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Abstract

Implicit neural representations (INRs) have recently ad-
vanced numerous vision-related areas. INR performance
depends strongly on the choice of activation function em-
ployed in its MLP network. A wide range of nonlinearities
have been explored, but, unfortunately, current INRs de-
signed to have high accuracy also suffer from poor robust-
ness (to signal noise, parameter variation, etc.). Inspired by
harmonic analysis, we develop a new, highly accurate and
robust INR that does not exhibit this tradeoff. Our Wavelet
Implicit neural REpresentation (WIRE) uses as its ac-
tivation function the complex Gabor wavelet that is well-
known to be optimally concentrated in space–frequency and
to have excellent biases for representing images. A wide
range of experiments (image denoising, image inpainting,
super-resolution, computed tomography reconstruction, im-
age overfitting, and novel view synthesis with neural radi-
ance fields) demonstrate that WIRE defines the new state of
the art in INR accuracy, training time, and robustness.

1. Introduction
Implicit neural representations (INRs), which learn a

continuous function over a set of points, have emerged as
a promising general-purpose signal processing framework.
An INR consists of a multilayer perceptron (MLP) com-
bining linear layers and element-wise nonlinear activation
functions. Thanks to the MLP, INRs do not share the local-
ity biases that limit the performance of convolutional neural
networks (CNNs). Consequently, INRs have advanced the
state of the art in numerous vision-related areas, including
computer graphics [22, 27, 28], image processing [10], in-
verse problems [42], and signal representations [41].

Currently, INRs still face a number of obstacles that limit
their use. First, for applications with high-dimensional data
such as 3D volumes, training an INR to high accuracy can
still take too long (tens of seconds) for real time applica-
tions. Second, INRs are not robust to signal noise or insuffi-
cient measurements. Indeed, most works on INRs in the lit-

WIREGaussSIRENGround truth

1.00.0

Spatially 
spread-out 

error

Spatially 
compact 
but large 

error

Spatially 
compact 
and small 

error

Error map

Nonlinearity for Implicit Neural Representations

Approximation accuracy with various nonlinearities

Figure 1. Wavelet implicit neural representation (WIRE). We
propose a new nonlinearity for implicit neural representations
(INRs) based on the continuous complex Gabor wavelet that has
high representation capacity for visual signals. The top row shows
two commonly used nonlinearities: SIREN with sinusoidal non-
linearity and Gaussian nonlinearity, and WIRE that uses a contin-
uous complex Gabor wavelet. WIRE benefits from the frequency
compactness of sine, and spatial compactness of a Gaussian non-
linearity. The bottom row shows error maps for approximating
an image with strong edges. SIREN results in global ringing arti-
facts while Gaussian nonlinearity leads to compact but large error
at edges. WIRE produces results with the smallest and most spa-
tially compact error. This enables WIRE to learn representations
accurately, while being robust to noise and undersampling of data.

erature assume virtually no signal noise and large amounts
of data. We find in our own experiments that current INR
methods are ineffective for tasks such as denoising or super-
resolution. Finally, INRs still have room for improvement
in representational accuracy for fine details.

In this paper, we develop a new, faster, more accurate,
and robust INR that addresses these issues and takes INR
performance to the next level. To achieve this, we take in-
spiration from harmonic analysis and reconsider the nonlin-
ear activation function used in the MLP. Recent work has
shown that an INR can be interpreted as a structured signal
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representation dictionary [51], where the activation nonlin-
earity dictates the atoms of the dictionary. For example,
the sine activation creates a pseudo-Fourier transform rep-
resentation of the signal that is maximally concentrated in
the frequency domain [51].

An important conclusion one can draw from the past four
decades of harmonic analysis research is that Fourier meth-
ods are suboptimal for representing the kinds of signals that
feature in typical vision tasks [24]. These kinds of signals,
e.g., natural images from photographs, are much more con-
cisely and robustly represented using wavelet atoms that are
optimally concentrated in space–frequency. Sparse compo-
sitions of wavelet atoms are known to have excellent bi-
ases for representing images; cf. the seminal work in com-
puter vision (e.g., Laplacian pyramid), computational neu-
roscience [30], and the JPEG2000 compression standard.

In this paper, we introduce Wavelet Implicit neural
REpresentation (WIRE), a new INR based on a complex
Gabor wavelet activation function (see Figure 1). Through
a wide range of experiments, we demonstrate that WIRE
defines the new state of the art in INR accuracy, train-
ing time, and robustness. We showcase that WIRE’s in-
creased robustness is particularly useful for solving difficult
vision inverse problems, including image denoising (robust-
ness), image inpainting and super-resolution (superior inter-
polation), and 2D computed tomography (CT) reconstruc-
tion (solving higher-dimensional inverse problems). WIRE
also outperforms other INRs for signal representation tasks
such as overfitting images and learning point cloud occu-
pancy volumes. Finally, we show that WIRE enables faster,
more robust novel view synthesis with neural radiance fields
(NeRF) [27] from critically few training views.

2. Prior Work
Regularization for inverse problems. Inverse problems
involve estimating a signal from a linear or nonlinear set of
measurements. Inevitably, the measurements are degraded
by noise (such as camera readout or photon noise), or
the problem is ill-conditioned, necessitating regularization.
There are many forms of regularization, including ridge re-
gression, Lasso [45], total variation (TV) [9], and sparsity-
based [7] techniques that seek to penalize the ℓ1 norm the
signal or some transform thereof. In the past decade, data-
driven regularization, including overcomplete dictionary-
based [4] and generative network-based [29, 35, 36] tech-
niques, have been developed. The classical model-based
approaches are inadequate for severely ill-conditioned prob-
lems, while the data-driven ones critically depend on data.

Convolutional neural networks (CNNs). CNNs, the
most popular neural network architectures in computer vi-
sion for the past decade, have been shown to exhibit strong
implicit biases that favor image-like signals. This has been

demonstrated with works like deep image prior (DIP) [47]
and its variations [13, 19] that produce remarkable results
on image-related linear inverse problems without any prior
training data. However, such CNN-based priors are tied to a
discrete grid-like signal representation which is not applica-
ble to problems such as novel view synthesis, or for solving
ordinary and partial differential equations, and not scalable
for very high dimensional signals such as 3D tomographic
volumes, gigapixel images, or large point clouds.

Deep image prior. Neural networks, and particularly
CNNs, exhibit implicit biases due to their specific archi-
tectures (such as a UNet [37]), implying that even untrained
neural networks can be used for regularization. This was
leveraged to build a deep image prior (DIP) [47] that pro-
duces outputs that tend to look like images. While DIP of-
fers superior regularization to analytical approaches, it often
exhibits good performance only when over-parameterized
and are tied to a grid-like discretized representation of the
signal, implying DIPs do not scale to high dimensional sig-
nals such as point clouds with a large number of points. The
issue of computational cost has been addressed to a certain
extent by the deep decoder [19] and the DeepTensor [38],
but they still need the signal to be defined as a regular data
grid such as a 2D matrix or 3D tensor.

Implicit representations. INRs are continuous learned
function approximators based on multilayer perceptrons
(MLPs). The continuous nature of INRs is particularly ap-
pealing when dealing with irregularly sampled signals such
as a point clouds. Since its first widespread usage in novel
view synthesis in graphics [27], INRs have pervaded nearly
all fields of vision and signal processing including render-
ing [22], computational imaging [5, 11], medical imag-
ing [49], and virtual reality [14].

The popular choice of the ReLU nonlinearity in stan-
dard neural networks has been empirically shown to result
in poor approximation accuracy in INRs. This has been
remedied by several modifications to the MLP including
the so-called positional encoding [28, 43], as well as var-
ious choices of nonlinearity such as the sinusoidal func-
tion [41] and the Gaussian function [33]. A closely related
work is the Gabor wavelet-based multiplicative filter net-
works (MFN), where the output after each layer is multi-
plied by a Gabor filter. The output then results in a combina-
tion of exponentially many Gabor wavelets, thereby result-
ing in large capacity. Numerous architectural changes have
also been proposed that leverage multiscale properties of vi-
sual signals to accelerate the INR training procedure includ-
ing adaptive block decomposition [25], kilo-NeRF [34], and
predicting the Laplacian pyramid of the signal [39].

INRs can now train on signals nearly instantly [28]
thanks to these numerous advances. However, the high ca-
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pacity of such INRs precludes robustness — implying that
the signal representation is brittle, resulting in overfitting to
both noise and signal equally. In this paper, we propose the
complex Gabor wavelet as a nonlinearity, which is uniquely
well-suited to induce robustness in INRs.

Wavelet transform and the Gabor wavelet. The Fourier
transform decomposes the signal as a sum of sinusoids
with infinite space support, implying that there is no no-
tion of spatial compactness. The wavelet transform reme-
dies this by decomposing the signal as a linear combina-
tion of translated and scaled versions of a short oscillating
pulse called a wavelet. Wavelets typically result in faster ap-
proximation rates for signals and images than Fourier trans-
form [15], and hence they are often used for image com-
pression [16, 40] and as a robust prior for inverse problems
of images [18] and videos [48]. In this paper, we show that
wavelets are a universally superior choice for the nonlin-
earity in INRs due to their compact support in space and
frequency and therefore faster approximation rates.

3. Wavelet Implicit Representations
3.1. INR details

Consider an INR function Fθ : RDi 7→ RDo mappingDi

input dimensions to Do output dimensions, where θ repre-
sents the MLP’s tunable parameters. The goal is to con-
struct Fθ such that it approximates a function g(x) of in-
terest, i.e., g(x) ≈ Fθ(x). For example, g(x) may simply
be a ground truth image, represented as a function mapping
coordinates to pixel values. Modeling Fθ(·) as an M -layer
MLP, the output at each layer is given by

ym = σ(Wmym−1 + bm), (1)

where σ is the nonlinearity (or nonlinear activation func-
tion); Wm,bm are weights and biases for the mth layer;
y0 = x ∈ RDi is the input coordinate and yM+1 =
WM+1yM + bM+1 is the final output.

The nonlinear activation σ plays a key role in the rep-
resentation capacity of the INR (see Fig. 1). Two lead-
ing choices include the periodic σ(x) = sin(ω0x) used
in SIREN [41], and the Gaussian nonlinearity σ(x) =

e−(s0x)
2

used by Ramasinghe et. al. [33]—both result in
significantly higher representation accuracy than ReLU.
However, their high representation capacity is also a draw-
back, since they can represent noise with nearly equal ac-
curacy as an image. Our goal is to propose a nonlinearity σ
that is well-suited for visual signals such as images, videos,
and 3D volumes but poorly fits noise-like signals.

3.2. WIRE

Armed with the insight that a Gabor wavelet achieves op-
timal time-frequency compactness, we propose the wavelet

          

 

 

  

  

  

  

 
 
 
 
  
 
 
 

    

     

        

                

   

(a) Implicit bias with NTK
gradient flow

         

     

 

 

  

  

  

  

  

 
 
 
 
  
 
 
 

    

     

        

                

   

(b) Implicit bias in standard INRs.

Figure 2. Implicit bias in denoising (a) The empirical NTK
of finite-width INRs provides an insight into the implicit bias
of INRs. Early trajectories of NTK gradient flow show WIRE
converging to the image faster than the noise, outperforming all
other nonlinearities. Bars indicate one standard deviation over the
dataset. (b) Early iterations of standard training are reflected well
by the relative performances of NTK gradient flow from part (a).
Furthermore, WIRE maintains its advantage against other nonlin-
earities throughout the remainder of training.

implicit representations (WIRE) that use the continuous
complex Gabor wavelet ψ as a nonlinearity:

σ(x) = ψ(x;ω0, s0) = ejω0xe−|s0x|2 , (2)

where ω0 controls the frequency of the wavelet and s0 con-
trols the spread (or width). The first layer activations have
the form

y1 = ψ(W1x+ b1;ω0, s0), (3)

which are copies of the mother Gabor wavelet ψ at scales
and shifts determined by W1 and b1. Hence the building
blocks of WIRE are drawn from a dictionary of wavelet
functions. We let the weights of the INR as well as the
outputs be complex-valued to preserve phase relationships
throughout, and we represent real signals by simply taking
the real part of the output and discarding the imaginary part.
Just as wavelets combine space and frequency compactness,
WIRE enjoys the advantages of periodic nonlinearities such
as SIREN due to the complex exponential term and the spa-
tial compactness from the Gaussian window term; recall
Fig. 1. Additionally, unlike SIREN, WIRE does not re-
quire a carefully chosen set of initial weights (see Fig. 3)
due to the Gaussian window, which creates a spatially com-
pact output at each layer and produces high quality results
with the default neural network initialization of uniformly
random weights independent of the parameters ω0, s0.

3.3. Implicit bias of WIRE

Neural tangent kernel perspective. As stated, we seek
an INR that fits visual signals well but fits noise poorly in
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comparison. Inspired by [43, 51], who proposed to com-
pare eigenfunctions of the empirical neural tangent ker-
nel (NTK) [20] of INRs to understand their approximation
properties, we compare the fitting of noisy natural images
using NTK gradient flow. The NTK gradient flow of INRs
accurately captures the behavior of early training of neural
networks, and so in tasks such as denoising where we reg-
ularize via early stopping, the early training behavior deter-
mines the implicit bias. In the lazy training regime of wide
neural networks [23], the fit image at time t ≥ 0 has value

Fθt(x) = [(I − e−tK)g](x), (4)

where I is the identity operator, K is the NTK operator on
the image’s spatial domain, and g is the image being fit.

In Fig. 2a, we apply NTK gradient flow using the empiri-
cal finite-width NTK to a denoising task, fitting the original
image with N (0, 0.052) i.i.d. pixel-wise additive noise. We
evaluate on 64 × 64 × 3 images from Tiny ImageNet [2].
Comparing WIRE to other INRs, we see that, WIRE prefers
to learn the signal in the image early in training rather than
the noise, converging orders of magnitude faster to essen-
tially any given peak signal-to-noise-ratio (PSNR).

Empirical evaluation. We perform an anlogous denois-
ing task for real INRs on the 24 768 × 512 × 3 images
from the Kodak Lossless True Color Image Suite [1], again
with N (0, 0.052) additive noise, in Fig. 2b. We apply the
same INRs as in the NTK example, but train with ordinary
neural network gradient optimization instead of NTK gradi-
ent flow. Again, WIRE drastically outperforms other INRs,
converging an order of magnitude faster to the same PSNR.

3.4. Choosing the parameters ω0, s0

WIRE’s performance is primarily decided by the con-
stants ω0, s0 that control frequency of the sinusoid and
width of the Gaussian, respectively. WIRE outperforms
both the SIREN and Gaussian nonlinearities across a broad
range of parameters. Figure 3 shows the approximation ac-
curacy achieved by WIRE for various parameters. We set
the number of hidden layers to three, and number of hidden
features to 256. When ω0 = 0, we used a Gaussian non-
linearity. When s0 = 0, we used a sinusoidal nonlinearity.
When both parameters were zero, we used a ReLU nonlin-
earity. For the denoising task, we added photon noise equiv-
alent to a maximum of 50 photons per pixel. We observe
from Fig. 3 that WIRE outperforms SIREN, Gauss, and
ReLU. Moreover, the performance is superior for a large
swath of values of ω0, s0 for both image representation and
denoising. The reduced sensitivity to the exact values of
ω0, s0 implies that WIRE can be used without precise in-
formation about image or noise statistics. Additional exper-
iments on sensitivity to parameters is in the supplementary.

SIREN (𝑠0 = 0)

Image Representation Image denoising

Gauss (𝜔0 = 0)

PSNR 
(dB)

Figure 3. WIRE is robust to the choice of parameters. The plot
above shows accuracy for image representation and denoising with
various settings of ω0 and s0. The boxes show special cases with
ω = 0 corresponding to Gaussian nonlinearity, and s0 = 0 cor-
responding to SIREN. WIRE achieves higher accuracy than both
SIREN and Gauss on image representation as well as image de-
noising tasks (marked by white cross). Further, WIRE achieves
super performance for a large choice of parameters ω0, s0 imply-
ing that WIRE is not overly sensitive to the hyperparameters.

Alternate forms of WIRE. For problems where com-
plex weights are infeasible, WIRE can be instantiated as
the imaginary (or real) part of the complex Gabor wavelet,
ψ(x;ω0, s0) = sin(ω0x)e

−(s0x)
2

. Note that setting s0 = 0
results in the sine nonlinearity used in SIREN [41] and
ω0 = 0 results in Gaussian nonlinearity [33] implying
WIRE inherits the favorable properties of previously pro-
posed nonlinearities. Another embodiment of WIRE is a
Constant-Q Gabor wavelet where ω0s0 = Q, which re-
sults in constant fractional bandwidth (ω/δω). Constant-
Q Gabor wavelets are often used in music analysis [8, 46],
wavelet transforms [24], and the Laplace transform. Having
only a single parameter makes hyperparameter tuning sim-
pler with a fixedQ. Performance with real Gabor, and other
continuous wavelets is in the supplementary.

4. Experiments
WIRE learns representations for all signal classes faster

than state-of-the-art techniques. In addition, WIRE is well-
suited to solve a large class of inverse problems with limited
measurements, or when the measurements are corrupted by
noise. For all the experiments, we implemented the opti-
mization in PyTorch [31] and used the Adam optimizer [21].
Code was executed on a system unit equipped with 64GB
RAM, and an Nvidia RTX 2080 Ti graphical processing unit
(GPU) with 8GB memory. We used an ℓ2 loss function be-
tween the measurements and the outputs of INR with no
further regularization. We scheduled the learning rate to de-
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(a) Image representation

       

          

   

    

   

    

 

  
  
  
 
 
  
 
 
  
 
 
  
 
 
  
 
  
  
 
 

    

                

     

        

   

(b) Volume representation

Figure 4. WIRE learns faster. The two plots above show rep-
resentation accuracy for an image (top row in Fig. 5) and an oc-
cupancy volume (bottom row in Fig. 5) over time. Owing to the
high approximation capacity of Gabor wavelets for visual signals,
WIRE achieves high accuracy at a faster rate, making it an appro-
priate choice for representing visual signals.

cayed the initial learning rate by 0.1 at the end of training.

4.1. Signal representation

We evaluate WIRE on representing images and occu-
pancy volumes [26]. In both cases, we used an MLP with
three hidden layers with a width of 300 features for all non-
linearities. For WIRE, we reduced the number of parame-
ters by half by reducing the hidden features by

√
2 to ac-

count for the doubling due to real and imaginary parts. The
parameters for each nonlinearity and the learning rate were
chosen to obtain fastest approximation rate. Specifically, we
chose ω0 = 20, s0 = 10 for WIRE, ω0 = 40 for SIREN,
and s0 = 30 for Gaussian. We also compare against mul-
tiplicative frequency networks (MFN) [17]. For the occu-
pancy volume, we sampled over a 512 × 512 × 512 grid
with each voxel within the volume assigned a 1, and voxels
outside the volume assigned a 0. We evaluated the PSNR
and structural similarity (SSIM) [50] for images and inter-
section over union (IOU) for the occupancy volumes.

Figure 4 shows the approximation accuracy as a func-
tion of time for an image (Kodak dataset) and an occupancy
volume (Thai statue). WIRE achieves the highest accuracy,
while converging faster than other approaches. Figure 5 vi-
sualizes the final representation of the example image after
1.6 minutes, and the 3D mesh of the Thai Statue constructed
with marching cubes after 30 minutes. WIRE achieves the
highest accuracy both for images (43.2dB) and for the occu-
pancy volume (0.99), confirming our hypothesis that WIRE
has higher approximation accuracy.

4.2. Solving inverse problems of 2D images

WIRE’s inductive bias favors images, and hence can be
used for solving linear inverse problems. To demonstrate
the advantages of WIRE as a strong prior for images, we
showcase its performance on image denoising, single image

super resolution, and multi-image super resolution.

Image denoising. To evaluate the robustness of INRs for
representing noisy signals, we learned a representation on a
high resolution color image from the DIV2K dataset [3].
We simulated photon noise with an independently dis-
tributed Poisson random variable at each pixel with a max-
imum mean photon count of 30, and a readout count of 2,
resulting in an input PSNR of 17.6 dB. We then learned
a representation on this noisy image with various nonlin-
earities. In all cases, we chose an MLP with two hidden
layers and 256 features per layer. We also compared the de-
noising result with state-of-the-art self-supervised denois-
ing technique, “self2self [32]. Figure 6 visualizes the final
result for each nonlinearity along with metrics for each re-
sult. WIRE produces the sharpest image with least amount
of residual noise. Qualitatively, WIRE’s result is similar to
that by self2self, implying that WIRE enjoys inductive bi-
ases that make it a good choice for inverse problems.

Image super resolution. INRs function as interpolators,
and hence super resolution benefits from INRs with good
implicit biases. We test this by implementing 4× super res-
olution on a DIV2K image. The forward operator can be
cast as y = A4x where A4 implements a 4× downsam-
pling operator (without aliasing). We then solved for the
sharp image by modeling x as output of an INR. Figure 7
visualizes the result on super resolution of image of a but-
terfly with various approaches. WIRE produces the sharpest
result with crisp details on the butterfly’s antenna and on
the wings. WIRE results are similar to the deep image prior
(DIP) [47], establishing the generality of WIRE.

INRs are particularly advantageous when data interpola-
tion needs to be performed on an irregular grid. An example
of such settings is multi-image super resolution where the
images are shifted and rotated with respect to each other.
Figure 8 shows an example of 4× super resolution with
four images (and hence 25% compression) from the Kodak
dataset [1] simulated with a small sub-pixel motion between
them. The forward operator is then yk = Ak

4x where Ak
4

encodes the downsampling, and translation and rotation for
the kth image. The visualizations in the figure demonstrate
that WIRE achieves the highest accuracy and is qualitatively
better at reconstructing high frequency components. In con-
trast, the Gaussian nonlinearity leads to a blurry reconstruc-
tion, while SIREN results in ringing artifacts.

Computed tomography (CT) reconstruction. Strong
signal priors are critical for solving underconstrained prob-
lems, and CT reconstruction is one such example. We emu-
lated 100 CT measurements of a 256× 256 x-ray colorectal
image [12]. Figure 9 shows the final reconstruction with
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Ground truth WIRE (0.99) ReLU + Pos. Enc (0.98) SIREN (0.97) Gauss (0.97) MFN (0.94)

Ground 
truth

WIRE 
(43.2dB)

ReLU + Pos. Enc 
(32.1dB)

SIREN 
(42.4dB)

Gauss 
(40.0dB)

MFN
(32.1dB)

Figure 5. WIRE has high representation capacity. The results above show image representation in the first row and meshes generated
with occupancy volumes in the second row with various nonlinearities. WIRE achieves highest representation accuracy for both data,
underlining its advantages as a signal model.

Ground truth Noisy image MFN Self2Self

WIRE Gauss ReLU + Pos. Enc. SIREN

17.6dB
0.34

28.1dB
0.85

29.7dB
0.93

29.2dB
0.89

26.6dB
0.90

30.2dB
0.93

28.8dB
0.90

Figure 6. WIRE is robust to noise. We show an image representation with added shot noise, resulting in an input PSNR of 17.6dB.
Among the various approaches, WIRE results in the highest PSNR and SSIM of any representation. Further, WIRE results in similar or
better denoising results compared to state-of-the-art self-supervised denoising approaches such as self2self [32].
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Ground truth Bilinear interpolation MFN DIP

WIRE Gauss ReLU + Pos. Enc. SIREN

26.4dB
0.92

21.9dB
0.77

26.9dB
0.93

26.1dB
0.91

26.3dB
0.92

25.6dB
0.90

27.3dB
0.93

Figure 7. WIRE for single image super resolution. The figure above shows results for a 4× single image super resolution with various
approaches. Thanks to its strong implicit bias, WIRE results in the sharpest reconstruction with quantitatively higher reconstruction metrics.

Ground truth Bicubic (4x) WIRE ReLU + Pos. Enc SIREN Gauss

18.8dB 
0.58

23.2dB 
0.80

21.7dB 
0.71

22.2dB 
0.74

22.4dB 
0.75

Figure 8. Multi-image super resolution. INRS are particularly appealing for handling data on an irregular grid, such as images captured
with multiple sub-pixel shifts. The figure above shows 4× super resolution with 4 images captured with varying sub-pixel shifts and
rotations. We then solved a joint inverse problem where the high resolution image is modeled as the output of an INR. WIRE produces the
best reconstruction both quantitatively and qualitatively, implying that WIRE has favorable interpolation properties for visual signals.

various approaches. WIRE results in the sharpest recon-
struction with clearly pronounced features. SIREN has stri-
ation artifacts that are expected from an unregularized re-
construction while Gaussian nonlinearity results in overly
smooth results. WIRE can hence be used as a robust prior
for inverse problems with noisy and undersampled mea-
surements.

4.3. Learning neural radiance fields

INRs have been leveraged successfully for novel-view
synthesis with neural radiance fields (NeRF) [27]. Given
images from a sparse set of view points, the goal is to render
an image from a novel view. NeRF achieves this by training
a common INR three positional and two directional inputs,
and produces transmission and color at that location. Im-
ages are then produced by integrating along lines that pass
through each view’s lens (pinhole). The simplest NeRF ar-
chitecture consists of positional encoding, and two MLPs
equipped with ReLU for transmission and color values. We
show that WIRE without any positional encoding produces

higher quality results within fewer epochs.
We trained NeRFs for reconstruction on the synthetic

drum dataset [27]. Each image was downsampled to a reso-
lution of 200× 200. We then trained the radiance field with
only 25 images instead of the default 100 images. Addi-
tional experiments with varying number of training images
is in the supplementary. We used the “torch-NGP” code-
base [44] for training the NeRF model. For all experiments,
we chose a 4-layered MLP with a width of 128 features
for each layer. Parameters were chosen to achieve fastest
rate of increase of approximation accuracy on the validation
dataset. Figure 10 shows results with various nonlinearities.
WIRE produces highest accuracy (+0.2dB) with fastest rate
of increase. WIRE learns features absent in outputs of other
nonlinearities such as the rod connecting the ride cymbal to
its stand and the anisotropic reflections on the cymbal.

5. Conclusions

We have proposed and validated the advantages of
WIRE, an INRs equipped with a complex Gabor wavelet
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Ground truth TV-regularized MFN DIP

WIRE Gauss ReLU + Pos. Enc. SIREN

30.8dB
0.75

18.1dB
0.23

31.9dB
0.82

29.2dB
0.73

28.5dB
0.71

30.3dB
0.76

32.3dB
0.81

Figure 9. Computed tomography reconstruction. Inverse problems with noisy undersampled data require a strong signal prior for
robust reconstruction. Here, we show CT-based reconstruction with 100 angles for a 256 × 256 image (2.5× compression) with various
approaches. WIRE results in sharp reconstruction, exposing features that are blurry, or with ringing artifacts in reconstructions with other
approaches. WIRE is hence a strong signal prior for images, and can solve a large class of inverse problems.

WIRE (24.4dB) ReLU+Pos.Enc (21.1dB) SIREN (24.2dB) Gauss (22.9dB)

Figure 10. Novel-view synthesis with neural radiance fields. INRs have shown most promise in novel-view synthesis where the transmit-
tance and color at each 3D voxel is modeled as output of INRs. Here, we show that WIRE is well-suited for novel-view synthesis with no
additional positional encoding. WIRE not only achieves higher accuracy (+0.2dB) with fewer epochs, but captures details that are missed
out by other nonlinearities, such as the rod connecting the ride cymbal to its stand and the anisotropic reflections on the cymbals.

nonlinear activation function. Previously proposed nonlin-
earities have complementary strengths: SIREN has high
representation capacity and trains fast but underperforms on
inverse problems. Positional encoding has lower capacity
but excels at novel-view synthesis. Gaussian is favorable
for denoising tasks. In contrast, on the practical side, WIRE
inherits the best properties of all of the above nonlineari-
ties, namely (i) higher representation capacity, (ii) higher
accuracy at a faster rate, and (iii) a strong and realistic in-
ductive bias for solving challenging inverse problems. On
the theoretical side, WIRE provides an intriguing avenue to
introduce ideas from computational harmonic analysis (i.e.,

multiscale wavelet analysis and optimized analyses [6]) into
INRs in particular and potentially deep learning in general.
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