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Abstract

Recently, a number of iterative learning methods have
been introduced to improve generalization. These typically
rely on training for longer periods of time in exchange for
improved generalization. LLF (later-layer-forgetting) is a
state-of-the-art method in this category. It strengthens learn-
ing in early layers by periodically re-initializing the last
few layers of the network. Our principal innovation in this
work is to use Simulated annealing in EArly Layers (SEAL)
of the network in place of re-initialization of later layers.
Essentially, later layers go through the normal gradient de-
scent process, while the early layers go through short stints
of gradient ascent followed by gradient descent. Extensive
experiments on the popular Tiny-ImageNet dataset bench-
mark and a series of transfer learning and few-shot learning
tasks show that we outperform LLF by a significant margin.
We further show that, compared to normal training, LLF
features, although improving on the target task, degrade
the transfer learning performance across all datasets we ex-
plored. In comparison, our method outperforms LLF across
the same target datasets by a large margin. We also show
that the prediction depth of our method is significantly lower
than that of LLF and normal training, indicating on average
better prediction performance.1

1. Introduction

Overfitting is a crucial challenge in supervised deep
learning, which prevents a neural network from performing
well on unseen data. This problem is particularly perva-
sive in smaller dataset regimes. Classical machine learn-
ing approaches to address this problem typically rely on
explicit regularization added as part of the optimization ob-
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jective [37]. A number of implicit approaches are often
applied in training deep networks. These implicit methods
are usually easier to design than explicit terms added to the
objective function. For example, early stopping [42] and
dropout [32] are classical examples of implicit regulariza-
tion methods. It can be shown that these techniques can be
shown to be linked directly to explicit regularization terms.
Consider the case of linear regression, early stopping can be
directly seen as Tikhonov regularization [42]. Indeed the use
of modified optimization strategies to improve generalization
is becoming pervasive in deep learning [7].

Recently, iterative training methods have been introduced
to improve generalization in deep networks. These allow
neural networks to be trained for many epochs while pro-
gressively improving generalization [9,10,35,41,46]. These
works typically rely on a notion of a generation, in which
a model is optimized towards a local minimum in a single
generation. Subsequently, in a new generation, the objective
function is modified, or the network is perturbed towards
a high loss, requiring a new generation of optimization to-
wards a minimum. The earliest work on this topic focused
on self-distillation [10, 41], where, in each successive gen-
eration, a student network with the same architecture was
initialized and trained to mimic the softmax output distribu-
tion of the previous model. This procedure was theoretically
studied by [22] and provided the formal link to its explicit
regularization effects.

A number of other techniques were subsequently pro-
posed. These have been characterized by Zhou et al. [46] as
instances of a forget-and-relearn scheme, where they define
forgetting as any process that worsens the training accuracy
of a model. In forget-and-relearn, the forgetting stage hap-
pens at the beginning of each generation where some part
of the weights are perturbed (e.g., by removing [8, 9] or by
re-initialization [35,46]), and the network is normally trained
for the rest of the generation. They further introduce a simple
forgetting method called later-layer-forgetting (LLF), where
they re-initialize the last few layers of the network. The intu-
ition behind LLF comes from the concept of prediction depth
introduced by Baldock et al. [1]. The prediction depth of a
sample refers to the earliest layer, after which the layer-wise
k-nearest neighbor (k-NN) probe of all layers is the same as
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Figure 1. Our iterative training method (SEAL) compared to LLF. The model is shown with the input on the right and output on the left.
E denotes the epochs in a generation. LLF re-initializes the top layers right before a new generation begin. In our approach, we do not
re-initialize but perform gradient ascent in the first k epochs of a generation, only on the early layers of the network.

the model’s prediction. Zhou et al. [46] empirically show
that LLF improves the prediction depth.

We hypothesize that by constantly re-initializing the later
layers, LLF pushes high-level information to the early layers,
which explains its stronger generalization as compared to
normal training. However, when it comes to transfer learning,
Zhao et al. [44] have stated that it is mainly the low- and
mid-level representations that are transferred. Following this
insight, we analyzed features learned by LLF in a transfer
learning setting. We observed that LLF performs weaker
than normal training, which affirms our hypothesis. This is
discussed further in the Experimental Results section 4.2.

Simulated annealing is a method for solving uncon-
strained and bound-constrained optimization problems. It
models the physical process of heating a material and then
slowly lowering the temperature to decrease defects, thus
minimizing the system energy. During training, gradient
ascent mimics increase in defects (temperature increase),
while gradient descent emulates the cooling process to reach
a better minimum [17]. Cai [2] adapted the classical sim-
ulated annealing for gradient descent (SA-GD) to improve
the optimization by escaping local minimums and saddle
points. In SA-GD, this is done by probabilistically doing
gradient ascent during training. Their method, however, is
not used for iterative learning and unlike our work is not
adapted to take advantage of the specific architecture biases
of deep networks. Based on the hypothesis that LLF pri-
marily benefits from pushing high-level information into the
early layers (and thereby the prediction depth), in this work,
we adapt the SA idea as an alternative to LLF, and we do
not reset the later layers. Instead, we perform an intermittent
gradient ascent procedure just on the early layers, coaxing
them to find better solutions through multiple generations of
training.

Our main contribution is a new iterative training method
that performs gradient ascent on the initial layers of the net-
work, for a few epochs, at the beginning of every generation
to induce forgetting. By performing the ascent on only a sub-

set of layers, we ensure that the model retains information
from the previous generations, rendering it suitable for long
training. The intuition behind gradient ascent on the early
layers is that it prohibits them from being overly specific
to the task, avoiding the encoding of high-level semantics,
unlike what happens in LLF. Furthermore, even though we
perform simulated annealing on the early layers and LLF
performs re-initialization on the later layers, the goal behind
both approaches is the same; both methods try to enhance
the early layers.

We have carried out extensive experiments on the Tiny-
ImageNet [19] dataset and transfer learning to Flower [25],
CUB [39], Aircraft [21], Dogs [16], and MIT [28] datasets,
and Cross-Domain Few-Shot Learning (CD-FSL) [11]. Our
experiments show that our method outperforms LLF in both
in-distribution and transfer learning settings (Tables 1, 2, 4).
Our method also provides better prediction depth (Fig. 2). By
analyzing the statistics of Hessian eigenvalues, we observe
that our method has a lower max eigenvalue and no negative
eigenvalues, suggesting SEAL reaches a flatter local minima
and avoids saddle points (Table 6).

2. Background and Related Work
Iterative learning Consider a neural network f parame-
terized by Θ. Following [35] and [46], let us define a mask
M that splits a neural network’s weights into fit hypothesis
Hfit and forgetting hypothesis Hforget as:

Hfit = M ⊙Θ and Hforget = (1−M)⊙Θ (1)

Forget-and-relearn iterative training methods perturb the
weights in the forgetting hypothesis Hforget at the beginning
of each generation and retrain the neural net for E epochs.
This process is repeated for G generations; hence it is called
iterative training. We now formally cast the previous iterative
training methods into this framework.

In the work "Knowledge evolution in neural networks
(KE)" [35] two different masking strategies were proposed.
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One strategy splits the network’s weights based on their
location in the convolutional kernels, namely kernel-level
(KELS) splitting. The other strategy splits the weights ran-
domly, namely weight-level splitting (WELS). At the be-
ginning of every generation, the weights in the forgetting
hypothesis Hforget are re-initialized, and the fit hypothesis
Hfit is kept the same. Zhou et al. [45] defined special mask-
ing strategies where weight masking and rewinding would
lead to initialization that have much better-than-chance per-
formance before retraining. Iterative magnitude pruning
(IMP) [8, 9] splits the weights based on the weight mag-
nitudes of the last generation. The forgetting hypothesis
Hforget consists of weights that had low magnitude, and the
rest of the weights are considered in the fit hypothesis Hfit.
The forgetting hypothesis Hforget weights are removed (by
setting them to zero and freezing), and the fit hypothesis Hfit

weights are rewound to their initial values. Thus, in each
generation, a percentage of the weights is removed.

LLF [46] modifies the masking strategy of KE to improve
the prediction depth of the network [1]. LLF considers a
layer threshold L, and the weights in all layers before L
are put into the forgetting hypothesis Hforget, and the rest of
the network (the last half of the network) is considered the
fit hypothesis Hfit. Then, similar to KE, they re-initialize
the forgetting hypothesis Hforget and do not modify the fit
hypothesis Hfit.

Simulated Annealing: Cai [2] modified the traditional
simulated annealing method for gradient descent (SA-GD)
to enhance optimization by evading local minima and saddle
points. Dauphing et al. [4] makes the argument that many
difficulties in optimization arise from saddle points and not
local minima. Jin et al. [15] develop a perturbed stochastic
gradient descent procedure to deal with saddle points.

Few Shot Learning Traditionally, machine learning mod-
els require large domain-specific labeled datasets in order
to correctly classify [12, 18, 30]. The goal of few shot learn-
ing (FSL) [38] is the following: given a limited number
of labeled data, learn a model that rapidly generalizes to
new, novel classes. Few Short Learning has been considered
recently in the literature, from the point of view of meta
learning and transfer approaches [5], [31], [29], [38], [33].
Typical FSL tasks are based on having an initial large dataset
from which a model is either pre-trained (transfer based ap-
proaches) or meta-trained (meta-learning based approaches).

Early FSL works have focused on using natural im-
age datasets, with another natural image dataset provided
for base model training (via meta-learning or pre-training)
[33,38]. On the other hand, many cases of more general inter-
est require learning target datasets that are not natural image
datasets, and moreover are distant in terms of the domain.
The recently proposed Cross-Domain Few-Shot Learning

(CD-FSL) [11] benchmark is aimed at providing an inves-
tigative setting for such large domain shifts from source to
target training data. Four datasets of decreasing similarity to
natural images are included, [23], [13], [36], [3], [40]. These
include images of plant disease, aerial photos, and medical
data not resembling natural images at all (skin lesions, Chest
X-rays). In each dataset, we wish to predict some novel
classes, whether it be rare skin diseases, airplanes, or crop
diseases. A number of proposals for this challenging sce-
nario have been suggested. [27] proposed a self-supervised
learning objective coupled with a teacher-student method.
They also observed that traditional meta-learning techniques
fail on this task. [43] demonstrated that efficient manipula-
tion of the batch norm layer during the training of models
can lead to improved performance under such extreme do-
main shifts. The results of using SEAL for FSL are provided
in a later section.

3. Proposed Method
In this work, we split the network into fit Hfit and forget-

ting hypotheses Hforget, using a layer threshold, say, L. All
weights prior to L are considered in the forgetting hypothesis
Hforget, and weights in layers > L as the fit hypothesis Hfit.

To induce forgetting, we perform gradient ascent on the
forgetting hypothesis Hforget for k epochs. During the gra-
dient ascent phase of the forgetting hypothesis Hforget, we
train the fit hypothesis Hfit normally (with gradient descent).
This can be categorized under the high-level definition of
forgetting that Zhou et al. [46] provide, in that it drops the
training accuracy of the network to completely random. This
is inspired by the simulated annealing algorithm to enhance
the optimization of the network and to introduce a more
definitive forgetting mechanism. Our method is different
from the prior methods as they either remove [8, 9] or re-
initialize [46] [35] the forgetting hypothesis Hforget (at once)
before the first epoch of a new generation. We set k to 1

4 of
total epochs E in the generation.

We adjusted the sign of the weight decay for the layers
that perform gradient ascent; so as to avoid the weights being
encouraged to have a higher norm, and causing the network
to diverge. However, we found that even this is not enough to
stop the divergence. We noted that using the same learning
rate for the ascending phase was the reason for this. Hence
we toned down the ascent learning rate using a factor S:

ηa = S × η (2)

Where η is the learning rate, and ηa is the ascent learning
rate. We empirically fix S = 0.01. We summarize the whole
process as follows:
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Θe,t+1
forget =

{
Θe,t

forget + ηa∇J(Θe,t
forget), if e% E < k

Θe,t
forget − η∇J(Θe,t

forget), otherwise
,

Θe,t+1
fit = Θe,t

fit − η∇J(Θe,t
fit )

(3)

Where J(Θ) is the objective function, Θe,t
forget and Θe,t

fit
refer to parameters in the forgetting and fit hypotheses, re-
spectively, and e, t refers to the iteration t during epoch e.
Again, E refers to epochs in each generation and is fixed
for all generations. Figure 1 illustrates this for LLF and our
proposed method (SEAL).

4. Experimental Results
4.1. Implementation Details

We use Tiny-ImageNet [19] to train models and then
evaluate on both the Tiny-ImageNet test set and a wide set
of downstream transfer learning tasks, including popular few
shot learning benchmarks. Following LLF, we use ResNet50
and train using SGD optimizer with a momentum of 0.9 and
weight decay of 5e−4. We train G = 10 generations for
E = 160 epochs using a batch size of 32. As in LLF, we
use cross entropy loss with label-smoothing [24, 34] with
α = 0.1. We also use cosine learning rate decay [20] with
an initial learning rate of 0.01. For data augmentations, we
perform horizontal flip and random crop with a padding of 4.
We use layer threshold L = 23 for both LLF and our method
(the third block in ResNet50). This means that in LLF, the
first two blocks are considered the fit hypothesis Hfit, while
the fit hypothesis in our method is the last two blocks. In
all experiments, normal training refers to G×E epochs of
training with the same optimization settings.

For our few shot learning evaluation, we evaluated our
models in an episodic fashion. Each episode has a train set
of 5 classes with K examples each (5-way K-shot) and a test
set with 15 examples for each class. These sets are sampled
from a target dataset. Models are fine tuned on the train set
and then used to produce predictions on the test set. The
accuracies are reported over 600 episodes. Cross Domain
Few Shot Learning Benchmark (CD-FSL) [11] was selected
as the dataset for the task, which includes data from four
different data sets, namely CropDiseases [23], EuroSAT [13],
ISIC2018 [3, 36], and ChestX [40].

Overall we compare our method with the following three
approaches:
Normal denotes the standard training with 160 epochs (cor-
responding to G = 1 generations under the conventions of
iterative training).
Normal (long) refers to training the model with the standard
settings for 1, 600 epochs (corresponding to G = 10 genera-
tions without any forgetting).

LLF refers to fortuitous forgetting [46] where at the begin-
ning of each generation the later layers of the network are
re-initialized.
SEAL refers to our proposal which performs a gradient
ascent and subsequent descent phase during a generation.

Datasets Tiny-ImageNet consists of 200 classes and has
100, 000 training and 10, 000 validation images selected
from the ImageNet dataset. These images are downsized to
64x64 colored images. For our transfer learning evaluations
we use the natural image datasets Flower, CUB, Aircraft,
MIT, and Stanford Dogs, the statistics of these datasets are
provided in Table 3.

For the few-shot learning, we utilized the 4 datasets
from the CD-FSL benchmark, which include ChestX, ISIC,
CropDisease, and EuroSAT. From these, we sample training
and evaluation sets with 5 classes and a varying number of
samples per class.

4.2. Evaluation

We now present our primary evaluations of SEAL for
both improved generalization, transfer, and few-shot transfer
learning.

In-Distribution Generalization: Table 2 shows the in-
distribution accuracy of different methods. We note that
LLF outperforms Normal training (as reported in [46]). Our
method outperforms both LLF and normal training in this
setting.

Transfer Learning We now turn to evaluate the transfer
learning properties of our method and that of LLF. We begin
by studying the transfer learning from the Tiny-ImageNet
pretrained models to 5 different image datasets. Specifically,
CUB-200-2011 (CUB) [39] contains images of 200 wild bird
species, Flower102 (Flower) [25] contains images from 102
flower categories, FGVC-Aircraft (Aircraft) [21] consists
of 100 aircraft model variants, and Stanford Dogs dataset
contains images of 120 breeds of dogs for fine-grained clas-
sification. MIT Indoor 67 (MIT) [28] is an indoor scene
recognition dataset that includes 67 different scene classes.

We train linear models on top of pretrained models from
each method to measure their transfer learning properties.
Specifically, we re-initialize the last linear layer of the net-
work and freeze the rest. Then, we train the linear head using
the train set of the target datasets and evaluate on their test
sets. For training on the target dataset, we again use SGD
with a momentum of 0.9, weight decay of 1e−4, and flat
learning rates of [1e−1, 1e−2, 1e−3] for 120 epochs and
report the highest accuracy.

Table 1 demonstrates the transfer accuracy of LLF, nor-
mal training, and our method (SEAL). Even though LLF
outperforms normal training with a 2.55% margin in the
in-distribution setting, we observe that in transfer learning,
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Method Tiny-ImageNet Flower CUB Aircraft MIT Stanford Dogs

Normal 54.37 34.31 6.49 6.24 25.67 8.99

Normal (long) 49.27 26.96 8.07 6.30 24.85 11.53

LLF 56.92 22.84 5.33 4.65 23.8 8.69

SEAL (Ours) 59.22 45.68 8.49 9.81 35.37 12.61

Table 1. Transferring tiny-imagenet learned features to other datasets using linear probe. Normal, and Normal (long) refer to G = 1 and
G = 10 generations of training, respectively. LLF and SEAL were trained for G = 10 generations. Transfer accuracy of LLF after 1, 600
epochs is significantly lower than normal training with both 160 and 1, 600 epochs; our method after 1, 600 epochs surpasses normal training
by a large margin. This demonstrates that our method learns much more generalizable features compared to Normal training and LLF.

Block1 Block2.1 Block2 Block3.2 Block3 Block4.1 FC
Layer in ResNet-50
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Figure 2. Comparison of layer-wise prediction depth. SEAL gives comparably much stronger predictions early on in the network. Note that
block.X .Y denotes the output activations of intermediate layer Y in residual block X . This indicates that our method encourages learning
the difficult examples using conceptually simpler and more general features of the early layers. This leads to better overall performance as
we progress deeper into the network.

Generation Normal LLF Ours

Gen=1 54.37 - -
Gen=3 51.16 56.12 58.25
Gen=10 49.27 56.92 59.22

Table 2. Comparison of our method with normal training and
LLF on Tiny-ImageNet. Please note that the behavior of the first
generation for all methods is the same. We significantly outperform
standard long training and LLF.

num_classes Train Valid Test Total

Flower [25] 102 1,020 1,020 6,149 8,189
CUB [39] 200 5,994 N/A 5,794 11,788
Aircraft [21] 100 3,334 3333 3,333 10,000
MIT [28] 67 5,360 N/A 1,340 6,700
Dogs [16] 120 12,000 N/A 8,580 20,580

Table 3. Summary of the datasets used in tables 2 and 1, adopted
from Taha et al. [35].

LLF’s performance is substantially lower than normal train-
ing for 1/10 of epochs (G = 1), as well as normal training
for the same number of epochs (G = 10). On the other hand,
our method not only dominates in the in-distribution setting,
but it also has a much stronger transfer learning performance
than both LLF and normal training across all of the target
datasets in our experiments.

Few-Shot Transfer Learning We now consider evaluating
our approach for a challenging distant transfer learning task
studied in [27, 43]. Here we are presented with a few shot
learning problem on multiple datasets from medical imaging
to satellite images, with only one dataset of natural images
available for pre-training. Several approaches to this problem
exist, some utilizing meta-learning methods [6] and others
focused on transfer learning [43]. It has been shown in
multiple works that for this distant few shot learning task,
transfer learning approaches exceed meta-learning [43]. We
use our Tiny-ImageNet models from the previous section as
base model for FSL transfer. In transfer we train a linear head
as in the standard protocol [27, 43], we also consider jointly
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Parameters Updated Base Model ChestX ISIC EuroSAT CropDisease

5-WAY, 1-SHOT

Linear

Normal 21.01 ± 0.35 25.7 ± 0.47 53.41 ± 0.92 50.31 ± 1.03
Normal (long) 20.40 ± 0.23 22.59 ± 0.35 36.60 ± 0.75 27.50 ± 0.69
LLF 20.38 ± 0.24 24.61 ± 0.46 36.58 ± 0.86 26.28 ± 0.68
SEAL (ours) 21.67 ± 0.36 27.93 ± 0.55 57.75 ± 0.88 63.64 ± 0.96

Linear+Affines

Normal 21.14 ± 0.35 26.71 ± 0.56 47.36 ± 1.26 64.75 ± 1.13
Normal (long) 20.90 ± 0.37 26.41 ± 0.54 45.51 ± 1.25 63.73 ± 1.05
LLF 20.24 ± 0.24 23.28 ± 0.45 34.02 ± 1.35 35.12 ± 1.61
SEAL (ours) 21.3 ± 0.39 29.14 ± 0.57 55.68 ± 1.05 67.87 ± 0.54

5-WAY, 5-SHOT

Linear

Normal 22.79 ± 0.36 33.28 ± 0.49 71.74 ± 0.75 77.05 ± 0.80
Normal(long) 21.00 ± 0.28 28.93 ± 0.48 53.40 ± 0.77 57.10 ± 1.07
LLF 22.03 ± 0.33 29.60 ± 0.48 60.69 ± 0.87 53.55 ± 1.12
SEAL (ours) 24.42 ± 0.42 37.58 ± 0.54 74.61 ± 0.65 85.00 ± 0.61

Linear+Affines

Normal 20.82 ± 0.26 28.57 ± 0.78 53.35 ± 1.74 63.22 ± 2.35
Normal(long) 21.59 ± 0.34 29.67 ± 0.82 55.79 ± 1.67 71.55 ± 2.00
LLF 20.44 ± 0.19 22.01 ± 0.44 30.83 ± 1.45 28.06 ± 1.47
SEAL (ours) 22.98 ± 0.36 39.64 ± 0.79 73.83 ± 0.93 88.24 ± 0.54

Table 4. Few-shot transfer results for the CFSDL benchmark (extreme distribution shift) for 1 and 5 shots. All methods make use of a
ResNet50 backbone trained on Tiny-ImageNet evaluated over 600 episodes. We consider finetuning both the linear layer and the linear layer
and affine parameters, the best performer in both categories highlighted in red. We observe that SEAL outperforms standard training, while
LLF under-performs.

training linear head and affine parameters as suggested by
[43]. Results of our evaluations for 1, 5, 20, and 50 shots
are shown in Table 4 and Table 5. We observe that in this
challenging benchmark LLF substantially underperforms
standard training, suggesting features learned by LLF do
not generalize well. We note that the training accuracies on
Tiny-Imagenet of all the suggested models are 100% and the
testing accuracies are the ones shown in Table 2. Although
LLF has higher in-distribution performance than normal
training, its FSL transfer properties are much worse. On the
other hand, SEAL features generalize both in-distribution
and to the distant FSL tasks.

5. Analysis and Ablation Studies

In this section we present additional analysis of our
method, specifically we study the effects on the prediction
depth as well as on the eigenvalues of the Hessian at the
end of model training. Finally, we perform ablation studies
to demonstrate that the early layers indeed benefit the most
from SEAL.

Analysis of Hessian Eigenvalues We first study the eigen-
value spectra of the Hessian for the different proposed mod-
els. We utilize the same process for estimating the eigen-

values suggested in [26]. The results for the 4 models are
summarized in Table 6 where we report both the maximum
eigenvalues and the percentage of negative eigenvalues. We
observe that the maximum eigenvalues are smaller for SEAL
than for normal long training and also for LLF, suggesting
a flatter minimum. Flatter minima have been previously
associated with improved generalization [14].

We further observe that SEAL has no negative eigenval-
ues. This suggests that SEAL obtains some of its advantages
by helping to avoid saddle points during training. This is
consistent with prior uses of simulated annealing [2]. Follow-
ing [26] we hypothesize the absence of negative eigenvalues
can indicate a more robust solution.

Prediction Depth: Zhou et al. [46] proposed LLF to specif-
ically enhance the prediction depth of the model. Their in-
tuition was that periodically resetting the final layers would
decrease the prediction depth. Following Zhou et al. [46],
we approximate the prediction depth using the K Nearest
Neighbor (KNN) probe (with K = 5) on different layers of
the network. To do so, for every image in the test set, we use
all of the images in the train set for the KNN.

We affirm that the prediction depth of LLF is improved
over normal training (Figure 2). However, with SEAL, we
achieve a much stronger prediction depth. For instance, the

20210



Parameters Updated Base Model ChestX ISIC EuroSAT CropDisease

5-WAY, 20-SHOT

Linear

Normal 25.16 ± 0.37 41.24 ± 0.50 79.14 ± 0.67 86.74 ± 0.57
Normal (long) 21.79 ± 0.27 32.85 ± 0.50 60.95 ± 0.81 70.20 ± 1.01
LLF 22.54 ± 0.29 32.26 ± 0.48 67.79 ± 0.85 68.43 ± 1.07
SEAL (ours) 27.44 ± 0.40 46.96 ± 0.53 82.45 ± 0.53 92.47 ± 0.39

Linear+Affines

Normal 22.91 ± 0.36 49.40 ± 1.14 81.52 ± 1.38 87.43 ± 1.67
Normal (long) 23.38 ± 0.37 47.36 ± 1.25 80.03 ± 1.53 89.63 ± 1.53
LLF 21.10 ± 0.25 30.54 ± 1.22 46.55 ± 2.42 39.80 ± 2.30
SEAL (ours) 26.99 ± 0.46 55.12 ± 0.77 87.70 ± 0.52 95.67 ± 0.28

5-WAY, 50-SHOT

Linear

Normal 26.55 ± 0.36 46.29 ± 0.47 82.20 ± 0.61 90.51 ± 0.45
Normal (long) 22.56 ± 0.29 36.57 ± 0.53 67.14 ± 0.77 80.60 ± 0.78
LLF 23.78 ± 0.31 35.59 ± 0.5 73.76 ± 0.79 79.67 ± 0.78
SEAL (ours) 29.78 ± 0.40 51.46 ± 0.50 84.99 ± 0.52 94.91 ± 0.29

Linear+Affines

Normal 24.2 ± 0.40 60.27 ± 1.10 88.09 ± 1.30 93.80 ± 1.33
Normal (long) 24.62 ± 0.45 56.98 ± 1.32 85.17 ± 1.58 89.8 ± 1.9
LLF 22.56 ± 0.34 41.53 ± 1.65 58.69 ± 2.76 51.35 ± 2.92
SEAL (ours) 27.13 ± 0.45 60.59 ± 1.11 91.94 ± 0.53 97.91 ± 0.40

Table 5. Low-shot transfer results for the CFSDL benchmark (extreme distribution shift) for 20 and 50 shots. We fine-tuned both the
linear layer and the linear layer along with affine parameters. We observed that SEAL outperforms standard training and that LLF severely
underperforms in this case. Tuning the affine parameters and linear layer provides consistent performance gains for both Normal training
models and SEAL.

Method Max Eigenval. Negative % Eigenval.

Normal 889.06 4.25%
Normal (long) 2353.74 0%

LLF 1027.21 14.63%
SEAL (Ours) 847.89 0%

Table 6. In this table, we demonstrate the statistics of the Hes-
sian eigenvalues. We observe that our method has a lower max
eigenvalue which suggests flatter local minima. Furthermore, our
method has no negative eigenvalues, suggesting SEAL can avoid
saddle points.

KNN accuracy of our method is more than 18.54% stronger
than LLF and 25.04% stronger than normal training on the
outputs of the second block of the network. This is the layer
threshold L used in our method and LLF. The layer-wise
accuracy of the other layers indicates the superiority of our
method across all layers.

Baldock et al. [1] demonstrated that example difficulty is
correlated with prediction depth; decreasing the prediction
depth corresponds to lower example difficulty, which is de-
sired. They show this correlation by analyzing the speed of
learning, the input and output margin, and the adversarial
input margin for each data point. In Figure 3, we measure

the prediction depth evolution of the three methods over dif-
ferent generations (G = [1, 2, 4, 10]). For normal training,
the prediction depth gets worse over time, which explains
its poor in-distribution performance. This suggests that in
normal training, the early layers are becoming weaker after
G = 1 and more samples are being classified by the later
layers.

LLF slightly improves the prediction depth of the model.
However, this comes with deterioration of the performance
of the later layers. For instance, the KNN probe on the
activations of Block4.1 in G = 1 has 50.15% accuracy
which decreases to 45.62 in G = 10. On the other hand,
our method does a better job of pushing more examples to
be classified in the early layers than normal training and
LLF. This implies that SEAL promotes relearning the more
difficult samples using the simpler and more general features
of the early layers. Furthermore, the later layers of the
network improve over time with our method.

Ablation Study: We now investigate different strategies
for the fit hypothesis Hfit during the forgetting phase. By de-
fault, during this phase, we perform gradient descent on the
fit hypothesis and gradient ascent on the forgetting hypothe-
sis. In "Ours+Reinit", following LLF [46], at the beginning
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Gen Normal SEAL+Freeze SEAL+Reinit SEAL+Reverse SEAL+Descent

Gen1 54.37 - - - -

Gen3 51.16 52.45 56.82 50.25 58.25
Gen10 49.27 51.17 58.87 41.05 59.22

Table 7. Fitting hypothesis Hfit ablation study. While performing gradient ascent on the early layers during forgetting, we freeze, reinitialize,
and perform gradient descent on the later layers. In reverse, we swap the fit and forgetting hypotheses. We observe that doing gradient
descent on the fitting hypothesis during the forgetting phase leads to the best performance.
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Figure 3. Evolution of Prediction Depth over Epochs for LLF, SEAL, and Normal training. Normal training worsens the prediction depth
after the first generation which explains its poor in-distribution performance. LLF slightly improves the prediction depth of the model,
however, it hurts the performance of the later layers of the network. SEAL shows the most significant improvement in prediction depth,
while the later layers are improving over time.

of the forgetting phase, we reinitialize the fit hypothesis and
during this phase, we perform gradient descent on these lay-
ers. We observe that not using the re-initialization leads to
higher accuracy. Further, we demonstrate that freezing the
final layers during the forgetting phase has a negative impact
on the training. Finally, in "Ours+Reverse", we swap the fit
and forgetting hypotheses, where we perform the gradient
ascent on the later layers. We observe that performing simu-
lated annealing in later layers fails drastically. This shows
the importance of promoting the early layers and affirms the
observations of Baldock et al. [1].

6. Conclusion

In this work, we used the simulated annealing concept (in-
termittent heating and gradual cooling) in iterative training.

We perform intermittent gradient ascent on the early layers
for a few epochs. Following the iterative training literature,
we do not perform gradient ascent on all the network param-
eters to ensure that the model maintains information from its
previous state. This allowed us to obtain another perspective
on the recently introduced later layer forgetting and the need
to reset layers. We show that our method, SEAL, performs
better than the state-of-the-art iterative training method, LLF,
in an in-distribution setting. Moreover, we observed promis-
ing transfer learning performance in both natural image data
and popular cross-domain few shot learning benchmarks.
Investigating our approach illustrated it can greatly improve
network prediction depth. Finally, we demonstrated that
current iterative learning methods can have very poor gener-
alization under transfer learning.
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