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Abstract

Humans can orient themselves in their 3D environments
using simple 2D maps. Differently, algorithms for visual lo-
calization mostly rely on complex 3D point clouds that are
expensive to build, store, and maintain over time. We bridge
this gap by introducing OrienterNet, the first deep neural
network that can localize an image with sub-meter accuracy
using the same 2D semantic maps that humans use. Orienter-
Net estimates the location and orientation of a query image
by matching a neural Bird’s-Eye View with open and globally
available maps from OpenStreetMap, enabling anyone to lo-
calize anywhere such maps are available. OrienterNet is su-
pervised only by camera poses but learns to perform seman-
tic matching with a wide range of map elements in an end-
to-end manner. To enable this, we introduce a large crowd-
sourced dataset of images captured across 12 cities from the
diverse viewpoints of cars, bikes, and pedestrians. Orienter-
Net generalizes to new datasets and pushes the state of the
art in both robotics and AR scenarios. The code is available
at github.com/facebookresearch/OrienterNet.

1. Introduction
As humans, we intuitively understand the relationship be-

tween what we see and what is shown on a map of the scene
we are in. When lost in an unknown area, we can accurately
pinpoint our location by carefully comparing the map with
our surroundings using distinct geographic features.

Yet, algorithms for accurate visual localization are typi-
cally complex, as they rely on image matching and require
detailed 3D point clouds and visual descriptors [18,31,38,39,
53,57,60]. Building 3D maps with LiDAR or photogramme-
try [2, 22, 43, 61, 67] is expensive at world scale and requires
costly, freshly-updated data to capture temporal changes in
visual appearance. 3D maps are also expensive to store, as
they are orders of magnitude larger than basic 2D maps.
This prevents executing localization on-device and usually
requires costly cloud infrastructure. Spatial localization is
thus a serious bottleneck for the large-scale deployment of
robotics and augmented reality devices. This disconnect be-
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Figure 1. Towards human-like localization. Humans can eas-
ily orient themselves with basic 2D maps while state-of-the-art
algorithms for visual localization require complex 3D cues. Ori-
enterNet can localize an image using only compact maps from
OpenStreetMap by matching Bird’s-Eye View and neural maps.

tween the localization paradigms of humans and machines
leads to the important research question of How can we teach
machines to localize from basic 2D maps like humans do?

This paper introduces the first approach that can localize
single images and image sequences with sub-meter accuracy
given the same maps that humans use. These planimetric
maps encode only the location and coarse 2D shape of few
important objects but not their appearance nor height. Such
maps are extremely compact, up to 104 times smaller in size
than 3D maps, and can thus be stored on mobile devices and
used for on-device localization within large areas. We demon-
strate these capabilities with OpenStreetMap (OSM) [46],
an openly accessible and community-maintained world map,
enabling anyone to localize anywhere for free. This solution
does not require building and maintaining costly 3D maps
over time nor collecting potentially sensitive mapping data.

Concretely, our algorithm estimates the 3-DoF pose, as
position and heading, of a calibrated image in a 2D map.
The estimate is probabilistic and can therefore be fused with
an inaccurate GPS prior or across multiple views from a
multi-camera rig or image sequences. The resulting solution
is significantly more accurate than consumer-grade GPS
sensors and reaches accuracy levels closer to the traditional
pipelines based on feature matching [57, 60].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Map type SfM
SLAM

Satellite
images

OpenStreetMap
(our work)

What? 3D points
+features

pixel
intensity

polygons,
lines, points

Explicit geometry? 3D ✗ 2D
Visual appearance? ✓ ✓ ✗
Freely available ✗ ✗ ✓

Storage for 1 km2 42 GB 75 MB 4.8 MB
Size reduction vs SfM - 550× 8800×

Table 1. Types of maps for visual localization. Planimetric maps
from OpenStreetMap consist of polygons and lines with metadata.
They are publicly available for free and do not store sensitive ap-
pearance information, as opposed to satellite images and 3D maps
built with SfM. They are also compact: a large area can be down-
loaded and stored on a mobile device. We show that they encode
sufficient geometric information for accurate 3-DoF localization.

Our approach, called OrienterNet, is a deep neural net-
work that mimics the way humans orient themselves in their
environment when looking at maps, i.e., by matching the
metric 2D map with a mental map derived from visual obser-
vations [37,45]. OrienterNet learns to compare visual and se-
mantic data in an end-to-end manner, supervised by camera
poses only. This yields accurate pose estimates by leveraging
the high diversity of semantic classes exposed by OSM, from
roads and buildings to objects like benches and trash cans.
OrienterNet is also fast and highly interpretable. We train
a single model that generalizes well to previously-unseen
cities and across images taken by various cameras from di-
verse viewpoints – such as car-, bike- or head-mounted, pro
or consumer cameras. Key to these capabilities is a new,
large-scale training dataset of images crowd-sourced from
cities around the world via the Mapillary platform.

Our experiments show that OrienterNet substantially out-
performs previous works on localization in driving scenarios
and vastly improves its accuracy in AR use cases when ap-
plied to data recorded by Aria glasses. We believe that our
approach constitutes a significant step towards continuous,
large scale, on-device localization for AR and robotics.

2. Related work

We can localize an image in the world using several types
of map representations: 3D maps built from ground images,
2D overhead satellite images, or simpler planimetric maps
from OpenStreetMap. Table 1 summarizes their differences.

Mapping with ground-level images is the most com-
mon approach to date. Place recognition via image retrieval
provides a coarse localization given a set of reference im-
ages [4, 23, 32, 72]. To estimate centimeter-accurate 6-DoF
poses, algorithms based on feature matching require 3D
maps [31, 39, 57, 60]. These are composed of sparse point
clouds, which are commonly built with Structure-from-
Motion (SfM) [2, 22, 36, 43, 61, 67] from sparse points
matched across multiple views [9, 38, 53]. The pose of a
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Figure 2. OrienterNet architecture. 1) From an input image I that
is gravity-aligned, we infer a mental map of the scene as a neural
Bird’s-Eye View (BEV) T with confidence C. 2) From a coarse
GPS prior location ξprior, we query OpenStreetMap and compute
a neural map F. 3) Matching the BEV against the map yields a
probability volume P over 3-DoF camera poses. OrienterNet is
trained end-to-end from pose supervision only.

new query image is estimated by a geometric solver [10,
26, 33] from correspondences with the map. While some
works [70, 79] leverage additional sensor inputs, such as a
coarse GPS location, gravity direction, and camera height,
recent localization systems are highly accurate and robust
mostly thanks to learned features [18, 19, 51, 58, 73].

This however involves 3D maps with a large memory
footprint as they store dense 3D point clouds with high-
dimensional visual descriptors. There is also a high risk
of leaking personal data into the map. To mitigate this,
some works attempt to compress the maps [12, 13, 39] or
use privacy-preserving representations for the scene appear-
ance [20, 44, 81] or geometry [68, 69]. These however either
degrade the accuracy significantly or are easily reverted [50].

Localization with overhead imagery reduces the problem
to estimating a 3-DoF pose by assuming that the world is
mostly planar and that the gravity direction is often given by
ubiquitous onboard inertial sensors. A large body of work
focuses on cross-view ground-to-satellite localization. While
more compact than 3D maps, satellite images are expensive
to capture, generally not free, and still heavy to store at high
resolution. Most approaches only estimate a coarse position
through patch retrieval [30,63,65,82]. In addition, works that
estimate an orientation are not accurate [62, 64, 77], yielding
errors of over several meters.
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Other works rely on sensors that directly provide 3D met-
ric information, such as 2D intensity maps from Lidar [8,40]
or radar [7,71]. They all perform template matching between
2D map and sensor overhead views, which is both accu-
rate and robust, but require expensive specialized sensors,
unsuitable for consumer AR applications. Our work shows
how monocular visual priors can substitute such sensors to
perform template matching from images only.

Planimetric maps discard any appearance and height infor-
mation to retain only the 2D location, shape and type of map
elements. OSM is a popular platform for such maps as it is
free and available globally. Given a query area, its open API
exposes a list of geographic features as polygons with meta-
data, including fine-grained semantic information with over
a thousand different object types. Past works however design
detectors for a single or few semantic classes, which lacks ro-
bustness. These include building outlines [5,6,15–17,74,75],
road contours [21,54] or intersections [41,47,78], lane mark-
ings [25, 48], street furniture [14, 76], or even text [27].

Recent works leverage more cues by computing richer
representations from map tiles using end-to-end deep net-
works [56, 80]. They estimate only a coarse position as they
retrieve map tiles with global image descriptors. In indoor
scenes, floor plans are common planimetric maps used by
existing works [28,42]. They require height or visibility infor-
mation that is typically not available for outdoor spaces. Our
approach yields a significant step up in accuracy and robust-
ness over all previous works by combining the constraints
of projective geometry with the expressivity of end-to-end
learning, leveraging all semantic classes available in OSM.

3. Localizing single images in 2D maps

Problem formulation: In a typical localization scenario,
we aim to estimate the absolute 6-DoF pose of an image
in the world. Under realistic assumptions, we reduce this
problem to estimating a 3-DoF pose ξ = (x, y, θ) consisting
of a location (x, y) ∈ R2 and heading angle θ ∈ (−π, π].
Here we consider a topocentric coordinate system whose
x-y-z axes correspond to the East-North-vertical directions.

First, we can easily assume to know the direction of the
gravity, an information that humans naturally possess from
their inner ear and that can be estimated by the inertial unit
embedded in most devices. We also observe that our world
is mostly planar and that the motion of people and objects
in outdoor spaces is mostly restricted to 2D surface. The
precise height of the camera can always be estimated as the
distance to the ground in a local SLAM reconstruction.

Inputs: We consider an image I with known pinhole camera
calibration. The image is rectified via a homography com-
puted from the known gravity such that its roll and tilt are
zero – its principal axis is then horizontal. We are also given a
coarse location prior ξprior. This can be a noisy GPS position
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Figure 3. OrienterNet predicts a pixel-wise distribution over
scales that are mapped to depths with the known camera calibration.

or a previous localization estimate and can be off by over 20
meters. This is a realistic assumption for a consumer-grade
sensor in a multi-path environment like a urban canyon.

The map data is queried from OSM as a square area
centered around ξprior and whose size depends on how noisy
the prior is. The data consists of a collection of polygons,
lines, and points, each of a given semantic class and whose
coordinates are given in the same local reference frame.

Overview – Figure 2: OrienterNet consists of three mod-
ules: 1) The image-CNN extracts semantic features from the
image and lifts them to an orthographic Bird’s-Eye View
(BEV) representation T by inferring the 3D structure of the
scene. 2) The OSM map is encoded by the map-CNN into a
neural map F that embeds semantic and geometric informa-
tion. 3) We estimate a probability distribution over camera
poses ξ by exhaustively matching the BEV against the map.

3.1. Neural Bird’s-Eye View inference

Overview: From a single image I, we infer a BEV repre-
sentation T ∈ RL×D×N distributed on a L×D grid aligned
with the camera frustum and composed of N -dimensional
features. Each feature on the grid is assigned a confidence,
yielding a matrix C ∈ [0, 1]L×D. This BEV is akin to a
mental map that humans infer from their environment when
self-localizing in an overhead map [37, 45].

Cross-modal matching between the image and the map
requires extracting semantic information from visual cues.
It has been shown that monocular depth estimation can rely
on semantic cues [3] and that both tasks have a beneficial
synergy [29, 34]. We thus rely on monocular inference to lift
semantic features to the BEV space. Following past works
that tackle semantic tasks [49, 52, 55], we obtain the neural
BEV in two steps: i) we transfer image features to a polar
representation by mapping image columns to polar rays, and
ii) we resample the polar grid into a Cartesian grid (Fig. 3).

Polar representation: A CNN Φimage first extracts a U×V
feature map X ∈ RU×V×N from the image. We consider
D depth planes sampled in front of the camera with a regu-
lar interval ∆, i.e. with values {i ·∆|i ∈ {1 . . . D}}. Since
the image is gravity-aligned, each of the U columns in X
corresponds to a vertical plane in the 3D space. We thus
map each column to a ray in the U×D polar representa-
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tion X̄ ∈ RU×D×N . We do so by predicting, for each polar
cell (u, d), a probability distribution αu,d ∈ [0, 1]V over the
pixels in the corresponding image column:

X̄u,d =
∑
v

αu,d,vXu,v . (1)

Instead of directly regressing the distribution α over
depths, we regress a distribution S over scales that are inde-
pendent from the camera calibration parameters. The scale is
the ratio of object sizes in the 3D world and in the image [3]
and is equal to the ratio of the focal length f and depth. We
consider a set of S log-distributed scales

σ =
{
σmin (σmax/σmin)

i/S |i ∈ {0 . . . S}
}

. (2)

Φimage also predicts, for each pixel (u, v), a score vector
Su,v ∈ RS whose elements correspond to the scale bins σ.
We then obtain the distribution αu,d for each depth bin d as

αu,d,v = softmax
v

(Su,v [f/d·∆]) , (3)

where [·] denotes the linear interpolation.
This formulation is equivalent to an attention mechanism

from polar rays to image columns with scores resampled
from linear depths to log scales. When the scale is ambiguous
and difficult to infer, visual features are spread over multiple
depths along the ray but still provide geometric constraints
for well-localized map points [35]. Works tailored to driving
scenarios [49, 52, 55] consider datasets captured by cameras
with identical models and directly regress α. They therefore
encode the focal length in the network weights, learning
the mapping from object scale to depth. Differently, our
formulation can generalize to arbitrary cameras at test time
by assuming that the focal length is an input to the system.

BEV grid: We map the polar features to a Cartesian grid of
size L×D via linear interpolation along the lateral direction
from U polar rays to L columns spaced by the same inter-
val ∆. The resulting feature grid is then processed by a small
CNN ΦBEV that outputs the neural BEV T and confidence C.

3.2. Neural map encoding

We encode the planimetric map into a W×H neural map
F ∈ RW×H×N that combines geometry and semantics.

Map data: OpenStreetMap elements are defined, depending
on their semantic class, as polygonal areas, multi-segment
lines, or single points. Examples of areas include building
footprints, grass patches, parking lots; lines include road
or sidewalk center lines, building outlines; points include
trees, bus stops, shops, etc. Appendix B.1 lists all classes.
The accurate positioning of these elements provides geomet-
ric constraints necessary for localization, while their rich
semantic diversity helps disambiguate different poses.

Preprocessing: We first rasterize the areas, lines, and points
as a 3-channels image with a fixed ground sampling dis-

tance ∆, e.g. 50 cm/pixel. This representation is more infor-
mative and accurate than the naive rasterization of human-
readable OSM tiles performed in previous works [56, 80].

Encoding: We associate each class with an N -dimensional
embedding that is learned, yielding a W×H×3N feature
map. It is then encoded into the neural map F by a CNN
Φmap, which extracts geometric features useful for localiza-
tion. F is not normalized as we let Φmap modulate its norm
as importance weight in the matching. Examples in Fig. 4
reveal that F often looks like a distance field where we can
clearly recognize distinctive features like corners or adjoin-
ing boundaries of buildings.

Φmap also predicts a unary location prior Ω ∈ RW×H for
each cell of the map. This score reflects how likely an image
is to be taken at each location. We rarely expect images to
be taken in, for example, rivers or buildings.

3.3. Pose estimation by template matching

Probability volume: We estimate a discrete probability
distribution over camera poses ξ. This is interpretable and
fully captures the uncertainty of the estimation. As such, the
distribution is multimodal in ambiguous scenarios. Figure 4
shows various examples. This makes it easy to fuse the pose
estimate with additional sensors like GPS. Computing this
volume is tractable because the pose space has been reduced
to 3 dimensions. It is discretized into each map location and
K rotations sampled at regular intervals.

This yields a W×H×K probability volume P such that
P (ξ|I,map, ξprior) = P[ξ]. It is the combination of an
image-map matching term M and the location prior Ω:

P = softmax (M+Ω) . (4)
M and Ω represent image-conditioned and image-
independent un-normalized log scores. Ω is broadcasted
along the rotation dimension and softmax normalizes the
probability distribution.

Image-map matching: Exhaustively matching the neural
map F and the BEV T yields a score volume M. Each
element is computed by correlating F with T transformed
by the corresponding pose as

M[ξ] =
1

UZ

∑
p∈(U×Z)

F[ξ(p)]⊤ (T⊙C) [p] , (5)

where ξ(p) transforms a 2D point p from BEV to map
coordinate frame. The confidence C masks the correlation to
ignore some parts of the BEV space, such as occluded areas.
This formulation benefits from an efficient implementation
by rotating TK times and performing a single convolution
as a batched multiplication in the Fourier domain [7, 8].

Pose inference: We estimate a single pose by maximum
likelihood: ξ∗ = argmaxξ P (ξ|I,map, ξprior). When the dis-
tribution is mostly unimodal, we can obtain a measure of
uncertainty as the covariance of P around ξ∗ [7].
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Figure 4. We train a single model that generalizes well across many datasets. OrienterNet handles different cameras, street-level
viewpoints, and unseen cities and is thus suitable for both AR and robotics. Overlayed on the input maps, the single-image predictions
(black arrow ) are close to the ground truth (red arrow) and more accurate than the noisy GPS (blue dot •). The model effectively leverages
building corners and boundaries, crosswalks, sidewalks, road intersections, trees, and other common urban objects. Likelihood maps can be
multi-modal in scenes with repeated elements (last two rows) - we show the predicted orientations at local maxima as small arrows.
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gravity-aligned image single-frame sequence

#7#7 ∆ξ=11.75m∆ξ=11.75m ∆ξ=0.22m∆ξ=0.22m

#16#16 ∆ξ=23.54m∆ξ=23.54m ∆ξ=0.29m∆ξ=0.29m

•GPS •single-frame •sequence •GT

Figure 5. Multi-frame fusion resolves ambiguities. Semantic
elements visible in a single image are often not sufficient to fully
disambiguate the camera pose. Fusing the predictions over multiple
frames collapses the multi-modal likelihood map to a single mode
with high accuracy, yielding here a final error of less than 30cm.

4. Sequence and multi-camera localization

Single-image localization is ambiguous in locations that
exhibit few distinctive semantic elements or repeated pat-
terns. Such challenge can be disambiguated by accumulating
additional cues over multiple views when their relative poses
are known. These views can be either sequences of images
with poses from VI SLAM or simultaneous views from a cal-
ibrated multi-camera rig. Figure 5 shows an example of such
difficult scenario disambiguated by accumulating predictions
over time. Different frames constrain the pose in different di-
rections, e.g. before and after an intersection. Fusing longer
sequences yields a higher accuracy (Fig. 6).

Let us denote ξi the unknown absolute pose of view i
and ξ̂ij the known relative pose from view j to i. For an
arbitrary reference view i, we express the joint likelihood
over all single-view predictions as

P (ξi|{Ij},map) =
∏
k

P (ξi ⊕ ξ̂ij |Ij ,map) , (6)

where ⊕ denotes the pose composition operator. This is
efficiently computed by warping each probability volume Pj

to the reference frame i. We can also localize each image of
a continuous stream via iterative warping and normalization,
like in the classical Markov localization [11, 66].
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Figure 6. With AR data, sequence localization boosts the recall,
which increases as we fuse information from additional frames.

Model architecture Position R@Xm Orientation R@X◦

1m 3m 5m 1◦ 3◦ 5◦

Retrieval (a) 2.02 15.21 24.21 4.50 18.61 32.48
Refinement (b) 8.09 26.02 35.31 14.92 36.87 45.19
OrienterNet - planar (c) 14.28 44.59 56.08 20.43 50.34 64.30
OrienterNet - full 15.78 47.75 58.98 22.14 52.56 66.32

Table 2. OrienterNet outperforms existing architectures, which
include: a) map tile retrieval by matching global embeddings [56,
77], b) featuremetric refinement [62] from an initial pose, and
c) OrienterNet assuming a planar scene [62] instead of inferring
monocular depth. We report the position and orientation recall (R).

5. Training a single strong model

Supervision: OrienterNet is trained in a supervised manner
from pairs of single images and ground truth (GT) poses.
The architecture is differentiable and all components are
trained simultaneously by back-propagation. We simply
maximize the log-likelihood of the ground truth pose ξ:
Loss = − logP (ξ|I,map, ξprior) = − logP[ξ]. The tri-
linear interpolation of P provides sub-pixel supervision.

Training dataset: We train a single model that generalizes
to unseen locations with arbitrary kinds of images. We collect
images from the Mapillary platform, which exposes the cam-
era calibration, noisy GPS measurement, and the 6-DoF pose
in a global reference frame, obtained with a fusion of SfM
and GPS. The resulting Mapillary Geo-Localization (MGL)
dataset includes 760k images from 12 cities in Europe and
the US, captured by cameras that are handheld or mounted on
cars or bikes, with GT poses and OSM data. Models trained
on MGL generalize well to other datasets thanks to the di-
versity of cameras, locations, motions, and maps. All images
are publicly available under a CC-BY-SA license via the
Mapillary API. We believe that this dataset will significantly
facilitate research on visual geo-localization.

Implementation: Φimage and Φmap are U-Nets with ResNet-
101 and VGG-16 encoders. ΦBEV has 4 residual blocks. We
use S=32 scale bins, K=512 rotations. The BEV has size
L×D=32×32m with resolution ∆=50 cm. For training,
we render maps W×H=128×128m centered around points
randomly sampled within 32m of the GT pose. Localizing
in such map takes 94ms on an NVIDIA RTX 2080 GPU.
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Map Approach Training
dataset

Lateral R@Xm Longitudinal R@Xm Orientation R@X◦

1m 3m 5m 1m 3m 5m 1◦ 3◦ 5◦

Satellite DSM [64] KITTI 10.77 31.37 48.24 3.87 11.73 19.50 3.53 14.09 23.95
VIGOR [82] KITTI 17.38 48.20 70.79 4.07 12.52 20.14 - - -
refinement [62] KITTI 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

OpenStreetMap retrieval [56, 77] MGL 37.47 66.24 72.89 5.94 16.88 26.97 2.97 12.32 23.27
refinement [62] MGL 50.83 78.10 82.22 17.75 40.32 52.40 31.03 66.76 76.07
OrienterNet (a) MGL 53.51 88.85 94.47 26.25 59.84 70.76 34.26 73.51 89.45
ë + sequence (b) MGL 79.71 97.44 98.67 55.21 95.27 99.51 77.87 97.76 100.

OrienterNet (c) KITTI 51.26 84.77 91.81 22.39 46.79 57.81 20.41 52.24 73.53
OrienterNet (d) MGL+KITTI 65.91 92.76 96.54 33.07 65.18 75.15 35.72 77.49 91.51

Table 3. Localization in driving scenarios with the KITTI dataset. a) When trained on our MGL dataset, OrienterNet yields a higher
localization recall than existing approaches based on both satellite imagery and OpenStreetMap, in terms of both orientation and lateral and
longitudinal positional errors, b) Fusing predictions from sequences of 20 seconds boosts the recall. c) Training on KITTI outperforms other
approaches trained on KITTI but is inferior to training on MGL. This demonstrates the excellent zero-shot capability of OrienterNet and the
value of MGL. d) Pre-training on MGL and fine-tuning on KITTI achieves the best single-image performance.

6. Experiments

We evaluate our single model for localization in the con-
text of both driving and AR. Figure 4 shows qualitative
examples, while Fig. 5 illustrates the effectiveness of multi-
frame fusion. Our experiments show that: 1) OrienterNet
is more effective than existing deep networks for localiza-
tion with 2D maps; 2) Planimetric maps help localize more
accurately than overhead satellite imagery; 3) OrienterNet
is significantly more accurate than an embedded consumer-
grade GPS sensor when considering multiple views.

6.1. Validating design decisions

Setup: We evaluate the design of OrienterNet on the vali-
dation split of our MGL dataset. This ensures an identical
distribution of cameras, motions, viewing conditions, and vi-
sual features as the training set. We report recall of positions
and rotation errors at the three thresholds 1/3/5m and 1/3/5◦.

Comparing model architectures: We compare Orienter-
Net to alternative architectures trained on the same dataset:
a) Map retrieval [77] replaces the BEV inference and match-
ing by a correlation of the neural map and with a global
image embedding. We predict a rotation by considering 4
different neural maps for the N-S-E-W directions. This for-
mulation also regresses a probability volume and is trained
identically to OrienterNet. It mimics the retrieval of densely-
sampled map patches [56] but is significantly more efficient
and practical. b) Featuremetric refinement [59, 62] updates
an initial pose by warping a satellite view to the image as-
suming that the scene is planar, at a fixed height, and gravity-
aligned. We replace the satellite view by an OSM map tile.
This formulation requires an initial orientation (during both
training and testing), which we sample within 45◦ of the
ground truth. c) OrienterNet (planar) replaces the occupancy
by warping the image features with a homography as in [62].

Analysis – Table 2: OrienterNet is significantly more accu-

rate than all baselines at all position and rotation thresholds.
a) Map retrieval disregards any knowledge of projective
geometry and performs mere recognition without any geo-
metric constraint. b) Featuremetric refinement converges to
incorrect locations when the initial pose is inaccurate. c) In-
ferring the 3D geometry of the scene is more effective than
assuming that it is planar. This justifies our design decisions.

Model interpretability: We visualize in Fig. 7 multiple
internal quantities that help us understand the predictions.

6.2. Application: autonomous driving

Dataset: We consider the localization in driving scenarios
with the KITTI dataset [24], following the closest existing
setup [62]. To evaluate the zero-shot performance, we use
their Test2 split, which does not overlap with the KITTI and
MGL training sets. Images are captured by cameras mounted
on a car driving in urban and residential areas and have GT
poses from RTK. We augment the dataset with OSM maps.

Setup: We compute the position error along directions per-
pendicular (lateral) and parallel (longitudinal) to the viewing
axis [62] since the pose is generally less constrained along
the road. We report the recall at 1/3/5m and 1/3/5◦. The orig-
inal setup [62] assumes an accurate initial pose randomly
sampled within ±20m and ±10◦ of the GT. OrienterNet does
not require such initialization but only a coarse position-only
prior. For fair comparisons, we nevertheless restrict the pose
space to the same interval centered around the initial pose.
We render 64m×64m map tiles and resize the images such
that their focal length matches the median of MGL.

Baselines: We report approaches based on satellite maps
and trained by [62] on KITTI. VIGOR [82] and DSM [64]
both perform patch retrieval with global descriptors but re-
spectively estimate an additional position offset or the orien-
tation. We also evaluate the featuremetric refinement [59,62]
and baselines based on OSM maps, described in Sec. 6.1.
As each scene is visited by a single trajectory, we cannot
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City Setup Approach Position R@Xm Orientation R@X◦

1m 3m 5m 1◦ 3◦ 5◦

Se
at

tle

single GPS 1.25 8.82 18.44 - - -
retrieval [56, 77] 0.88 3.81 5.95 2.83 8.36 12.96
OrienterNet 3.39 14.49 23.92 6.83 20.39 30.89

multi GPS 1.76 9.2 20.48 4.18 11.01 23.36
OrienterNet 21.88 61.26 72.92 33.86 72.41 83.93

D
et

ro
it

single GPS 3.96 27.75 51.33 - - -
retrieval [56, 77] 3.31 19.83 36.76 6.48 18.40 28.88
OrienterNet 6.26 32.41 51.76 15.53 39.06 54.41

multi GPS 4.09 31.36 53.41 13.48 37.84 55.24
OrienterNet 17.18 68.77 89.26 44.85 88.04 96.04

Table 4. Localization of head-mounted devices for AR. With
data from Aria glasses, OrienterNet outperforms the map retrieval
baseline and the embedded GPS sensor in both single- and multi-
frame settings, in both cities. Multi-frame fusion does not filter out
the high noise of the GPS but strongly benefits our approach.

evaluate approaches based on 3D maps and image matching.

Results: Table 3 (a-b) shows that OrienterNet outperforms
all existing approaches based on both satellite and OSM
maps, in all metrics. OrienterNet exhibits remarkable zero-
shot capabilities as it outperforms approaches trained on
KITTI itself. The evaluation also demonstrates that planimet-
ric maps yield better localization, as retrieval and refinement
approaches based on them outperform those based on satel-
lite images. The recall at 3m/3◦is saturated to over 95% by
fusing the predictions from sequences of only 20 seconds.

Generalization: Table 3 (c-d) shows that training Orienter-
Net solely on KITTI results in overfitting, as the dataset is
too small to learn rich semantic representations. Our larger
MGL dataset alleviates this issue and enables cross-modal
learning with rich semantic classes. Pre-training on MGL
and fine-tuning on KITTI yields the best performance.

6.3. Application: augmented reality

We now consider the localization of head-mounted de-
vices for augmented reality (AR). We show that OrienterNet
is more accurate than a typical embedded GPS sensor.

Dataset: There is no public benchmark that provides geo-
aligned GT poses for images captured with AR devices in
diverse outdoor spaces. We thus record our own dataset
with Aria [1] glasses. It exhibits patterns typical of AR with
noisy consumer-grade sensors and pedestrian viewpoints
and motions. We include two locations: i) downtown Seattle,
with high-rise buildings, and ii) Detroit, with city parks and
lower buildings. We record several image sequences per city,
all roughly following the same loop around multiple blocks.
We record calibrated RGB images and GPS measurements
for each and obtain relative poses and gravity direction from
an offline proprietary VI SLAM system. We obtain pseudo-
GT global poses by jointly optimizing all sequences based
on GPS, VI constraints, and predictions of OrienterNet.
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Figure 7. End-to-end but interpretable. From only pose supervi-
sion, OrienterNet learns to infer the 3D geometry of the scene via
the depth planes α and the 2D occupancy via the confidence C.

Single-frame localization – Table 4: OrienterNet is con-
sistently more accurate than the GPS, which is extremely
noisy in urban canyons like Seattle because of multi-path
effects. The performance is however significantly lower than
with driving data (Sec. 6.2), which highlights the difficulty
of AR-like conditions and the need for further research.

Multi-frame: We now fuse multiple GPS signals or predic-
tions of OrienterNet over the same temporal interval of 10
consecutive keyframes, using imperfect relative poses from
VI SLAM. The fusion more than doubles the accuracy of
OrienterNet but marginally benefits the GPS sensor because
of its high, biased noise, especially in Seattle.

Limitations: Localizing an image or a sequence is chal-
lenging when the environments lacks distinctive elements or
when they are not registered in the map. OSM may also be
spatially inaccurate. Appendix A shows some failure cases.

7. Conclusion
OrienterNet is the first deep neural network that can lo-

calize an image with sub-meter accuracy within the same
2D planimetric maps that humans use. OrienterNet mimics
the way humans orient themselves in their environment by
matching the input map with a mental map derived from
visual observations. Compared to large and expensive 3D
maps that machines have so far relied on, such 2D maps are
extremely compact and thus finally enable on-device local-
ization within large environments. OrienterNet is based on
globally and freely available maps from OpenStreetMap and
can be used by anyone to localize anywhere in the world.

We contribute a large, crowd-sourced training dataset that
helps the model generalize well across both driving and AR
datasets. OrienterNet significantly improves over existing
approaches for 3-DoF localization, pushing the state of the
art by a large margin. This opens up exciting prospects for
deploying power-efficient robots and AR devices that know
where they are without costly cloud infrastructures.
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