rd×1:
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ṽ = fθ(x). For each caption or prompt t ∈ T , a text en-
coder fφ parameterized by φ extracts a language represen-
tation ũ ∈ Rd×1 : ũ = fφ(t).

Contrastive Loss. CLIP [31] is designed to find repre-
sentations that match an image to its paired caption while
separating unpaired ones. For i-th image xi and j-th lan-
guage description tj in a batch B, their features are nor-
malized using vi = ṽi

‖ṽi‖ and uj =
ũj

‖ũj‖ . Finally, CLIP op-
timizes the symmetric multi-class N-pair loss [35]:

min
{θ,φ}

Lcon =Lt2i + Li2t, (1)

which includes two contrastive terms (a temperature hyper-
parameter τ controls the strength of penalties on hard nega-
tive samples):

Lt2i = − 1

|B|
∑
i∈B

log
exp(τuT

i vi)∑
j∈B exp(τuT

i vj)
, (2)

Li2t = − 1

|B|
∑
i∈B

log
exp(τvTi ui)∑

j∈B exp(τvTi uj)
. (3)

UniCL [43] composes each mini-batch with samples from
both SL and SC . Then, for pairs from SL, they regard all
samples from the same class as positive pairs while a sam-
ple from SC has a unique pair. Except for the number of
positive pairs, no special treatment is given to differentiate
between the image-caption and image-label data.

3.2. Prefix Conditioned Contrastive Learning
Fig. 2 describes the overview of our approach. We aim to

enable the language encoder to learn embedding strategies
conditioned on the type of input dataset. The conditioning
can then be used to manipulate the bias at inference time.

Prefix-tuning [10, 18, 21, 23, 30] shares the intuition that
the prefix tokens are responsible for switching the context
of a language model from the pre-trained task to the down-
stream task. These approaches leverage the prefix to tailor a
model to a single task during fine-tuning and construct dif-
ferent prefixes for different natural language tasks [18]. In
our problem setting, there is no task distinction between the
image-caption and image-prompt matching since both are
formulated as contrastive learning. However, we focus on
the fact that the two datasets have different biases in the im-
age distributions and vocabulary words. The label-prompt
sentences are embedded closer to the image classification
data, even though we may want to use them to match a new
label to an image from the open-domain image distribution
during zero-shot classification.

To solve this problem, we propose to inform the model
of the type of dataset at the input level to switch the fea-
ture extraction. Specifically, to make the model aware of
the dataset type, prefix-conditioning prepends a prefix to-
ken to an input sentence to obtain t̄P = [PREFIXP ; tP ],

t̄C = [PREFIXC ; tC ]. The brackets indicate the con-
catenation of two lists of discrete tokens; PREFIXP and
PREFIXC denote a prompt-style and caption-style token re-
spectively. In this way, we prepend the token to learn the
dataset-specific bias, which enables us to disentangle the
bias in language representations and utilize the embedding
learned on the image-caption dataset at test time even with-
out an input caption.

In prompt-tuning, the number of prefix tokens can af-
fect the performance of the model [18, 21, 46]. However,
we do not see the performance difference by the number of
prefix tokens. This is probably because adding one token
is enough to distinguish the domain of input sentences. To
avoid significantly increasing the training cost, we set the
number of prefixes to one in all experiments. Then, the lan-
guage representations for each data source are extracted as
ũP , ũC = fφ(t̄P ), fφ(t̄C). This input design is indepen-
dent from the training objectives, and therefore we can eas-
ily apply the technique to optimize Eq. 1 or UniCL’s loss.

Data Sampling. [6] argue that the data sampling matters
when learning from multiple data sources in a contrastive
learning framework, as the model may learn to distinguish
the samples by exploiting the dataset bias. As such, we need
to take data sampling into consideration in our problem set-
ting as we learn from two different data sources. One op-
tion is a debiased sampling [6], which constructs each mini
batch to contain samples from a single data source. Alterna-
tively, as done in UniCL [43], we can compose each mini-
batch with samples from both data sources (image-caption
and image-label) with equal probability. In experiments,
we choose the debiased sampling, but find that the choice
of sampling does not significantly affect the performance.

3.3. Inference with Prefix Conditioning
During inference (the right side of Fig. 2), an input im-

age is classified as one of K classes by embedding the cor-
responding label-prompts and choosing the one most sim-
ilar to the image embedding. Following [31], we obtain
class prompts by filling the default prompt templates with
class names, and add a prefix. Considering the wider cov-
erage of domains in the image-caption dataset, the caption-
style prefix conditioning may work better to classify novel
downstream data. In our experiments, we empirically find
that the caption-style prefix indeed outperforms the prompt-
style prefix with a large margin in zero-shot recognition
while prompt prefix performs better on the image classifica-
tion dataset used to train the model. We provide a detailed
analysis of different conditioning in Section 4.3.

4. Experiments
The goal of experiments is twofold: comparing our ap-

proach with baselines in zero-shot recognition, and analyz-
ing the behavior of prefix conditioning. We describe the
experimental setup in Sec. 4.1, show the main results in
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Training Data Objective Prefix
Conditioning

Metric

Classification Caption Size IN-1K Zero-shot
11 datasets

– CC-3M 3M CLIP 18.1 28.7
– CC-12M 12M CLIP 33.4 41.2
ImageNet-1K – 1M CLIP 72.1 20.2
ImageNet-21K – 12M CLIP 47.1 39.6

ImageNet-1K CC-12M 13M CLIP 68.7 43.3
ImageNet-1K CC-12M 13M CLIP X 71.5 45.5

ImageNet-1K CC-12M 13M UniCL 68.8 43.1
ImageNet-1K CC-12M 13M UniCL X 71.7 44.5

ImageNet-21K CC-12M 25M CLIP 56.8 49.5
ImageNet-21K CC-12M 25M CLIP X 67.3 57.8

ImageNet-21K CC-12M 25M UniCL 58.2 51.7
ImageNet-21K CC-12M 25M UniCL X 66.5 58.4

ImageNet-21K w/o IN-1K CC-12M 24M CLIP 29.1 46.9
ImageNet-21K w/o IN-1K CC-12M 24M CLIP X 47.8 56.4

Table 1. Performance comparison among different training datasets and training objectives. Note that we use caption prefix to obtain
these results. The proposed prefix conditioning shows improved zero-shot recognition accuracy across models trained with different
combinations of image-classification and image-caption datasets and training objectives.

Sec. 4.2, and analyze the properties of prefix-conditioning
in Sec. 4.3.
4.1. Setup

Training Datasets. We conduct experiments on the set-
ting where we have a large source of image-caption and
image-label datasets. Following UniCL [43], we utilize
CC3M [33] and CC12M [5] as image-caption data. For
the image classification dataset, we utilize ImageNet21K
and ImageNet1K [7]. While ImageNet1k contains 1,000
classes, ImageNet21K has more than 20,000 categories that
include fine-grained and general objects. To observe the
behavior in diverse image classification data, we also run
experiments on ImageNet21K while excluding the classes
of ImageNet1K. Details are explained in each section.

Training. We use the same prompt strategy and 80
prompt templates as used in CLIP [31]. During training, we
randomly sample one prompt template and fill it with the
class names, followed by a tokenization step before feeding
into the text encoder. We average language embeddings ex-
tracted from all 80 templates in validation. We use the same
language encoder as CLIP [31] and Swin-Tiny transformer
[24] as the vision encoder following UniCL [43]. All mod-
els are optimized with AdamW [25] where the learning rate
is set to 0.001, and weight decay to 0.1. All models are
trained with a batch size of 1024. Considering the amount
of training data, we train the models for 15 and 50 epochs
in the experiments on ImageNet21K and ImageNet1K re-
spectively.2 For all training, we used a cosine learning rate

2When training a model on two different datasets, e.g., IN21K and

schedule with a warm-up of 10,000 iterations.

Baselines. We train CLIP [31] and UniCL [43] as our
baselines. For comparison, we present results on CLIP
trained only on image-caption or image classification data,
as well as CLIP and UniCL trained on both image-caption
and IN21K data. Unless otherwise stated, CLIP and UniCL
are trained with equal sampling (ES) strategy as in [43],
while our prefix conditioning model is trained with debiased
sampling (DS) [6]. We provide an analysis of the sampling
in Sec. 4.2 and find that DS itself does not have a noticeable
advantage over ES.

Evaluation. We evaluate the learned representations
on supervised and zero-shot image classification on Ima-
geNet1K3 and on 11 datasets chosen from the ones used in
CLIP [31] including object classification (e.g., CIFAR10,
CIFAR100), fine-grained classification (e.g., Oxford-IIIT
Pets, Oxford Flowers 102, and Food-101), and aerial images
(e.g., EuroSAT and Resisc45). Although our main focus is
at the zero-shot generalization, we also provide an analysis
of a linear-probe evaluation of the image encoder.

CC12M, we count the epochs based on how many samples are used
from the image classification dataset. For instance, in UniCL, each
mini-batch consists of approximately the same number of samples from
IN21K and CC12M. Then, to train a model for 15 epochs, we train for
N/1024× 2× 15 iterations, where N indicates the number of samples in
IN21K.

3While we follow the same zero-shot evaluation protocol when evalu-
ating on ImageNet1K, we note that it is zero-shot only where we explicitly
exclude ImageNet1K from the training, last two rows of Table 1
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Train
Prefix Sampling IN-1K Cal CF100 CF10 ESTAT Food Flower Pets Patch R45 VOC DTD AVG

ES 56.8 70.2 55.0 79.4 21.1 46.0 60.3 57.2 51.2 24.8 57.7 21.4 49.5
X ES 65.4 81.2 62.6 88.9 30.4 51.7 61.8 71.9 50.0 28.2 78.1 27.7 57.5

DS 58.7 65.9 55.0 85.7 22.8 40.8 55.7 60.2 50.0 20.6 45.2 23.8 47.8
X DS 67.3 79.7 63.8 87.9 31.5 53.4 58.8 69.6 50.6 31.5 80.5 28.4 57.8

Table 2. Ablation study for sampling in IN21K + CC12M. Equal sampling (ES) composes a mini-batch with roughly equal number of
samples from two datasets. Debiased sampling (DS) samples a mini-batch of either IN21K or CC12M with equal probability.

Train Data Prefix
Conditioning IN-1K Cifar10 Cifar100 Caltech Food Pet Patch VOC DTD

ImageNet-21K 71.5 94.3 79.1 83.5 79.1 86.3 82.3 88.9 61.3
ImageNet-21K + CC12M 69.2 93.0 76.4 82.4 78.4 82.2 81.4 88.7 61.4
ImageNet-21K + CC12M X 69.4 93.5 77.3 83.2 78.8 83.6 82.0 88.8 62.5

Table 3. Linear evaluation accuracy on models trained with and without prefix conditioning. Prefix conditioning slightly improves the
performance upon a model without it (second row vs. last row).

4.2. Main Results
We describe our main results in Table 1, followed by the

analysis of prefix conditioning in Sec. 4.3.
There are three observations. First, the improvements

upon a model trained only with image-caption or image-
label data are obvious in almost all cases. As the previ-
ous work indicates [43], the effectiveness of combining two
types of supervision is clear from these results.

Second, in all cases, our prefix conditioning significantly
improves performance on both ImageNet-1K (supervised
recognition) and 11 zero-shot recognition tasks. When
training on ImageNet-21K, the conditioning improves the
baseline by more than 8% in ImageNet-1K and more than
6% in zero-shot recognition on average. In training with
ImageNet-1K, the margin from the baseline is smaller than
training with ImageNet-21K, probably because the size of
ImageNet-1K (1M) is much smaller than that of ImageNet-
21K (12M). Also, prefix conditioning is effective in both
UniCL and CLIP objectives. Due to its simplicity, our ap-
proach can be easily integrated with various objectives.

Finally, our method is less affected by ablating a part
of categories. The classes of ImageNet-1K are excluded
from ImageNet-21K in the last two rows of Table 1. There-
fore, both approaches significantly drop performance on
ImageNet-1K, whose task now becomes true zero-shot
recognition, compared to other settings. Even in this set-
ting, prefix conditioning maintains high accuracy and out-
performs a CLIP baseline model by a large margin.

Sampling Method. We analyze the data sampling
scheme to construct a mini-batch in Table 2. We apply
debiased sampling (DS) in our method, namely, sampling
one data source with equal probability and getting a mini-
batch of it. The other option is mixing two data sources
with equal probability (ES). The table indicates that pre-
fix conditioning works well with ES sampling and the sam-

pling strategy itself is not advantageous. Ablating prefix
conditioning during training clearly drops the performance
in both sampling strategies, and the performance is worse
than ES on average in zero-shot results (49.5 vs. 47.8).
ES sampling should allow the model to differentiate sen-
tences by using the prepended prefix. Interestingly, this re-
sult implies that differentiating sentences by prefix infor-
mation does not much degrade the performance. The dis-
tinguished sentences enable the model to associate images
from different datasets. Since images of two datasets are
different with respect to the categories and the locations of
objects in images, distinguishing the two kinds of images
may not harm generalizability of the representations.

Linear-probe Evaluation. We evaluate the linear-probe
performance in Table 3 to see the quality of learned image
representations. Although the accuracy is better than the
model trained without prefix conditioning (second line), the
improvements are not substantial. This result indicates that
the zero-shot performance gain obtained by our method is
not due to the image representations. We investigate the
learned language and image features in the next subsection.

4.3. Analysis of Prefix-Conditioning
We present a detailed analysis of prefix conditioning.

We first study how different prefixes impact the zero-shot
recognition performance and analyze their behaviors by
looking into the attention weights of the language trans-
former encoder. We also demonstrate improved robustness
with respect to the image-level domain shift. Unless other-
wise stated, we employ a model trained with CLIP objec-
tive on ImageNet-21K and CC12M in this analysis. Finally,
this section concludes that prefix conditioning enables the
language encoder to switch its role during training, which
eases learning from different types of datasets, e.g., image
classification and image caption dataset.
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Data Test-time
Prefix IN-1K Cal C100 C10 ESTAT Food Flower Pets Patch R45 VOC DTD AVG

IN-1K
+ CC12M

N/A 68.7 68.7 38.4 69.5 24.4 31.9 13.3 66.6 50.2 25.4 65.6 22.3 43.3
Prompt 75.4 71.7 35.5 63.9 24.2 20.0 8.1 72.2 50.4 24.2 61.1 15.3 40.6
Caption 71.5 75.1 39.4 70.5 26.7 33.9 13.9 72.3 50.5 25.8 67.8 25.4 45.5

IN-21K
+ CC12M

N/A 56.8 70.2 55.0 79.4 21.1 46.0 60.3 57.2 51.2 24.8 57.7 21.4 49.5
Prompt 71.4 76.5 59.0 86.0 20.1 45.7 62.3 69.1 52.4 26.3 76.8 21.4 54.1
Caption 67.3 79.7 63.8 87.9 31.5 53.4 58.8 69.6 50.6 31.5 80.5 28.4 57.8

IN-21K w/o 1K
+ CC12M

N/A 29.1 67.4 45.9 80.0 28.6 40.8 56.9 39.2 50.2 21.9 64.9 19.8 46.9
Prompt 40.8 74.9 61.0 84.6 31.2 48.1 58.7 45.2 51.2 23.5 67.5 21.4 51.6
Caption 47.8 81.9 63.3 87.3 32.4 52.9 62.8 57.0 50.6 25.6 80.1 26.2 56.4

Table 4. Ablation study for test-time prefix conditioning. Note that the difference between two results come from the prefix used in test
time and we use the same model for this evaluation. A model trained without conditioning is shown at the top of each block.

Caption PrefixPrompt Prefix Unconditional Model

Figure 3. An example of attention weights for an end token. Best viewed in color. The sentence shown here is one of class prompts in the
VOC 2007 dataset. Different rows show the weights of different transformer layers. With a prompt prefix (leftmost), the model focuses on
a class name (airplane) while caption prefix (middle) allows a model to pay attention to another noun, sculpture. By prefix conditioning,
the attention of the model changes as intended.

Test Time Prefix. We analyze the role of the prefix to-
ken in Table 4, where the table describes the comparison in
the choice of test time prefix conditioning. As explained in
Sec. 3, the choice of prefix during test time should change
the behavior of the model since the prefix should tailor the
language encoder for classification-style or caption-style
feature extraction. Except for the IN-1K results of a model
trained with the entire IN21K or IN-1K, conditioning with
the caption prefix shows much better results. The superi-
ority of the caption prefix is noticeable in several datasets.
This means caption prefix works better if the target comes
from outside the image classification data, indicating that
the class-prompt prefix conditioning makes the model tai-
lored for the image classification dataset. Class-prompts
prefix works better to categorize IN-1K data because the
prefix is trained to specialize in classifying it. Note that
caption-style prefix performs better than prompt-style prefix
in IN-1K for a model trained with IN21K excluding IN1k
classes. This indicates that the caption-style prefix works
better when the vocabulary of the class name comes from
outside the image classification data since the caption data
covers much more diverse words.

Prefix controls attention. Fig. 3 visualizes the atten-
tion weights for an end token in different prefix conditions
and models. The input sentence, a sculpture of an airplane,

is one of the class-prompts. When a prompt prefix (left-
most) is employed, the language model pays attention to the
class name at the first layer, it does not focus on the noun
in other layers. The only noun the encoder focuses on is
airplane. By contrast, the model attends to both sculpture
and airplane in the case of the caption prefix and uncon-
ditional model. Note that this behavior does not mean that
the prompt-prefix performs better in zero-shot recognition
as shown in experiments due to the effect of the bias in im-
age classification dataset.

While we visualize only one example in the main text
due to the space limit and defer more examples to the ap-
pendix, this highlights a general trend that the prompt prefix
guides the language encoder to focus on a single word (e.g.,
class name), whereas the caption prefix makes the model at-
tend to multiple words. In other words, prefix conditioning
allows the language encoder to “switch gears” to represent
sentences from different datasets (i.e., image-classification
vs image-caption). On the other hand, the baseline model
without prefix conditioning attends to multiple words (e.g.,
Fig. 3 rightmost) even though the input sentence is a class
prompt. This indicates that it is hard to switch the gears
without explicitly informing of the type of dataset.

Language Feature Visualization. Fig. 4 visualizes ex-
tracted language features conditioned with different pre-
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Train Data Prefix
Conditioning

Test-Time
Prefix IN IN-V2 IN-R IN-S

ImageNet-1K N/A 72.1 59.3 19.9 17.8
ImageNet-1K + CC12M N/A 68.7 57.4 27.7 27.8
ImageNet-1K + CC12M X Caption 71.5 60.2 31.8 30.7
ImageNet-1K + CC12M X Prompt 75.4 63.3 29.2 27.9

ImageNet-21K N/A 47.1 41.1 20.1 16.1
ImageNet-21K + CC12M N/A 56.8 48.6 29.4 30.6
ImageNet-21K + CC12M X Caption 67.3 57.5 35.2 34.6
ImageNet-21K + CC12M X Prompt 71.4 61.1 32.1 32.2

Table 5. Evaluation on the robustness to the image-level domain shift. Prefix conditioned training achieves better robustness, and caption-
prefix outperforms prompt-prefix in the images distinct from those used in training (IN-R and IN-S).

(a) Different conditions (b) Prompt condition

(c) Caption condition (d) No condition

Figure 4. T-SNE [36] visualization of the class-prompt features
of 20 classes of VOC 2007 with different prefix conditions. (a):
Language embeddings with prompt (red) and caption (blue) pre-
fixes, respectively. (b)(c)(d): Different colors indicate language
embeddings of different classes.

fixes. As seen in Fig. 4a, language features extracted with
caption-prefix (blue) and prompt-prefix (red) are clearly
separated. In addition, prompt-prefix (Fig. 4b) has lower
intra-class and higher inter-class variance, whereas caption-
prefix (Fig. 4c) shows higher intra-class variance across
prompts. Interestingly, results in Table 4 suggest that the
caption-prefix conditioned language features result in a bet-
ter zero-shot recognition performance than those condi-
tioned on the prompt-prefix. Although the prompt-prefix
mode extracts discriminative language embeddings, the em-
beddings do not perform well on the zero-shot recogni-
tion because the embeddings contain significant bias from
image-classification dataset.

Robustness in image domain shift. Test samples can
be unseen with respect to image classification data in two
ways (or combinations of two): 1) The image is similar to
the training distribution, but the class name is different from
the seen image classification labels. 2) Although the class
label is the same, the image data comes from a different

distribution. Datasets evaluated in the zero-shot recognition
include both two cases since the vocabularies and image are
from different domains. To understand them, we analyze
the test-time prefix by using ImageNet-1K and evaluate the
performance on image-level domain shift using variants of
ImageNet, i.e., ImageNet-V2 [32], ImageNet-R [11], and
ImageNet-S [37]. Table 5 describes the results of ablat-
ing prefix-conditioned training and the test-time prefix. The
prefix-conditioned training outperforms all baselines. This
reveals that the prefix-conditioned training achieves class
embeddings that are generalizable across image domains.
The prompt-style prefix performs the best in IN, IN-V2,
both of which have image styles similar to ImageNet. By
contrast, the caption-style prefix performs the best in IN-R
and IN-S, which has art-style and sketch-style images re-
spectively. Thus, the caption-style prefix generates more
generalizable class embeddings for the domain dissimilar
from the ImageNet training data. This observation is con-
sistent with the results in the paragraph Test time Prefix.

5. Conclusion

In this paper, we explore a simple yet effective mecha-
nism for unified pre-training on image-caption and image
classification data. We propose to learn prefix tokens at
training time to condition the language encoder to switch
the input source. Specifying the prefix allows the model
to switch the manner of feature extraction and can control
which visual domain the embedding is projected to. This
approach boosts the performance of zero-shot recognition
accuracy of the contrastive learning models. Our analysis
suggests that the trained language encoder provides robust-
ness to the image-level domain shift. Although we limit our
scope to unifying image-caption and image-label supervi-
sion, incorporating other supervision such as object detec-
tion or semantic segmentation is an interesting next step.
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