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Abstract

Recent image generation models such as Stable Diffusion
have exhibited an impressive ability to generate fairly
realistic images starting from a simple text prompt. Could
such models render real images obsolete for training image
prediction models? In this paper, we answer part of this
provocative question by investigating the need for real
images when training models for ImageNet classification.
Provided only with the class names that have been used to
build the dataset, we explore the ability of Stable Diffusion
to generate synthetic clones of ImageNet and measure how
useful these are for training classification models from
scratch. We show that with minimal and class-agnostic
prompt engineering, ImageNet clones are able to close a
large part of the gap between models produced by synthetic
images and models trained with real images, for the several
standard classification benchmarks that we consider in this
study. More importantly, we show that models trained on
synthetic images exhibit strong generalization properties and
perform on par with models trained on real data for transfer.
Project page: https://europe.naverlabs.com/imagenet-sd

1. Introduction
The rise of (shallow) machine learning [15, 85] and later

deep learning [27,46,80] has entirely changed the landscape
of computer vision research over the past few decades, shift-
ing some of the focus from methods to the training data
itself. Datasets, initially of hundreds of images and dozens
of classes [22, 23], have grown in size and complexity, and
started becoming contributions in their own right. They have
been fueling the progress of computer vision as much as, if
not more than, the methods themselves. ImageNet [17], and
mainly its ImageNet-1K [71] subset of about 1 million an-
notated images, has impacted the field in an unprecedented
way. Yet, curating and annotating such a dataset comes at a
very high money and labor cost.

The last couple of years have seen the rise of large and
generic models, trained on data which is less curated but
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Figure 1. ImageNet-1K vs ImageNet-1K-SD. The blue polygon
shows the performance of a model trained on ImageNet-1K. The red
polygon depicts the performance of one trained on ImageNet-1K-
SD, i.e., only on synthetic data generated with Stable Diffusion [70]
using the class names of ImageNet-1K. We report top-5 accuracy
for ImageNet test sets, and average top-1 for transfer tasks.

orders of magnitude larger. Those proved to be easily ap-
plicable, either directly, or combined with a tailored model,
to a wide range of computer vision transfer tasks [38,42,65].
They have also been used beyond prediction tasks, e.g., for
text-conditioned image generation. Models such as DALL-
E [66] or Stable Diffusion [70] have demonstrated impressive
image generation ability. They produce fairly realistic syn-
thetic images and exhibit a high degree of compositionality.

Such generative models are trained on billion-scale
datasets [76] composed of noisy image-text pairs scraped
from the internet. Although training such models is out of
reach for most institutions, a few of them have been made
available to the community. Given the remarkable ability of
these generative models, it is only natural to ask provocative
questions such as: Is there still a need for real images when
training image prediction models?

In this paper we explore this question through one of the
most iconic computer vision datasets, ImageNet [17]. We
study to which extent this dataset can be entirely replaced
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by synthetic images when learning deep models. For this,
we assume that we are provided with a set of classes, and
the Stable Diffusion [70] model a generator that can produce
realistic images from a textual prompt.

Our task is to learn an image classification model from
scratch using a dataset composed only of synthetic images.
We then evaluate the performance of this model on several
datasets. First and foremost, we measure how well models
and classifiers trained only on synthetic images recognize the
training classes in real images from the standard ImageNet
validation set. Then, we evaluate them on common datasets
that test their resilience to domain shifts or adversarial ex-
amples, still for the ImageNet training classes. Finally, we
consider several transfer learning scenarios where we mea-
sure the generalization performance of our models to novel
classes. Fig. 1 summarizes the main results by comparing
models trained on two equally sized set of images from the
same set of classes, one real and one synthetic, on a number
of these tasks. The gap is surprisingly narrow, especially for
some of these scenarios.

To summarize, our contributions are threefold. First,
we leverage Stable Diffusion [70] and generate synthetic
ImageNet clones, i.e., datasets with synthetic images for the
ImageNet classes, using class names as prompts. We analyse
the generated images, highlight important issues, and
propose class-agnostic alterations to the basic prompt that
reduce semantic issues and increase diversity. Second, we
train classification models using different ImageNet clones
and show that they can achieve 91.7% and 70.3% top-5
accuracy on ImageNet-100 and ImageNet-1K respectively.
Finally, we evaluate the generalization capacity of our
models. We show that their performance gap with models
trained on real images is reduced when testing for resilience
to domain shifts or adversarial examples. Moreover, we
show that our models perform on par with models trained
conventionally when testing on 15 transfer datasets.

2. Related work

2.1. Learning with synthetic data

Learning with synthetic data has become a standard way to
create large amounts of labeled data for annotation heavy
tasks, such as human understanding [64, 84], semantic seg-
mentation [14, 73], optical flow estimation [19, 90] or dense
visual alignment [63]. In most cases, this synthetic data
requires access to 3D models and renderers [53], or to a sim-
ulator [69] with a physically plausible engine. Recent works
propose pretraining on a database of synthetic fractal [43]
or sinusoidal wave [81] images before fine-tuning the model
using real images on a downstream task. In this study we use
synthetic data to learn encoders and classifiers that can be
used out-of-the-box, without the need for a subsequent fine-
tuning step. Closest to our work, Kumar et al. [78] generate

synthetic OCT images to train a glaucoma detection model to
be applied to real images. Here, we target synthetic clones of
complex natural image datasets, i.e., ImageNet-1K [71], and
we use a general-purpose text-to-image generation model.
Synthetic ImageNet clones. Synthetic images for Ima-
geNet classes have been used recently in a number of re-
lated works [2, 48, 67] based on class conditional Genera-
tive Adversarial Networks (GANs), such as BigGAN [6].
Besnier et al. [2] generate images for ten ImageNet classes
and propose techniques to reduce the gap between models
trained on generated images and real ones. Li et al. [48]
synthesize five images for each ImageNet-1K class, together
with their semantic segmentation annotations to automati-
cally generate pixel-level labels at scale. Our work focuses
on image-level classification, and uses a general-purpose
text-conditioned generative model instead of ImageNet-1K
class-conditioned GANs. It further offers a larger scale study
with promising results on the full ImageNet-1K benchmark
when training from 1.28 million synthetic images. Concur-
rent work [28] also synthesizes data for ImageNet-1K, but
focuses on improvements on top of the CLIP [65] model or
after fine-tuning.
Synthetic images as data++. Data sampled from generative
models [25, 33, 66, 70] can be seen as data with added func-
tionalities or “data++” [39]. Such data can be manipulated,
interpolated or composed [11,12,40,41] with dedicated oper-
ators in their latent space, and further used for counterfactual
reasoning [49, 55, 59]. In this paper, we do not exploit these
added functionalities. Our prompts consider a class at a time
and do not leverage any interpolation nor the composition
properties of synthetic data. Instead, we chose our complete
pipeline, including the set of data augmentations, to be iden-
tical to the one we use for real images, to allow for a fair
comparison.
Zero-shot learning and test-time view synthesis. Gen-
erative models have been used to extend models to new
classes, or to create novel views at test time. Chai et
al. [12] synthesize novel views for test-time ensembling
by perturbing the latent code of a test image. Aiming at
zero-shot recognition [92], Elhoseiny et al. [21] synthesize
a classifier for any novel class given its semantic description
(e.g., textual or attribute-based), whereas others synthesize
images [20, 26], or image features [47, 74] using such
descriptions. Here we aim to learn encoders from scratch,
and do not rely on models previously trained on real data.

2.2. Distillation of datasets and models

Knowledge distillation [7, 32] is a mechanism to transfer
knowledge from a pretrained “teacher” model into a
“student” one, and it usually requires images. Our approach
can be seen as performing image-free distillation from
a generic text-to-image generation model into a specific
classification model. We assume no access to images to
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distill from and, instead of distilling the visual encoder
of the image generation model, inspired by recent works
in NLP [51], we prompt a generation model to produce
synthetic images and train a classifier with them.
Dataset distillation [10, 96], on the other hand, is a way of
compressing a training set of real images into a smaller set
of synthetic images such that after training a model on those,
it performs as well as if it had been trained on the original
set. However, one needs to tailor the generation process to a
specific task, whereas in our case, we sample images from a
task-agnostic generator.
Reconstructing images from model activations can be
considered as another form of distillation. Earlier works
reconstruct images from gradient-based features [87, 89] or
CNN activations [52]. Since then many methods have tried
to uncover the training data distribution as it is stored in the
weights of a model [13, 95]. Instead of trying to recover the
training distribution of the teacher image generation model,
we use prompting to distill its knowledge for a specific
image classification task.

3. Preliminaries
In this section, we first define the task we solve, i.e.,

learning an image classification model when the training set
of real images is replaced by an image generator, and training
proceeds using only synthetically generated images. We then
briefly describe Stable Diffusion [70], i.e., the text-to-image
generation model we use in this paper.
Task formulation. Our goal is to learn an image classifica-
tion model given a set of class names C and a text-to-image
generator G. This task is a variant of image classification
where the fixed-size image training set is replaced by an
image generator. The model we aim to learn consists of
an encoder z = fθ(x) that maps an image x into a vec-
tor representation z ∈ Rd, and a classifier y = q(z) that
outputs a distribution y over the N classes ci ∈ C, where
i = {1, .., N}. We follow the common supervised learning
setting [46, 71] and, unless otherwise stated, learn the en-
coder parameters θ together with the classifier q for the task.
This model (encoder and classifier) is evaluated on the initial
classification task, by applying it to real images (Sec. 5.1
and Sec. 5.2). We also evaluate the visual encoder in the
context of several transfer learning tasks (Sec.5.3).
Text-to-image with Stable Diffusion. We use the recent
Stable Diffusion model [70] (SD) as text-to-image genera-
tor G. SD is a denoising diffusion model [33] built around
the idea of latent diffusion. The diffusion process is run
on a compressed latent space for efficiency. An image en-
coder/decoder is used to interface the latent diffusion model
with the pixel space. The generation process can be condi-
tioned in many ways, e.g., with text for text-to-image gener-
ation, or an image latent vector for image manipulation.

The text-to-image SD model consists of three main com-

ponents: i) an autoencoder whose visual encoder outputs
a structured latent representation that is fed as input to the
forward diffusion process and whose decoder is then used
to convert the latent vectors back to pixels, ii) a denoising
U-Net that runs the diffusion process, and iii) a text encoder,
i.e., similar to the one used by CLIP [65].

The text-to-image generation process takes a textual
prompt p as input and generates an image x ∈ RW×H×3.
Let g(p) denote the generation function of model G. Image
x is then given by x = g(p). In practice, the prompt p is first
encoded via the text encoder and the text embedding is used
as a conditioning vector for the latent diffusion process that
runs for a number of steps. The latent representation is then
provided to the decoder, which outputs the image x.

There are two important parameters that control the
quality and speed of text-conditioned diffusion; the number
of diffusion steps and the coefficient that weights the
textual conditioning vector. The former is linearly related
to extraction time, while the latter provides an excellent way
of controlling the visual diversity of generated images. The
default values are 50 steps and guidance scale equal to 7.5.
Link to distillation. Since the generator is a model that in-
ternally encodes visual information, the image classification
model we learn is essentially derived from G. Under this
formulation, and as discussed in Sec. 2, one can also see
this task as text-guided, image-free knowledge distillation.
Here we distill knowledge from a model of a very different
nature, i.e., a text-to-image generation model, to a purely
visual encoder, for solving a specific task.

4. Generating synthetic ImageNet clones

For our study, we create clones of the ImageNet [17]
dataset by synthesizing images depicting the classes it con-
tains. We refer to all synthetic datasets of ImageNet classes
that are created using Stable Diffusion as ImageNet-SD.
Sec. 4.1 describes different ways of creating ImageNet-SD
datasets starting from simply using the class name as the
prompt. We then present generic, class-agnostic ways for
tackling issues that arise with respect to semantics and di-
versity in Secs. 4.2 and 4.3, respectively. We present a few
sample qualitative results in Fig. 2, with a more extensive
set in the supplementary material.

4.1. Generating datasets using class names

In the absence of a training set of real images, we use the
generator G presented in the previous section to synthesize
images for each class in the set C. To do so, we need to
provide the generator with at least one prompt per class.
When used as an input, this class-conditioned prompt pc
triggers the generation of a synthetic image xc = g(pc)
from class c. The simplest prompt one could think of is the
class name i.e., pc = “c”. Although CLIP [65] uses pc = “a
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papillon (n02086910) lorikeet (n01820546) pirate, pirate ship (n03947888)

(a) Real images from ImageNet-1K

(b) Synthetic images with prompt pc = “c”

(c) Synthetic images with prompt pc = “c, hc”

(d) Synthetic images with prompt pc = “c, dc”

(e) Synthetic images with prompt pc = “c, dc” and guidance scale parameter equal to 2.0

(f) Synthetic images with prompt pc = “c, hc inside b”

Figure 2. Qualitative results. (a) Real ImageNet images. (b)-(g) Synthetic ImageNet-SD images generated with different prompts. Despite
high photo-realistic quality, some issues are noticeable for (b) such as i) semantic errors e.g., for the class “papillon”, ii) lack of diversity,
and iii) distribution shifts e.g., towards cartoons for the “pirate” class. Such issues are addressed with more expressive prompts in (c)-(g).

photo of a c” for their zero-shot experiments, using only the
class name gives better results in our case.

Each class in ImageNet is associated with one or more
synsets, i.e., entities, in the WordNet [57] graph. We use the
synset lemmas corresponding to each class as class-name
prompt “c”, comma-separated if more than one. Fig. 2b
shows random examples of images generated with such
prompts. At first glance, one can appreciate the ability of the
generator to create photo-realistic images given only a class
name. In Sec. 5, we show that one can already obtain surpris-
ingly good image classification results by simply training a
model with this synthetic dataset.

Upon close inspection of the generated images, however,
some issues become apparent: a) semantic errors: Images
generated for some classes may capture the wrong semantics
(e.g., see the “papillon” class in Fig. 2b), b) lack of diversity:
Generated images tend to look alike (an issue more apparent
in the supplementary material, and c) visual domain issues:
some classes tend to shift away from natural images towards
sketches or art (e.g., the “pirate ship” class in Fig. 2b). We
discuss and address these issues in the following.

4.2. Addressing issues with semantics and domain

As mentioned earlier, by comparing the (real) images
from ImageNet with the synthetic ones generated using only
synset names as prompts, we observe that for some classes
their semantics do not match. This is due to polysemy, i.e.,
multiple semantic meanings or physical instantiations of the
class names we used as prompt. We show one such case
in the left-most column of Fig. 2b: the “papillon” images
correspond to butterfly for our generated dataset, while the
ImageNet synset contains images of the dog breed of the
same name (see Fig. 2a).

To reduce this semantic ambiguity, we leverage once
again the fact that class names correspond to WordNet [57]
synsets. We augment the prompt for class name c with two
additional elements provided by WordNet: a) The hypernyms
hc of the synset as defined by the WordNet graph, i.e., the
class name(s) of the parent node(s) of this class in the graph;
and b) the definition dc of the synset, i.e., a sentence-length
description of the semantics of each synset. In both cases,
we append this information to the prompt, which becomes
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pc = “c, hc” and pc = “c, dc” for hypernyms and definition,
respectively.

Qualitatively, we observed that issues regarding the se-
mantics of the most problematic classes are fixed, and so are,
to some extent, issues related to visual domain mismatch.
These are also visible in Figs. 2c and 2d: appending the hy-
pernym (hc = “toy spaniel”) or the description (dc = “small
slender toy spaniel with erect ears and a black-spotted brown
to white coat”) of the class “papillon” in the prompt produces
images with the dog breed as the main subject. Appending
the hypernym (hc = “ship”) or the description (dc = “a
ship that is manned by pirates”) of the class “pirate ship” re-
sults in more natural-looking images rather than illustrations,
reducing the domain shift.

4.3. Increasing the diversity of generated images

Generating images using more expressive prompts, e.g.,
by appending class hypernym or definition, not only reduces
semantic errors, but also increases the visual diversity of the
output images. This is visible, for example, in the “lorikeet”
and “pirate ship” classes in Figs. 2c and 2d when compared
to Fig. 2b: the pose and viewpoints are slighly more diverse.
However, images still tend to display the class instance cen-
tered and in a prominent position. The real ImageNet images
feature significantly more diversity, several different settings
and backgrounds, and, in several cases, multiple instances
of the same class (e.g., see Fig. 2a).

Although class-specific prompt engineering is an appeal-
ing option, in this study we chose to remain generic, and to
increase diversity in class-agnostic ways.
Reducing reliance on the textual prompt. The text-
conditioned generation process of Stable Diffusion uses
classifier-free diffusion guidance [34] which jointly trains
both the conditional and unconditional diffusion models, and
combines their estimates, resulting in a trade-off between
sample quality and diversity. This trade-off is controlled
by the guidance scale parameter, that has in practice been
shown to produce high-quality images in the range of 6-9
(the default value is 7.5). Although visually detailed (see
Figs. 2b to 2d), the resulting images lack diversity. We there-
fore experiment with reducing the guidance scale. Despite
a small degradation in the visual quality of the generated
images, setting the scale to 2.0 results in more diverse sets
of images as shown in Fig. 2e.
Diversifying the background. We assume that class c
can be seen “inside” a scene or background. To remain
class-agnostic, we use all the scene classes from the Places
dataset [97] as background for every class. We generate
images for every possible combination of a class c and a
scene b ∈ B from the set B of 365 scenes in Places. We
found that “c inside b” generally produces the best-looking
results among a few prepositions we tried. However, we
found that semantic and domain errors that arise from gen-

(a) Training a model on synthetic images.

(b) Testing the frozen model on real images.

Figure 3. Overview of our experimental protocol. During train-
ing, the model has access to synthetic images generated by the
Stable Diffusion model, provided with a set of prompts per class.
During evaluation, real images are classified by the frozen model.

erating only using class name remained after specifying a
background. We therefore build on top of the second sim-
plest, but more semantically correct prompt variant, and use
pc = “c, hc inside b” to generate images in diverse scenes
and backgrounds. Although we do not consider this in our
study, selecting backgrounds tailored for each class, e.g., by
matching class names to scenes using features from a text
encoder, seems like a promising future direction.
Label noise and visual realism. Quite a few generated
images, especially those with low guidance scale parameters
or with random backgrounds (e.g., see Figs. 2e and 2f) are
not realistic, for example, the right-most image in the first
column of Fig. 2e. When the prompt mentions a background,
some images miss the foreground object completely (e.g.,
see the bottom row in the middle column of Fig. 2f) or con-
tain impossible combinations of objects and scenes. Yet, we
see such noisy or unrealistic synthetic images as a way of
adding stochasticity during the training process, similar to
what strong non-realistic data augmentation achieves [24,94].
In fact, it was recently shown [24] that diverse data augmen-
tations, even when inconsistent with the data distribution,
can be valuable (even more than additional training data) for
out-of-distribution scenarios. Our experimental validation
corroborates this claim.

5. Experiments
In this section we analyze the performance of image

classification models learned using the different synthetic
datasets constructed as described in Sec. 4. Due to the
size of ImageNet-1K (roughly 1.3 million images), we per-
form most of our study on the smaller ImageNet-100 [82]
dataset. This allows us to run multiple flavours of each
synthetic dataset and to measure the impact of several de-
sign choices. Because ImageNet-100 is a randomly cho-
sen subset of ImageNet-1K, spanning over 100 classes and
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126,689 images, it preserves some important characteristics
of ImageNet-1K such as its fine-grained nature.

We denote synthetic datasets for the two ImageNet sub-
sets as ImageNet-100-SD (IN100-SD) and ImageNet-1K-
SD (IN1K-SD), respectively.
Experimental protocol. We follow the protocol illustrated
in Fig. 3. The generator G is the Stable Diffusion [70]
v1.4 model,1 trained on the LAION2B-en dataset [76]
and fine-tuned on a smaller subset filtered by an aesthetics
classifier. During training, the generator is used to synthesize
images for each class, which are then used for training
the parameters of the encoder and the classifier. Unless
otherwise stated, we create datasets of the exact same
size as their real-image counterparts, i.e., we generate the
exact same number of images for every class as in the
corresponding real dataset, maintaining any class imbalance.

We evaluate all the models on real images. When eval-
uating their performance over the ImageNet classes, we use
both the encoder and the classifier learned during training
to predict labels of real images for the 5 ImageNet datasets
(Secs. 5.1 and 5.2). For transfer learning (Sec. 5.3), we use
the pretrained encoder as a feature extractor, and learn a
separate linear classifier on each of the 15 transfer datasets.

All our experiments use ResNet50 [27] as the encoder
fθ. Unless otherwise stated, we use 50 diffusion steps. We
provide ablations for the diffusion steps and guidance scale
as well as more implementation details in the supplementary
material. We use multi-crop data augmentation [9], as it
results in large performance gains for the models trained on
ImageNet-SD (see supplementary for more details). Indeed,
strong transformations have been shown to improve domain
generalization [86], and to reduce the sim-to-real gap.

5.1. Results on ImageNet datasets

Evaluating different prompts on ImageNet-100. Tab. 1
compares the performance of models trained using variants
of ImageNet-100-SD created with the different prompts pre-
sented in Sec. 4, for two different guidance scale values: 7.5
and 2. From the results for ImageNet-val and ImageNet-v2
(four left-most columns), we make the following observa-
tions: (a) Simply using the class name as a prompt and the
default guidance scale (row 2), one can synthesize images
and learn a visual encoder from scratch that already achieves
more than 70% Top-5 accuracy (43% Top-1 accuracy) on
ImageNet-100, a challenging 100-way classification task
with many fine-grained classes. (b) Adding the hypernym
or the definition from WordNet as part of the prompt (rows
3, 4) addresses some of the semantic and domain issues and
translates into performance gains. (c) Generating objects
on diverse backgrounds (row 5), even in a simple and class-
agnostic way, gives the best results for the default guidance
scale, reaching over 50% Top-1 and 76% Top-5 accuracy on

1https://huggingface.co/CompVis/stable-diffusion-v1-4

ImageNet-100. (d) Using a lower guidance scale value (2)
leads to more diverse image sets (as discussed in Sec. 4.3)
and translates into the best overall performance on ImageNet-
100. (e) The exact formulation of the prompt has less impact
when lowering the guidance scale; all the four prompt vari-
ants lead to similar performance as we see from rows 6-9.
Scaling the number of synthetic images. Unlike real
datasets that are capped in the number of images they con-
tain, ImageNet-SD has theoretically no size upper bound as
one can generate images on demand. We therefore generated
datasets which are 10×, 20× and 50× larger than ImageNet-
100, using prompt pc = “c, dc” (the best variant in Tab. 1,
row 8) for the classes of ImageNet-100. From the last three
rows of the top section in Tab. 1, we see that this brings
gains of up to 8.5% in Top-1 accuracy on ImageNet-100,
with our best model reaching 73.3% Top-1 (and 91.7% Top-
5) accuracy. The gains are even more prominent for transfer
learning, as we discuss in Sec. 5.3.
Results on ImageNet-1K. In the bottom part of Tab. 1 we
report results on the very challenging 1000-way classifica-
tion task of ImageNet-1K (IN-Val) that contains many fine-
grained categories of mushrooms, birds and dogs [36]. We
see that the model trained on our synthetic ImageNet-1K-SD
dataset using the prompt composed of the class name and de-
scription (pc = “c, dc”) and using guidance scale 2 reaches
42.9% Top-1 and 70.3% Top-5 accuracy on the ImageNet-
1K validation set. Although significantly lower than the
results achieved by a model trained on the 1.3 million real
images of ImageNet, we see that the synthetic dataset is
able to at least partially capture the subtle clues needed to
differentiate fine-grained classes. Similar observations can
be made on ImageNet-v2 [68] (IN-v2).

5.2. Resilience to domain shifts

We investigate the performance of our models on three
challenging evaluation sets for ImageNet-1K classes:
ImageNet-Sketch [88] (IN-Sketch), ImageNet-R [30]
(IN-R) and ImageNet-A [31] (IN-A). These datasets contain
out-of-distribution images and their goal is to test resilience
to domain shifts and adversarial images. Results are reported
in the right-most columns of Tab. 1.

For ImageNet-100, we see from the top part of the ta-
ble that a number of ImageNet-100-SD models outperform
the model trained on real images for ImageNet-Sketch and
ImageNet-R. The best Imagenet-100-SD model, i.e. the
one trained with 50× images, further rivals the baseline
on ImageNet-A.

When it comes to a much harder classification task like
the 1000 classes of ImageNet-1K, we see from the lower
part of Tab. 1 that the same trend does not really hold. The
ImageNet-1K-SD model trained on synthetic data lags be-
hind in all cases when compared to the two models [62, 91]
that are trained on the ImageNet-1K training set.
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Training Dataset Scale Prompt (pc) / Model
IN-Val IN-v2 IN-Sketch IN-R∗ IN-A∗

R. Size Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ImageNet-100 – 1 Baseline 87.4 96.8 82.5 95.1 39.1 58.9 58.4 79.1 25.6 68.7

ImageNet-100-SD

7.5

2 pc = “c” 43.1 70.7 45.4 70.7 29.9 53.5 51.7 75.3 8.8 38.4
3 pc = “c, hc” 46.9 73.4 47.3 73.7 25.9 50.4 46.3 75.3 11.5 42.2
4 pc = “c, dc” 47.9 74.2 49.1 74.9 24.7 49.2 41.2 71.5 12.2 38.5
5 pc = “c, hc inside b” 51.5 76.8 51.2 77.4 27.9 52.5 54.0 81.8 14.1 48.4

2.0

6 pc = “c” 63.5 86.9 62.7 86.7 41.8 67.6 64.2 83.9 13.7 45.1
7 pc = “c, hc” 63.4 87.1 63.5 86.5 39.2 66.7 61.9 85.1 14.9 49.1
8 pc = “c, dc” 64.8 86.9 65.0 87.3 33.8 60.5 51.4 77.5 14.0 48.8
9 pc = “c, hc inside b” 63.1 85.7 62.0 85.0 38.7 65.5 64.0 87.2 21.9 63.1

10×
2.0

10 pc = “c, dc” 72.4 90.8 70.2 90.2 40.0 65.7 55.2 79.0 15.6 53.8
20× 11 pc = “c, dc” 72.4 91.4 71.4 90.7 38.4 63.9 56.9 81.5 17.8 55.0
50× 12 pc = “c, dc” 73.3 91.7 72.3 91.2 42.0 67.0 59.4 82.3 17.1 57.1

ImageNet-1K
– 13 PyTorch [56] 76.1 92.9 71.1 90.4 24.1 41.3 36.2 52.8 0.0 14.4
– 14 RSB-A1 [91] 80.1 94.5 75.6 92.0 29.2 46.5 40.6 55.1 11.1 38.6

ImageNet-1K-SD
7.5 15 pc = “c, dc” 26.2 51.7 26.0 51.4 9.5 22.1 15.9 32.0 2.2 10.1
7.5 16 pc = “c, hc inside b” 30.1 55.6 29.8 55.3 11.9 27.1 23.5 43.1 3.4 13.2
2.0 17 pc = “c, dc” 42.9 70.3 43.0 70.3 16.6 35.1 26.3 45.3 3.6 15.1

Table 1. Results on ImageNet datasets. Top-1 and Top-5 accuracy on several ImageNet datasets, namely IN-Val (the ILSVRC-2012
validation set [71]), IN-v2 [68], IN-Sketch [88], IN-R [30] and IN-A [31]. In all cases, testing is done on real images. For the prompts,
hc (dc) refers to the hypernym (definition) of class c provided by WordNet [57], while b to scene classes from Places 365 [97]. ∗IN-R
and IN-A only cover a subset of the ImageNet-100 classes and we compute the reported metrics only on the common classes. Brick-colored
scores denote performance higher than the models trained on real images. Italics denote results from models trained using real images.

Training Dataset Scale Prompt (pc) / Model Aircraft Cars196 DTD EuroSAT Flowers Pets Food101 SUN397 iNat18 iNat19 Avg.

– – 1 Random Weights 11.9 3.7 17.0 73.1 26.9 11.9 13.3 7.3 0.1 1.3 16.6

ImageNet-100 – 2 Baseline 43.6 41.5 67.9 96.2 85.6 78.7 63.4 51.2 22.8 33.4 58.4

ImageNet-100-SD 2.0 3 pc = “c, dc” (50×) 47.9 44.5 74.0 96.8 89.6 83.7 68.6 57.2 29.5 40.6 63.2

ImageNet-1K
– 4 PyTorch [56] 48.9 49.9 72.1 96.2 89.3 92.3 71.2 60.5 35.5 41.5 65.7
– 5 RSB-A1 [91] 46.8 54.4 73.8 95.8 88.6 93.0 71.3 63.4 34.9 43.2 66.5

ImageNet-1K-SD
7.5 6 pc = “c, dc” 48.7 49.7 71.6 96.5 90.1 81.9 66.4 55.8 28.7 40.6 63.0
7.5 7 pc = “c, hc inside b” 49.6 47.4 72.1 95.9 89.3 87.2 67.7 59.5 30.8 41.4 64.1
2.0 8 pc = “c, dc” 55.3 57.2 75.9 96.7 92.9 88.7 73.1 62.5 35.0 46.3 68.4

Table 2. Top-1 accuracy on ten transfer learning datasets for encoders trained on real and synthetic images. We treat encoders as feature
extractors and train linear classifiers on top for each dataset. Brick-colored scores denote performance higher than the models trained on
real images. We make the remarkable observation that representations from models trained on synthetic data can match the generalization
performance of representations from models trained on millions of real images. Italics denote results from models trained using real images.

5.3. Transfer learning

In previous evaluations, we used pretrained models as
a whole, i.e., encoders together with classifiers, all trained
on synthetic ImageNet datasets, and we directly applied
those to predict the label of the (real) test images on the
training classes. Here, we use a slightly different protocol.
We evaluate the quality of the representations learned by
our encoders alone, by using them as feature extractors and
training linear logistic regression classifiers from scratch on
top as done in transfer learning [44, 75].

We report results on 15 transfer datasets: (a) eight
common small-scale datasets (Aircraft [54], Cars196 [45],
DTD [16], EuroSAT [29], Flowers [58], Pets [61],
Food101 [5], SUN397 [93]), (b) two long-tail datasets
(iNat2018 [83] and iNat2019 [83]), and (c) the five datasets
(“levels”) of the CoG benchmark [75]. We report Top-1
accuracy on the (real) test set of the small-scale and long-
tail datasets in Tab. 2. In Fig. 1 and the supplementary,
we present results on the CoG benchmark. We compare
ImageNet-100-SD and ImageNet-1K-SD visual encoders
obtained with some of our best prompts to baselines trained
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Figure 4. Scaling the number of training images. Average top-1
accuracy on 10 transfer datasets when training on ImageNet-100
using (1/10)-th to 50× images (relative to the real dataset size).

on ImageNet-100 and ImageNet-1K. What we observe is
quite striking: On average, representations learned on purely
synthetic images exhibit generalization performance compa-
rable to representations trained on thousands or millions of
real images. This suggests that synthetic images can be used
to pretrain strong general-purpose visual encoders.

Following this transfer learning protocol, our best model
achieves 70.4% Top-1 accuracy on ImageNet-1K (evaluation
as part of the CoG benchmark, detailed in the supplementary
material), significantly closing the gap to models trained on
real data. This protocol differs from the one presented in
Sec. 5.1 as it uses real images to train a linear classifier on
top of the feature extractor trained only on synthetic images,
hence results are not comparable with Tab. 1.
Scaling the number of synthetic images for transfer. Fig. 4
reports transfer learning performance on the 10 datasets
of Tab. 2, when varying the size of the training set. We see
that generating 10× more images allows the ImageNet-100-
SD model to outperform the model trained on real images,
and the gains increase as we generate up to 50× more.

6. Discussion
This section takes a step back and considers some of the

implications from the analysis proposed in this paper.
Applicability beyond ImageNet. The process we followed
to create ImageNet-SD requires minimal assumptions and
can be applied to a wider set of classes. To disambiguate
semantics, we only assume access to a short textual descrip-
tion of the class. This is generally easy to acquire even at
a larger scale, e.g., in semi-automatic ways from Wikipedia.
Scaling laws for synthetic data. Conceptually, there is no
reason to restrict our approach to a finite dataset of synthetic
images. We could devise a training process which sees each
image only once [60].

Yet, despite this scaling potential, the quality of the result-
ing classifier is bounded by the expressivity of the generator
and the concepts it can reliably reproduce. No matter how
intriguing the promise of an “infinite dataset” via data gen-
eration might be, practical applications are bound by costs

linked to computation and storage, as well as the moderation
of the content fueling this generator. The latter has strong
implications we discuss next.
Data and model bias. Because of its pioneering role as a
source of images to train generic models, and all it has done
to advance the computer vision field, ImageNet and some of
its bias has been under heavy scrutiny [18, 50]. Its synthetic
counterparts have no reason to be immune to bias.

The main advantage of training with synthetic dataset
is also its biggest flaw. Instead of manually curating and
annotating a dataset, this process is outsourced to a text-to-
image generator, whose training data is not always known.
Our study is based on the text-to-image generator of Stable
Diffusion (SD). SD is trained on LAION-2B [76], a dataset
scraped from the internet and filtered in an automatic way
using CLIP [65]. LAION has been shown to contain prob-
lematic content [4] and SD models to memorize at least part
of the training set [8,77]. Algorithmic bias is not only due to
bias in the data [35], yet biased datasets lead to biased models
and predictions [1, 72, 79]. Frameworks such as [37] could
be considered to increase transparency and accountability.

On top of the bias in the data, the architecture itself con-
straints the generated images, and as such, propagates and
potentially amplifies [3] existing bias. A major one that we
have discussed earlier is the lack of diversity. An obvious
corollary is the fact that stereotypes are reinforced. The
options we have explored mitigate this issue to some lim-
ited extent, in that it improves classification results, but this
issue is far from being solved. Finally, there are many soci-
etal implications of using such models to generate synthetic
datasets for training computer vision models, and a more
thorough and multi-disciplinary discussion is required.

7. Conclusions
In this paper, we study to which extent ImageNet, ar-

guably the most popular computer vision dataset, can be
replaced by a dataset synthesized by a text-to-image gen-
erator. Through an extensive study, we find that one can
learn models that exhibit surprisingly good performance
on fine-grained classification tasks like ImageNet-100 and
ImageNet-1K without any class-specific prompting. How-
ever, the most important result of this study is the finding
that models trained on synthetic data exhibit exceptional gen-
eralization capability that rivals with models learned with
real images. We see this study as merely a first glimpse of
what is now possible with the latest large models in terms
of visual representation learning. We envision that similar
approaches could be used to fine-tune or adapt models, using
those synthetic datasets side-by-side with real ones.
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