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Figure 1. OReX reconstructs smooth 3D shapes (right) from input planar cross-sections (left). Our neural field-based prior allows smooth
interpolation between slices while respecting high-frequency features and self-similarities.

Abstract

Reconstructing 3D shapes from planar cross-sections is
a challenge inspired by downstream applications like med-
ical imaging and geographic informatics. The input is an
in/out indicator function fully defined on a sparse collection
of planes in space, and the output is an interpolation of the
indicator function to the entire volume. Previous works ad-
dressing this sparse and ill-posed problem either produce
low quality results, or rely on additional priors such as target
topology, appearance information, or input normal direc-
tions. In this paper, we present OReX, a method for 3D shape
reconstruction from slices alone, featuring a Neural Field as
the interpolation prior. A modest neural network is trained
on the input planes to return an inside/outside estimate for a
given 3D coordinate, yielding a powerful prior that induces
smoothness and self-similarities. The main challenge for
this approach is high-frequency details, as the neural prior
is overly smoothing. To alleviate this, we offer an iterative
estimation architecture and a hierarchical input sampling
scheme that encourage coarse-to-fine training, allowing the
training process to focus on high frequencies at later stages.

In addition, we identify and analyze a ripple-like effect stem-
ming from the mesh extraction step. We mitigate it by regular-
izing the spatial gradients of the indicator function around
input in/out boundaries during network training, tackling
the problem at the root. Through extensive qualitative and
quantitative experimentation, we demonstrate our method
is robust, accurate, and scales well with the size of the in-
put. We report state-of-the-art results compared to previous
approaches and recent potential solutions, and demonstrate
the benefit of our individual contributions through analysis
and ablation studies. 1

1. Introduction
Reconstructing a 3D object from its cross-sections is a

long-standing task. It persists in fields including medical
imaging, topography mapping, and manufacturing. The typi-
cal setting is where a sparse set of arbitrary planes is given,
upon which the “inside” and “outside” regions of the de-

1Code and data available at https://github.com/haimsaw/
OReX
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picted domain are labeled, and the entire shape in 3D is to
be estimated (see Fig. 1). This is a challenging and ill-posed
problem, especially due to the sparse and irregular nature
of the data. Classical approaches first localize the problem
by constructing an arrangement of the input planes, and
then introduce a local regularizer that governs the interpo-
lation of the input to within each cell. While sound, these
approaches typically involve simplistic regularization func-
tions, that only interpolate the volume within a cell bounded
by the relevant cross-sections; as a consequence, they intro-
duce over-smoothed solutions that do not respect features.
In addition, finding a cellular arrangement of planes is a
computationally-heavy procedure, adding considerable com-
plexity to the problem and rendering it quickly infeasible
for large inputs (see Sec. 4). As we demonstrate (Sec. 4),
recent approaches that reconstruct a mesh from an input
point cloud are not well suited to our setting, as they assume
a rather dense sampling of the entire shape. In addition,
these methods do not consider the information of an entire
cross-sectional plane, but rather only on the shape boundary.

In this paper, we introduce OReX—a reconstruction ap-
proach based on neural networks that estimates an entire
shape from its cross-sectional slices. Similar to recent ap-
proaches, the neural network constitutes the prior that ex-
trapolates the input to the entire volume. Neural networks
in general have already been shown to inherently induce
smoothness [17], and self-similarities [12], allowing natural
recurrence of patterns. Specifically, we argue that Neural
Fields [25] are a promising choice for the task at hand. Neu-
ral Fields represent a 3D scene by estimating its density and
other local geometric properties for every given 3D coordi-
nate. They are typically trained on 2D planar images, and are
required to complete the entire 3D scene according to multi-
view renderings or photographs. This neural representation
is differentiable by construction, and hence allows native
geometric optimization of the scene, realized via training.
We pose the reconstruction problem as a classification of
space into “in” and “out” regions, which are known for the
entire slice planes, and thus generate the indicator function
which its decision boundary is the output shape.

The main challenge with applying neural fields to this
problem is high-frequency details. Directly applying es-
tablished training schemes [19] shows strong spectral bias,
yielding overly smoothed results and other artifacts (Fig. 12).
Spectral bias is a well-known effect, indicating that higher
frequency is effectively learned slower [22]. To facilitate
effective high-frequency learning, avoiding the shadow cast
by the low frequency, we introduce two alterations. First, we
sample the planar data mostly around the inside/outside tran-
sition regions, where the frequencies are higher. This sam-
pling is further ordered from low to high-frequency regions
(according to the distance from the inside/outside boundary),
to encourage a low-to-high-frequency training progression.

In addition, we follow recent literature and allow the net-
work to iteratively infer the result, where later iterations are
responsible for finer, higher-frequency corrections [1, 23].

Finally, we consider another high-frequency artifact, also
found in other neural-field-based works [9]. The desired
density (or indicator) function dictates a sharp drop in value
at the shape boundary. This is contradictory to the induced
neural prior, causing sampling-related artifacts in the down-
stream task of mesh extraction (Sec. 3.4). To alleviate this,
we penalize strong spatial gradients around the boundary
contours. This enforces a smoother transition between the in
and out regions, allowing higher-quality mesh extraction.

As we demonstrate (see Fig. 1), our method yields state-
of-the-art reconstructions from planar data, both for woman-
made and organic shapes. The careful loss and training
schemes are validated and analyzed through quantitative and
qualitative experimentation. Our method is arrangement-
free, and thus both interpolates all data globally, avoiding
local artifacts, and scales well to a large number of slices
(see Sec. 4).

2. Related work
Reconstruction from cross-sections Reconstruction from
planar cross-section has been a long-standing challenge in
geometry processing and computational geometry. The
problem was mostly studied in the parallel planes setting
(e.g., [2,3,5]), where the 3D object was reconstructed per two
such “keyframes”. Later work offered general solutions for
any orientation or distribution of planes [4, 16]. The general
approach was based on tessellating the planes into convex
cells by the planes of the arrangement and reconstructing
the object in each cell, by defining some interpolant inside it.
These methods suffer from several issues: the construction
of the arrangement is computationally expensive (with at
least cubic asymptotic times), and the local reconstruction
introduces continuity artifacts (see Sec. 4). Furthermore,
the interpolants were usually designed for smoothness or
proximity, and failed to capture more global trends in the
geometry of the slices, such as twists or extrusions (see
Fig. 6). Some works provide topological guarantees [14, 26]
or limited the solution to given templates [13], but do not
provide a general solution without these priors. Our work
is arrangement-free and provides a flexible high-parametric
model, using neural networks, to capture the details of the
reconstructed object.

Neural reconstruction Most recent reconstruction works
employing neural networks address reconstruction from
dense point clouds. Our problem could be cast as a point
cloud reconstruction one, after sampling the planes. In
this setting, the high-frequency problem is pronounced as
in our case, and even more so since more information re-
garding the target shape is available. Almost all recent ap-
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Figure 2. OReX method overview. The input (left) is a set of planar cross-sections with inside/outside information on them. The planes are
sampled into points in a hierarchical scheme, and are fed to our iterative Neural Field for training. After training, the final shape is estimated
using an off-the-shelf mesh extractor.

Figure 3. We train OReX on three types of sampling distributions
of the input: A scaled-up version of the 3D convex hull bounds
the reconstruction volume (left); Uniform sampling within each
plane helps stabilize the learning (middle); most of the samples
are concentrated where accuracy matters most—on and around the
boundary contours on the input planes (right).

proaches employ an implicit representation of the shape.
Some works populate 3D (sometimes adaptive) grids to han-
dle fine-details [7, 8, 18, 24], which is challenging to scale.
Other works [6, 21] perform local operations, which rely
on a rather dense neighborhood. To alleviate this, a mesh
can be directly optimized to match the input [12]. Other
neural fields have been employed as well in this context [17],
without additional information such as normals; see a re-
cent survey for more approaches [25]. As we demonstrate
(Sec. 4), this general line of works employs weaker priors,
which do not fit the sparse nature of our problem well.

Perhaps a more similar setting is the one of reconstruction
from projections or photographs. Here the reconstructions
are from 2D data as well, which is also of sparser nature,
albeit using appearance information that we do not have.
Literature in this field is deep and wide, with several surveys
[10, 11], including the usage of neural fields. We argue our
work is orthogonal to that listed here, as it can be plugged
in to replace our basic neural-field baseline. We leave for

future work to inspect the most performing architecture.
Addressing the most similar problem setting, concurrent
work by Ostonov et al. [20] employs reinforcement learning
and orthographic projections to ensure proper reconstruction.
Except for requiring additional information during inference,
they also require a training phase and are restricted to the
domain trained on. Our approach, in contrast, requires no
additional information besides the planes.

3. Method

We next lay out the details for effective high-quality shape
reconstruction from slices. Our approach is based on a neural
field, OReXNet. OReXNet outputs Y (x), an extrapolation of
the inside/outside indicator function for a query point x ∈ R3

(Sec. 3.1). Given a single set of input cross-sections, the net-
work undergoes training to approximate the target function
on the input. After training is complete, Y is sampled on
the entire volume, and a resulting shape is extracted using
the Dual Contouring (DC) approach [15]. This pipeline is
depicted in Fig. 2.

As motioned in Sec. 1, the main challenge in reconstruc-
tion quality is high-frequency details. The straightforward
approach to our problem would be to train a neural field
for the desired indicator function by uniformly sampling all
planes, and subsequently training a network using a Binary
Cross Entropy (BCE) loss on all sampled points. Typical
approaches also represent the input coordinates using Po-
sitional Encoding (PE) [19]. As it turns out, this approach
yields overly smooth results failing even to interpolate the
input (Fig. 12). To improve reconstruction fidelity, and allow
higher frequency details in the resulting shape, we introduce
two alterations to the aforementioned training scheme. We
present our hierarchical input sampling scheme in Sec. 3.2,
and our iterative-refinement architecture in Sec. 3.3.
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Finally, we also address a common artifact in implicit
mesh extraction [9]. Repeating patterns can be seen that cor-
relate to the sampling pattern of the mesh extraction phase,
as demonstrated in Fig. 8. We describe how we design the
loss function to mitigate this artifact in Sec. 3.4. See the
Supplementary material and code for implementation details
and hyper-parameter values.

3.1. Problem Setting

We consider a set P = {P1, · · · , Pk} of 2D planes em-
bedded in R3, with arbitrary offsets and orientations. Each
plane Pi contains an arbitrary set of (softly) non-intersecting
oriented contours Ci = {ci,1, · · · , ci,li} that consistently
partition the plane into regions of “inside” and “outside” of
an unknown domain Ω ⊂ R3 with boundary ∂Ω (Fig. 2).
The target output of our method is an indicator function
Y : R3 → R, defining Ω as:

Y (x) =


1 x /∈ Ω

0 x ∈ Ω

0.5 x ∈ ∂Ω

(1)

In practice, we approximate Y using a function f , such that
Y (x) ≈ σ (f (x)), where σ(z) = 1

1+e−z is the sigmoid
function.

3.2. Input Sampling

Regularly or randomly sampling the input planes for train-
ing yields inaccurate and overly smooth results (see Fig. 12).
Instead, we define three types of relevant point distributions
to sample from, as depicted in Fig. 3:

1. We bound the reconstructed volume by the 3D convex
hull of all the input contours, and scale it up by 5%. We
consequently sample it uniformly, where the sampled
points are all outside.

2. We compute the bounding box (aligned to the principal
axes) of the contours in each plane, and sample it with
uniform distribution.

3. Most samples are taken around the boundaries of the
contours, as these are the regions where accuracy mat-
ters most. We then sample every contour edge evenly,
and further add off-surface points of varying distances
for each edge sample. Off-surface locations are found
by moving away from the contour on the plane (i.e., in
the direction of the plane normal). We further sample
off-surface points in a circle around each vertex.

Each sampling point xi is matched with a label Yi ac-
cording to its position on the slice, and the pairs {xi, Yi}
constitute the input to our training. See supplementary mate-
rial for the relevant hyperparameters.

Frequency-Oriented Sampling. In order to encourage
better high-frequency learning, we sample the 3rd type of
points around a set of varying distances, from 0.1% of the
bounding box away from the contours to three orders of mag-
nitude closer. In every epoch, we only use points sampled
around three consecutive distance ranges. For early training
iterations, we use the three largest distances, since further
away points translate to lower frequency information about
the shape. As the training progresses, and the lower fre-
quencies are assumed to stabilize, we train with points that
grow closer and closer to the actual contour, thus focusing
the learning process on higher and higher frequencies (see
Fig. 11). See supplementary material for more details and
exact scheduling.

3.3. Architecture

OReXNet is simply an MLP that takes a 3D coordinate
as input, represented using positional encoding, and pro-
duces the function Y (Sec. 3.1) at any query point. In order
to encourage high-frequency details, we introduce an iter-
ative refinement mechanism. Inspired by recent work [1],
we allow the network to refine its own results by running
them through the network for a small number of iterations.
This process was previously shown to produce a coarse-to-
fine evolution in the realm of 2D images [1], and we argue
it applies to our case as well. As demonstrated in Fig. 2,
ORexNet is hence a residual MLP that is fed the result of the
previous iteration, and a small hidden state code, along with
the query point. These iterations (10 in our experiments) are
performed both during training and inference; at inference
time, only the last result is taken, and during training, the
loss is applied to the results of all steps. The first iteration
starts from a learned constant C. We show that this process
indeed sharpens features and allows the incorporation of
higher-frequency details in Fig. 13.

3.4. Loss Function and Inference

In order to present our loss function, we must first at-
tend to an issue in the final stage of our pipeline. In this
stage, we extract an explicit mesh for the boundary of the
indicator function using Dual Contouring [15]. This step
uses a discretely sampled version of Y (x) and ∇Y (x) on a
regular 3D grid to extract the mesh. As can be seen in Fig. 8
(and as witnessed other works [9]), this creates a ripples-like
artifact, that correlates to the 3D grid resolution. This results
from an aliasing of the sampling in these regions where the
gradient magnitudes exhibit high variance. This effect could
be mitigated via higher resolution grid sampling, which is
expensive, or a post-process operation that may compromise
the geometry. Instead, we propose revisiting the loss func-
tion of the training process, and incorporating regularization
to reduce this sharp drop in value at the shape boundary.
First, we omit the activation—in other words, we use the
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Figure 4. Results gallery. A qualitative demonstration of a collection of man-made and medical inputs. Zoomed-in viewing is recommended.

Figure 5. Additional qualitative results, where transparency reveals
the reconstruction of internal cavities and tunnels. Zoomed-in
viewing is recommended.

function f(x) for contouring, while using Y (x) only for
training (Sec 3.1). This de-radicalizes the function values, al-
ready offering a softer transition between inside and outside
regions. In addition, we explicitly penalize strong transitions
by using a hinge loss (Eq. 2). With this, we reduce the gradi-
ent magnitude variance considerably by limiting them close
to the input shape boundary. Our loss function for a single

point x is then

L(x, θ) =
N−1∑
i=0

BCE(Yi(x))+λmax (0, ||∇fN−1(x)|| − α)

(2)
Where σ is the sigmoid function, θ are the parameters of the
network, BCE() is the binary cross-entropy loss applied
to all outputs of our iterative scheme, max(0, x) is a hinge
loss applied only to the last OReXnet iteration, N the num-
ber of iterations, and α and λ are hyperparameters. Fig. 8
demonstrates the correction effect of the hinge loss.

4. Experiments
To evaluate our method, we developed a prototype, and

ran it on a NVIDIA GeForce GTX 1080 Ti. See the Supple-
mentary Material for exact timing and memory consumption
statistics. Generally speaking, all training processes took
less than four hours on the single GPU.

4.1. Results and Comparisons

We first qualitatively demonstrate the result of our method
on a variety of slice inputs, from both the medical and graph-
ics worlds (Fig. 4). This demonstrates the versatility and
generality of our method. We further show our our algo-
rithm correctly reproduces the internal cavities and details
of reconstructed objects in Fig. 5. Note how intricate details
are learned along side a smooth interpolation between slices,
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[Bermano et al. 2011]

[Hanocka et al. 2020] 

(plane normals)

[Hanocka et al. 2020] 

(GT normals)

Our result

(No original mesh)

Figure 6. Qualitative comparisons to other approaches. Our result is smoother, more aligned to features, and with less artifacts. Note how
the reconstructed shape silhouettes does not suffer imprints from the input planes. Check Table 1 for quantitative comparison.

leaving no slice transition artifacts on the resulting shape.
In terms of other methods, we qualitatively (Fig. 6) and

quantitatively (Table 1) compare our method to Bermano et
al. [4], which is a reconstruction from cross-section method
with the same input-output as ours. We further compare to
general state-of-the-art reconstruction methods that target
point clouds [12]. Hanocka et al. [12] expect point normals
as input as well. Hence we compare our result to the latter
work with Ground Truth (GT) normals at input, and with
ones coming from the input plane normals for a fairer com-
parison. We use the following metrics: 1) intersection-over-
union volume of inside regions in reconstructed volumes and
2) GT planes, and 3) symmetric Hausdorff distance. These
metrics demonstrate our superiority over the compared meth-
ods. See Supplementary Material for more comparisons.

Scalability We show that our method does not suffer the
computational cost that arrangement-based methods [4, 14,
16] must bear, since we do not tessellate the space, and hence
scale well with the input. In addition, we show (Fig. 7) how
our method converges with the addition of slices.

4.2. Ablations

We perform ablation testing to evaluate important aspects
of our method and our design choices.

15 slices5 slices 10 slices7 slicesGT

Figure 7. Increasing number of slices. As can be expected, intro-
ducing more slices converges consistently converges to the solution.

Gradient magnitude regularization (Fig. 8) We show the
effect of the hinge-loss regularizer on gradient magnitudes,
with increasing λ values. It is evident the hinge loss effec-
tively filters out the high variance, and smooths the ripple
artifacts. As can be seen (bottom row), without our hinge
loss, geometry vertices tend to snap to discrete locations
during the mesh extraction phase. This is because a large
gradient induces a large bias in the magnitude of the indica-
tor function, encouraging vertices to remain close to the grid
points sampled during the extraction step. Regularizing the
gradients around the boundry regions (top row) decreases the
gap between the positive and negative sides of the function,
allowing a more uniform, and hence continuous, distribution
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of the mesh vertices. With this bias removed, the resulting
geometry is better sampled and hence the ripple artifact is
mitigated (middle).

𝜆 = 0 𝜆 = 10−6 𝜆 = 10−4 𝜆 = 10−2
Figure 8. Left to right: our Hinge loss effect for mitigating ripple-
like aliasing artifacts. Top: output values of f(x) on a single slice
(arrows show gradients). Middle: The reconstructed mesh with a
closer view on the top of the skull. Bottom: distribution of vertices
along grid edges during mesh extraction. It is evident the hinge loss
effectively controls gradient magnitudes at the zero set, curbing the
aliasing artifacts. The hinge regularization further allows to place
more vertices in the middle of the sampled grid cells, and not only
on their edges.

Iterative architecture (Fig. 9) This ablations examines the
effect of the number of refinement iterations on the accuracy
of the mesh produced. As can be expected, the results show
that as the number of iterations increases, high-frequency
details are better represented.

1 Iteration 5 Iterations 10 Iterations

Figure 9. Iterative refinement experiment. Training and inferring
with more OReXNet refinement iterations allows the network to
perform smaller scale corrections and reduces spectral bias.

Sampling method To evaluate our importance sampling
scheme, we first replace it with regular grid sampling in
two resolutions (Fig. 10). As can be seen, using each of
the resolutions alone yields overly smoothed results due to
spectral bias. Training with a gradually increasing resolution
allows better handling of high-frequency details. In addition,
we have demonstrate the effects on quality when using our
importance scheme in a non-hierarchical manner, i.e. using
all points uniformly without consideration of distance from
the boundary (Fig. 11). As can be seen, our scheme improves
in detail quality upon both experiments, demonstrating that
our sampling scheme produces more accurate results with
less spectral bias while using fewer samples.

64

128

Refine

GT OReX

Figure 10. Sampling scheme Ablations. Left: ground truth. Middle:
grid sampling with different resolutions, and a gradually increasing
sampling resolution over the training process. Right: our method.

Figure 11. Left: non-hierarchical sampling, using points from
all off-surface distances uniformly. Right: using our hierarchical
sampling scheme.

Choice of architecture and sampling (Fig. 12) We justify
our design choices by training a baseline architecture with
uniform grid sampling and no iteration refinement. It is
evident such a model does not preserve details nor interpolate
well, even for a relatively simple case.
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Input
Hausdorff distance IoU in 3d IoU in 2d

OReX Bermano et. al point2mesh point2mesh OReX Bermano et. al point2mesh point2mesh OReX Bermano et. al point2mesh point2mesh
plane normals GT normals plane normals GT normals plane normals GT normals

Eight (S) 0.018 0.065 0.219 0.046 0.984 0.865 0.842 0.961 0.988 0.984 0.795 0.980
Eight (M) 0.006 0.033 0.045 0.014 0.987 0.893 0.915 0.974 0.986 0.976 0.961 0.971
Elephant 0.056 0.081 0.100 0.086 0.966 0.908 0.885 0.935 0.975 0.969 0.850 0.908

Balloon dog 0.049 0.194 0.078 0.086 0.957 0.868 0.897 0.928 0.988 0.977 0.926 0.956
Hand OK 0.063 0.177 0.195 0.135 0.955 0.860 0.921 0.931 0.987 0.968 0.908 0.882
Armadillo 0.050 0.121 0.057 0.059 0.939 0.891 0.891 0.921 0.964 0.776 0.850 0.868

Table 1. Quantitative comparisons. We measure performance using Hausdorff distance, IoU of the inner volume compared to the GT shape,
and IoU of the inner surface on the input cross-sections. We compare our result to a dedicated cross-section based reconstruction method [4],
and to two flavors of a pointcloud reconstruction method [12]. See more comparisons in the Supplementary Material.

77824 Samples 262144 Samples 361104* Samples

Figure 12. Left and middle: the baseline experiment with regular
grid samples of 64 and 128 resolution over the slices. Right: our
result for the same amount for samples (our variable number of
samples is provided at its mean).

𝑖

max 𝑎𝑏𝑠 𝜎 𝑓 𝑥 𝑖 − 𝜎 𝑓 𝑥 𝑖−1

Figure 13. Refinement progression throughout the iteration process.
The maximum change in the output value decreases along the
iterations. Right: points that were added to the shape (Red) and
that were removed from it (blue) in the last refinement iteration.
These are concentrated on the level set, whereas most other points
(green, covering all internal regions) have already converged.

5. Conclusions

We have presented OReX, a state-of-the-art method for
the long-standing problem of shape reconstruction from pla-
nar cross-sectional indicator data. Free of datasets and train-
ing requirements, OReX is simple and intuitive to use. Our

work balances the smoothness of a neural prior with high-
frequency features. We show our approach successfully
produces smooth interpolation between contours while re-
specting high-frequency features and repeating patterns. In
addition, we believe some of the analysis and insights pre-
sented here can be applied to neural fields in similar tasks.

The advantage of our method is also its disadvantage:
using only binary data, much of the information is lost in the
process. For example, for medical imaging an interesting
future direction would be to directly use the raw grayscale
density input of a planar probe such as that comes from
an ultrasound. Another interesting direction for research
is extending this work for multi-labeled volumes (e.g., the
reconstruction of several organs simultaneously from a scan),
and using partial or noisy data.
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