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Figure 1. CLIP-Sculptor is a zero-shot text-to-shape generation method. Left Top/Bottom: It generates diverse shapes that reflect the
semantic meaning of the text input without requiring any text data during training. Right: The method also generates high-fidelity
shapes.

Abstract

Recent works have demonstrated that natural language
can be used to generate and edit 3D shapes. However,
these methods generate shapes with limited fidelity and di-
versity. We introduce CLIP-Sculptor, a method to address
these constraints by producing high-fidelity and diverse
3D shapes without the need for (text, shape) pairs during
training. CLIP-Sculptor achieves this in a multi-resolution
approach that first generates in a low-dimensional latent
space and then upscales to a higher resolution for im-
proved shape fidelity. For improved shape diversity, we
use a discrete latent space which is modeled using a trans-
former conditioned on CLIP’s image-text embedding space.
We also present a novel variant of classifier-free guid-
ance, which improves the accuracy-diversity trade-off. Fi-
nally, we perform extensive experiments demonstrating that
CLIP-Sculptor outperforms state-of-the-art baselines.

1. Introduction
In recent years, there has been rapid progress in text-

conditioned image generation [31, 32, 35], which has been
driven by advances in multimodal understanding learned
from web-scaled paired (text, image) data. These advances

have led to applications in domains ranging from content
creation [21, 22, 31] to human–robot interaction [40]. Un-
fortunately, developing the analogue of a text-conditioned
3D shape generator is challenging because it is difficult to
obtain (text, 3D shape) pairs at large scale. Prior work has
attempted to address this problem by collecting text-shape
paired data [2, 5, 9, 23, 26], but these approaches have been
limited to a small number of object categories.

A promising way around this data bottleneck is to use
weak supervision from large-scale vision/language mod-
els such as CLIP [30]. One approach is to directly op-
timize a 3D representation such that (text, image render)
pairs are aligned when projected into the CLIP embedding
space. Prior work has applied this approach to stylize 3D
meshes [25, 41] and to create abstract “dreamlike” objects
using neural radiance fields [18] or meshes [19]. However,
neither of the aforementioned methods produce realistic ob-
ject geometry, and they can require expensive optimization.
Another approach, more in line with text-to-image gener-
ators [31, 32], is to train a conditional generative model.
The CLIP-Forge system [37] builds such a model without
paired (text, shape) data by using rendered images of shapes
at training time and leveraging the CLIP embedding space
to bridge the modalities of image and text at inference time.
CLIP-Forge demonstrates compelling zero-shot generation
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Table 1. High-level comparison between zero-shot text-to-shape
generation methods. Inference time is calculated using a single
NVIDIA Tesla V100 GPU.

Method Inference Fidelity Diversity

DreamFields [18] > 24 hrs Low Single
Clip-Mesh [19] 30 min Low Single
Clip-Forge [37] 6.41 ms Medium Medium
CLIP-Sculptor 0.91 sec High High

abilities but produces low-fidelity shapes which do not cap-
ture the full diversity of shapes found in the training distri-
bution.

In this paper, we propose CLIP-Sculptor, a text-
conditioned 3D shape generative model that outperforms
the state of the art by improving shape diversity and fi-
delity with only (image, shape) pairs as supervision. CLIP-
Sculptor’s novelty lies in its multi-resolution, voxel-based
conditional generation scheme. Without (text, shape) pairs,
CLIP-Sculptor learns to generate 3D shapes of common
object categories from the text-image joint embedding
of CLIP. To achieve high fidelity outputs, CLIP-Sculptor
adopts a multi-resolution approach: it first generates a low-
resolution latent grid representation that captures the se-
mantics from text/image, then upscales it to a higher res-
olution latent grid representation with a super-resolution
model, and finally decodes the output geometry. To gen-
erate diverse shapes, CLIP-Sculptor adopts discrete latent
representations which are obtained using a vector quanti-
zation scheme that avoids posterior collapse. To further
improve shape fidelity and diversity, CLIP-Sculptor uses a
masked transformer architecture. We additionally propose a
novel annealed strategy for the classifier-free guidance [16].
To sum up, we make the following contributions:

• CLIP-Sculptor, a multi-resolution text-conditional
shape generative model that achieves both high fidelity
and diversity without the need for (text, shape) pairs.

• A novel variant of classifier-free guidance for gener-
ative models, with an annealed guidance schedule to
achieve better quality for a given diversity level.

2. Related Work
Neural Discrete Representation. Discrete representations
[28] were first proposed for image generation in the con-
text of variational autoencoders as a method to improve im-
age quality and avoid posterior collapse. Further work in-
troduced multi-scale and hierarchical variants [8,33] which
improved generative capabilities. Recently, 3D discrete rep-
resentations have emerged as well, such as discretized voxel
and implicit grids [26,42]. In this work, we take inspiration

from hierarchical VQ-VAEs [8, 33] and propose an archi-
tecture of hierarchical discrete representations capable of
generating high fidelity 3D shapes.

Latent Generative Models. In recent years, latent genera-
tive models have been widely adopted, because these mod-
els can effectively generate low-dimensional latent repre-
sentations which can be used to generate high fidelity im-
ages and shapes. In the 3D domain, GAN-based latent mod-
els [1, 6, 17] have shown impressive results but tend to suf-
fer from training instability and mode collapse. Flow-based
models [37, 43] have been proposed to alleviate these prob-
lems, but they yield sample quality that is inferior to GAN-
based models. Recent works in the image domain use dif-
fusion [12, 36] or masking models [4] on the latent space
which can increase the inference efficiency and still give
quality outputs. Building on these works, we propose a hi-
erarchical latent generative model that can further improve
the fidelity and diversity of shape generations.

Classifier-free Guidance. Classifier-free guidance, pro-
posed by [16], jointly trains a conditional and unconditional
generative model, whose score estimates are mixed to es-
tablish a trade-off between diversity measured by Frechet
inception distance (FID) and sample accuracy/fidelity mea-
sured by Inception score (IS). Classifier-free guidance
guides unconditional samples in the direction of conditional
ones and has been implemented in practice to achieve state
of the art results in recent work [10–12, 34]. To the best of
our knowledge, guidance scale has always been kept con-
stant outside the concurrent exploration in [15]. Their os-
cillating guidance technique, however does not show im-
provements in sample fidelity and produces more artifacts
in their generations. In this work, we find that rather using
annealed scheduling can give better quality versus diversity
trade-offs.

Text-to-Shape Generation. Text-to-shape generation has
gained momentum in recent years. Recent works [5, 9, 23,
26] use supervised text-shape pairs to generate shapes effec-
tively using natural language. However, a major drawback
is the lack of available text-shape datasets, which limits su-
pervised methods to generate shapes only in few categories.
To solve this, several recent works have successfully lever-
aged the image-text embeddings of CLIP as a prior [30] by
converting shapes into images using renders. One line of
work uses differentiable renderers [18, 19, 25, 29, 41]. An-
other line of work learns a mapping from the image space to
the shape space [37]. Although these methods are effective,
they suffer from either long optimization time [18,19,25,29]
or limited quality of generated shapes [18, 19, 37]. Our
method is able to generate more diverse shapes of higher
fidelity within a comparably short inference time.
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Figure 2. The CLIP-Sculptor architecture during training (top) and inference (bottom). CLIP-Sculptor is trained in three stages. In Stage
1, we train two separate VQ-VAE models for 323 and 643 resolution voxel grids. In Stage 2 we train a coarse transformer conditioned on a
CLIP embedding to generate low resolution VQ-VAE latent grids E32. In Stage 3, we train a fine transformer to perform super resolution
on these latent grids. During inference, a text prompt is passed through the CLIP text encoder and used to condition the coarse transformer
to generate a coarse latent grid E32. This coarse grid is then used to condition the fine transformer to generate a fine latent grid E64. Finally,
this fine latent grid is then passed through the Training Stage 1 643 VQ-VAE decoder to generate the output shape.

3. Method

CLIP-Sculptor aims to generate diverse and high-fidelity
3D shapes of common object categories from text prompts.
Figure 2 illustrates the components of our CLIP-Sculptor
model. We train the network using 3 stages. In the first
stage, we use a vector-quantized representation [28], to effi-
ciently represent 3D shapes in discrete voxel grids. This la-
tent representation captures the diverse semantic meanings
of the 3D shapes in common object categories and is com-
patible with powerful generative models. To balance com-
putation cost and shape quality, we utilize latent represen-
tations at two resolutions. A low resolution latent represen-
tation E32 encodes geometric information of voxels V32 at
resolutions of 323, which is useful for text-conditional gen-
eration. A high resolution latent representation E64 encodes
geometric information of voxel grids V64 at resolutions of
643, which is useful for super-resolution and detail genera-
tion. In stage 2, we train a generative model conditioned on
CLIP features obtained from images {Ir|r ∈ R} rendered
at random views R to solve the lack of paired (text, shape)

data. The conditional generative model consists of a map-
ping net and a coarse transformer Tc(.) that is trained to un-
mask a masked low-resolution grid E32. Finally in stage 3,
a fine transformer Tf (.) is used as a super-resolution model
in latent space to generate higher resolution shapes. It is
trained in a similar manner to the coarse transformer but
conditioned on a low-resolution grid E32 instead of CLIP
features.

During inference, a text prompt is sequentially converted
from CLIP text embedding to a low-resolution latent repre-
sentation E32 to a high-resolution latent representation E64

to finally a high-resolution voxel grid V64. A confidence-
based iterative decoding scheme [4] is adopted for unmask-
ing the fully masked initial grids for coarse and fine trans-
formers at inference. To further control shape fidelity and
diversity, we propose an annealing strategy for classifier-
free guidance at inference time.

In the following subsections, we will introduce the major
components within CLIP-Sculptor. Section 3.1 describes
the vector quantized representations at multiple resolutions;
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Section 3.2 explains the conditional generation model as
well as its design choices and training strategies; Section
3.3 introduces the super-resolution model; Section 3.4 ex-
plains how the classifier-free guidance is achieved at infer-
ence using an annealing strategy.

3.1. Multi-Resolution Voxel VQ-VAEs

To learn a low-dimensional latent space that effectively
represents the distribution of the training shape set D,
we use a vector-quantized variational autoencoder (VQ-
VAE) [28]. The vector quantized latent representation
avoids “posterior collapse”, and it is also amenable to mod-
eling with transformer-based generative models. To balance
computational cost and shape quality, we train two separate
VQ-VAEs for 323 and 643 resolution voxel grids V32 and
V64, which are useful for conditional generation and super-
resolution respectively.

For both VQ-VAEs, we use ResNet-based [13] volumet-
ric CNN encoders and decoders. A vector quantization
layer maps the down-sampled voxel grids into a discrete
latent space by indexing the continuous latent space with
an embedding codebook. In this way, the voxel grids V32

and V64 are effectively represented by low-dimensional la-
tent representations E32 and E64, at the resolution of 43 and
83. The VQ-VAEs are trained with mean squared error loss
(MSE), commitment loss [28], and an exponential moving
average strategy [33, 45].

3.2. CLIP-Conditioned Coarse Transformer

The conditional generation process aims to generate
diverse shapes that semantically correspond to the text
prompts. Inspired by the recent success of masking ap-
proaches [4] and diffusion models [12, 27, 36], we formu-
late this generation process as a conditional unmasking task.
Given an input masked latent representation Emsk

32 and a
conditional vector c, the coarse transformer Tc(.) should
produce an fully unmasked latent representation E32 that
not only aligns with the semantic meaning captured by the
conditional vector, but also allows for the sampling of di-
verse shapes at inference.

The conditional vector c provides the semantic guidance
for the shape generation process. Since we assume no text
data at the training time, we leverage the text-image joint-
embedding of CLIP. The generation is guided by the CLIP
image embedding from the rendered images {Ir} during
training and guided by the CLIP text embedding from the
text prompt during inference. We add Gaussian noise to the
CLIP image embeddings [44] to alleviate the modality gap
between the CLIP text and image embeddings [20]:

ĉ = fI(Ir) +
γ · ϵ · ∥fI(Ir)∥2

∥ϵ∥2
, (1)

where fI(·) is the CLIP image encoder, ϵ ∼ N (0, 1), and γ

controls the level of perturbation. The conditional vector ĉ
is then normalized and passed through a mapping network
that consists of multi-layer perceptrons (MLP). The mapped
vector c̃ conditions on the coarse transformer Tc(.) by pre-
dicting the affine transform parameters of each transformer
block’s layernorm. In order to control the diversity-quality
balance of the generated shapes, we replace the conditional
vector with the null embedding by a ρ% drop out rate for
classifier-free guidance [16]. These are important design
choices that affects the diversity and quality of the gener-
ated shapes at inference time.

To train the coarse transformer Tc(.), we randomly re-
place the input indices with a special “mask” tokens by
uniformly selecting a masking ratio between 0-100% [4].
Given the masked latent grid Emsk

32 and the conditional vec-
tor c, the training objective is to maximize the following
log-likelihood:

∑N
n log p(E32,n|Emsk

32,n, c)/N , where N is
the training data size and Emsk

32 is the randomly masked la-
tent grids. As the network sees only the ground truth tokens
but not its own predicted samples during training, there ex-
ists an autoregressive drift resulted by the accumulative er-
ror at inference-time sampling. To alleviate this issue, we
take inspiration from the NLP literature [38] and use a sim-
ilar step-unrolled training (SUT) that predicts the entire un-
masked grids at each time step. The final objective is to
maximize the following formulation:

N∑
n

(
log p(E32,n|Emsk

32,n, c) + log p(E32,n|Ẽ32,n, c)
)/

N,

(2)
where Ẽ32 is the coarse transformer Tc(.)’s own prediction.

3.3. Super-Resolution with Fine Transformer

Super-resolution in the discrete latent space improves
quality and upsamples the resolution of generated shapes.
This process is done with a fine transformer Tf (.), which
takes a low-resolution latent representation E32 and a
masked high-resolution latent grid as input. The fine trans-
former is conditioned on the coarse grid E32 via cross atten-
tion. It unmasks the high-resolution representation E64. To
ensure that training data resembles the inference data, we
directly use the predictions Ẽ32 of the coarse transformer
Tc(.) to train the fine transformer Tf (.), instead of using the
ground truth low-resolution latent representation E32.

3.4. Annealed Classifier-Free Guidance

At inference time, we first convert an input text prompt
into a CLIP text embedding using the CLIP text encoder
fT (·). The text embedding is then fed into the mapping
network and used as the conditional vector c̃ of the coarse
transformer Tc(.). We use the iterative decoding scheme [4]
to slowly unmask the grid over a sequence of T steps. The
initial input to the coarse transformer Tc(.) is a completely
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masked latent grid. At each time step t, we condition the
coarse transformer Tc(.) with c̃ and take the output latent
grid Emsk

32,t−1 from the prior time step as the input. The
coarse transformer Tc(.) will predict an unmasked latent
grid Ẽ32,t. We mask all the tokens except for the most
confident token predictions and the tokens unmasked from
previous steps. This newly masked latent grid Emsk

32,t is the
input to the next time step t+1. We repeat this process until
the process unmasks all the tokens, which is ensured by a
cosine masking schedule [4].

During this iterative decoding scheme, we apply a new
variant of classifier-free guidance [16]. Classifier-free guid-
ance extrapolates an unconditional sample in the direction
of a conditional sample. The extrapolation is controlled by
an adaptive guidance scale parameter. Varying this param-
eter results in a trade-off between accuracy of text-to-shape
generation and sample diversity. Instead of using a con-
stant guidance scale for all time steps [16], we propose to
vary the guidance scale over time according to an anneal-
ing schedule. The intuition is that during the initial steps of
sampling when the input to the coarse transformer is mostly
masked indices, a larger guidance scale is important to keep
the network “on task”; later on in the sampling process, a
lower guidance scale can help produce more sample diver-
sity. Overall, the guidance is formulated as:

P̂t(c) = Pt(0) + a(t)
(
Pt(c)− Pt(0)

)
, (3)

where a(t) is the guidance scale annealing schedule, Pt(c)
denotes the conditional distribution p(E32,t|Emsk

32,t−1, c),
and Pt(0) denotes p(E32,t|Emsk

32,t−1,0). Note that a(t) is
continuous and usually monotonically decreasing. By set-
ting a(t) = k for some constant k, this equation is equal
to the classifier-free guidance scheme with a constant guid-
ance scale. In this paper, we experimentally evaluate other
annealing schedules [4], including linear, cosine, and square
root functions.

Finally, the unmasked coarse latent grid Ẽ32 is fed to
the fine transformer Tf , which uses the iterative decoding
scheme to unmask an initially masked fine latent grid Emsk

64 .
The unmasked fine grid is then passed to the 643 VQ-VAE
decoder to obtain the final high-resolution voxel shape.

4. Experiments

In this section, we report experimental results to eval-
uate the generation fidelity, diversity, and class accuracy
of CLIP-Sculptor. We provide full details of the experi-
ment setup in the supplementary. We run the experiments
3 times for each of the aforementioned measures and report
the mean in each case, except for the final comparisons with
baselines (Table 2), where we use the best seed. Additional
results can also be found in the supplementary.

Dataset. We conduct our experiments on two subsets of
the ShapeNet(v2) dataset [3]. The first subset, ShapeNet13,
contains 13 categories from ShapeNet as used in [7,24]. We
use the same train/test split as specified in [24]. Our second
subset is ShapeNet55 which contains all 55 ShapeNet cate-
gories. For ShapeNet55, we render images as described in
[7]; the training dataset contains 51,784 datapoints, whereas
the test set contains 6,101 datapoints.
Evaluation Metrics. To assess the generative capabilities
of CLIP-Sculptor, we use Fréchet Inception Distance (FID)
( [14]) to evaluate shape diversity and quality, and use Clas-
sifier Accuracy (Acc) to evaluate the text-shape correspon-
dence. These metrics follow [37] where they first generated
single mean shapes for 234 predetermined text queries and
then passed all shapes through a classifier to measure Acc.
The latent space of this classifier is also used for FID.
Baseline. We compare the performance of our method
against CLIP-Forge [37], CLIP-Mesh [19] and Dream-
Fields [18], which are currently state of the art for zero-
shot text-to-shape generation. We also set up a compari-
son method called Zero-Shot AutoSDF(ZS-ASDF), which
trains the supervised method AutoSDF [26] with the CLIP
features as CLIP-Sculptor, to highlight the superiority of
our conditional generation model. CLIP-Forge reports re-
sults on single shape generation for 234 text queries. These
single shapes were generated using the mean of the prior
(the Gaussian distribution), so we refer to these results as
CF-MS. Note that this does not capture the diversity of
shapes that can be generated given a text query. To capture
results on more shape generations, we sample 32 shapes
instead of one using a Gaussian (CF-G), truncated Gaus-
sian (CF-TG) or clipped Gaussian (CF-CG) distribution.
We also generate 32 shapes for ZS-ASDF and our method
for fair comparison. We only compare qualitatively with
DreamFields and CLIP-Mesh as the optimization time per
query is significant (Table 1), and it does not use prior
knowledge from the shape dataset.

4.1. Evaluating Shape Diversity and Accuracy

In this section, we first quantitatively evaluate the di-
versity and accuracy of a given shape matching a given
text query on the ShapeNet13 dataset. We compare with
CLIP-Forge and ZS-ASDF using the Acc and FID met-
rics. The results are shown in Table 2. The first four
columns represent CLIP-Forge(CF) and its different sam-
pling techniques. The fifth column represents the result
from AutoSDF trained with CLIP features(ZS-ASDF). The
other columns represent our method with different anneal-
ing scale strategies. Three major things can be observed.
First, all variants of our method outperform CLIP-Forge and
ZS-ASDF significantly. This indicates that the method pro-
duces more diverse and higher fidelity shapes of increasing
accuracy. Second, it can be seen that annealing strategies
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CLIP-Sculptor CLIP-Forge DreamField CLIP-Mesh

"a machine gun"

"a table lamp"

"a truck"

"a jet"

"an office chair"

"a round table"

"a rectangular table"

"a motor bike"

Figure 3. Qualitative comparison of CLIP-Sculptor (rendered in purple), CLIP-Forge [37](rendered in green), DreamField [18], and CLIP-
Mesh [19] on text-conditioned generation. For each text prompt, the first generated shape by CLIP-Sculptor and CLIP-Forge [37] is
zoomed in for detail comparison. Comparing with other methods, CLIP-Sculptor generates a broader category of shapes that correspond
with the text prompt. The generated shapes are more diverse and has higher fidelity.

for guidance scale give a better accuracy-diversity trade-off
than constant scale guidance. Finally, we note that simply
augmenting AutoSDF (another VQ-VAE) with CLIP fea-
tures does not lead to improved text to shape generation,
indicating the importance of our architecture design deci-
sions.

We also qualitatively compare our method to CLIP-
Forge, CLIP-Mesh, and DreamFields. The results are
shown in Figure 3. It can be observed that our method gen-
erates higher quality shapes (view “a machine gun”), with
more detail (view “an office chair”) and higher diversity
(view “a jet”). CLIP-Forge usually produces the same shape
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Table 2. Comparisons of CLIP-Forge(CF) baseline (across different sampling strategies), AutoSDF augmented with CLIP (ZS-ASDF) with
CLIP-Sculptor (CS) on Accuracy(ACC) and FID. CLIP-Sculptor outperforms other methods in both metrics, which proves it generates
shapes with higher fidelity and better diversity.

Method CF-MS CF-G CF-TG CF-CG ZS-ASDF CS-const. CS-sqrt CS-linear CS-cosine

FID ↓ 2425.25 2233.48 2141.61 2100.67 7332.93 1821.78 1480.11 1629.51 1725.63
ACC ↑ 83.33 62.81 68.71 71.11 39.14 86.59 87.08 87.50 87.27

Table 3. Ablations on the major components of CLIP-Sculptor.
CLIP-Sculptor achieves the best performance comparing with
other design choice, which proves the effectiveness of the major
components.

(a) Effect of varying the Noise parameter.

γ × 0.5 0.8 1.0 1.2 1.5

FID↓ 1720.02 1764.98 1484.61 1703.38 1447.91 1478.17
ACC↑ 64.87 75.73 77.41 79.09 79.63 78.47

(b) Effect of varying number of layers (L) in the mapping network.

L 0 1 2 3 4 5

FID↓ 2874.87 1716.73 1518.97 1447.91 1532.50 1424.46
ACC↑ 62.72 78.70 79.17 79.63 77.16 76.09

(c) Comparison with baselines on super resolution.

Method 3D-UNet 643 -DS CLIP-Sculptor

FID↓ 2056.92 2196.96 1910.28
ACC↑ 86.65 77.92 86.85

with small variations (view “a rectangular table”). We also
note that DreamFields and CLIP-Mesh produce very ab-
stract results which may not be useful in many applications.
Finally, we also show results on ShapeNet55 in the last row
of Figure 3. We could not get CLIP-Forge to produce sen-
sible shapes for most text queries on ShapeNet55 (which
we attribute to the data imbalance issue of ShapeNet55),
whereas our method produced high fidelity shapes.

4.2. Major Components for Conditional Generation

Effect of Noise Parameter. During Stage 2 Training, to
better align the image and text embeddings, we added Gaus-
sian noise at varying levels of γ. We investigate the effect
of (γ) added to the image condition vector and show the re-
sults in Table 3 (a). We keep the number of mapping layers
fixed at three in this experiment. We observe that adding
Gaussian noise drastically improves both the diversity and
accuracy of generation, with the optimal noise parameter
being around 1.2. These results indicate that adding noise
during training helps align the text features seen at inference
and the image features seen at training.

Size of Mapping Network. We next probe the importance
of the mapping network. We show the results in Table 3
(b), where L represents the number of layers of the map-
ping function. In the case of 0 layers, we directly project
conditional embeddings to the layernorm parameters using
a linear layer. We make two observations from the results:
1) A common mapping network improves both the accuracy
and FID. 2) Increasing the number of mapping network lay-
ers beyond a certain number decreases accuracy.
Classifier-Free Guidance. We next explore the relation-
ship between dropping out image conditioning at ρ% during
training and using constant classifier-free guidance during
test time. In Table 4, we vary the scale parameter, a(t) = k,
across the columns. It can be seen that as we increase
the scale, accuracy typically increases while FID decreases.
This indicates that the method is giving more accurate re-
sults on a given text query at the cost of shape diversity. A
low dropout rate (5-15%) gives a good trade-off between
accuracy and diversity.
Step-Unrolled Training (SUT). Finally, to further improve
the accuracy we investigate the use of step-unrolled train-
ing [39]. The results are shown in the last row of Table 4.
From the table it can be observed that step-unrolled train-
ing enables higher accuracy across all scales. This indicates
that the model learns to unmask samples it would encounter
during inference time.

4.3. Annealing Strategy for Scale Parameter

An important idea we propose in this paper is a scale
annealing technique for classifier-free guidance. We em-
ploy classifier-free guidance to identify a better accuracy-
diversity trade-off with different annealing schedules: con-
stant, linear, cosine and square root. To determine which
annealing technique works the best, we fix the FID values
and plotted the accuracy at each fixed FID value (Figure 4).
As different scale parameters give different FID values, we
conducted an extensive grid search over the starting scale
parameter. Note that finding the exact FID is not always
feasible, so we pick the closest FID. Figure 4 shows results
of FID versus accuracy on three different runs of the Coarse
Transformer. We find that across all three runs, the accuracy
is typically lower for a given FID for constant schedules as
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Table 4. Classifier-Free Guidance and Step-Unrolled Training (SUT) experiment results. ρ% is the drop out rate for classifier-free guidance.
SUT indicates the use of Step-Unrolled Training. The remaining columns indicate the variation in scale parameter.

ρ% SUT
a(t) = 3 a(t) = 2.5 a(t) = 2 a(t) = 1.5 a(t) = 1

FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑

5 × 2059.0 85.73 1970.1 85.47 1790.9 85.43 1536.5 83.98 1227.5 79.17
10 × 1893.2 84.46 1821.2 84.50 1684.3 83.41 1522.4 82.34 1348.4 77.76
15 × 2086.9 85.03 1964.7 84.99 1851.9 84.36 1660.9 83.14 1485.5 78.19
20 × 2062.5 83.39 1972.3 82.95 1892.9 82.74 1733.3 81.13 1566.6 75.94
5 ✓ 2039.8 87.69 2011.1 87.39 1811.8 87.40 1678.6 86.24 1517.9 82.18

Figure 4. FID and Acc results with different classifier-free guidance scale annealing strategies (constant, cosine, square root, linear) across
three different runs (different seeds) of the CLIP-Sculptor Stage 2 Coarse Transformer.

opposed to other schedules. This is especially the case at the
lower range of FID values. The results indicate that having
a large scale at the beginning of sampling is more important
than later stages, especially in use cases where diversity is
paramount.

4.4. Super-Resolution

Finally, we investigate the importance of hierarchical
super-resolution. We compare our method with two base-
lines. In the first baseline, we directly use the 323 resolu-
tion results from the coarse transformer and use a 3D-UNET
based super-resolution network to translate from 323 to 643.
For the second baseline, we train a transformer directly on
643 VQ-VAE that is conditioned on text features as opposed
to a coarse resolution grid. We refer to this as 643-DS (643

direct synthesis). The results are shown in Table 3(c). It
can be seen from the table that latent-based super-resolution
outperforms the baselines in both accuracy and diversity.

5. Conclusion
We present CLIP-Sculptor, a text-to-3D-shape genera-

tion method capable of producing shapes of high fidelity
and diversity without the need for (text, shape) pairs. To
achieve this, CLIP-Sculptor leverages CLIP and imple-
ments super-resolution in a discrete latent space with a
hierarchical architecture and a novel annealed variant of
classifier-free guidance on a mask-based model. We vali-
date CLIP-Sculptor by comparing it with a number of base-

lines in terms of FID and accuracy, finding that CLIP-
Sculptor is the new state of the art for this problem. In
experimenting with different guidance scale scheduling, we
find that constant scale scheduling did not always work the
best, an important finding for the diffusion modeling com-
munity that may improve generation quality. Our paper is
an important step towards improved quality and diversity of
3D text-to-shape generation outcomes.

Limitations and Societal Impact. Despite providing
higher quality over baseline methods, CLIP-Sculptor still
suffers from limitations in its ability to capture smaller de-
tails (e.g., chair with a hole on its back) and generate shapes
from text prompts involving counting (e.g., chair with four
slats). Furthermore, CLIP-Sculptor also fails on many text
queries which are not present in the prior knowledge of
CLIP. The method also lacks the ability to produce texture.
In future work, we will address these limitations by explor-
ing implicit representations that can capture even finer de-
tails and by investigating neural networks that can count.

Text-to-shape approaches can make the generation of 3D
content more accessible and efficient. Within the text-to-
image domain there has been concern that automatic ap-
proaches may replace artists. Because our approach pro-
duces voxels, a representation that lends well to direct ma-
nipulation and handoff to 3D designers, we believe that
our text-to-3D approach can augment 3D design workflows
rather than replace them.
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