
 

 

 
Figure 1: Results of our proposed Re-GAN where dynamically GANs architecture is reconfigured to explore different GANs sub-
network structures during training time. (left) Image generation trained on multiple few-shot generation datasets, such as 100-shot 
Obama [1], Panda [1], and Animal Face-Cat (A-Cat) [2]; (right) FID scores vs. CIFAR-10 [3] training set size with training cost, FLOPs. 
Best viewed in color.  

 
Abstract 

 
Training Generative Adversarial Networks (GANs) on 
high-fidelity images usually requires a vast number of 
training images. Recent research on GAN tickets reveals 
that dense GANs models contain sparse sub-networks or 
"lottery tickets" that, when trained separately, yield better 
results under limited data. However, finding GANs tickets 
requires an expensive process of train-prune-retrain. In 
this paper, we propose Re-GAN, a data-efficient GANs 
training that dynamically reconfigures GANs architecture 
during training to explore different sub-network structures 
in training time. Our method repeatedly prunes 
unimportant connections to regularize GANs network and 
regrows them to reduce the risk of prematurely pruning 
important connections. Re-GAN stabilizes the GANs 
models with less data and offers an alternative to the 
existing GANs tickets and progressive growing methods. 
We demonstrate that Re-GAN is a generic training 
methodology which achieves stability on datasets of 
varying sizes, domains, and resolutions (CIFAR-10, Tiny-
ImageNet, and multiple few-shot generation datasets) as 
well as different GANs architectures (SNGAN, ProGAN, 

StyleGAN2 and AutoGAN). Re-GAN also improves 
performance when combined with the recent augmentation 
approaches. Moreover, Re-GAN requires fewer floating-
point operations (FLOPs) and less training time by 
removing the unimportant connections during GANs 
training while maintaining comparable or even generating 
higher-quality samples. When compared to state-of-the-art 
StyleGAN2, our method outperforms without requiring any 
additional fine-tuning step. Code can be found at this link: 
https://github.com/IntellicentAI-Lab/Re-GAN 
 

1. Introduction 
In recent years, Generative adversarial networks 

(GANs) [4]–[7] have made great strides in generating high-
fidelity images. The GANs models serve as the backbone 
of several vision applications, such as data augmentation 
[5], [8], [9], domain adaptation [10], [11], and image-to-
image translation [14]–[16]. 

The success of the GANs methods largely depends on a 
massive quantity of diverse training data, which is often 
time-consuming and challenging to collect [17]. Figure 1 
shows how the performance of the StyleGAN2 [18] model 
drastically declines under the limited training data. As a 
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result, various new methods [1], [19], [20] have emerged 
to deal with the problem of insufficient data. Dynamic 
data-augmentation [1], [19]–[21] fills in the gap and 
stabilizes GANs training with less data. Very recently, 
[22], [23] introduced the lottery ticket hypothesis (LTH) in 
GANs (called “GANs tickets”), a complementary to the 
existing augmentation techniques. LTH identifies sparse 
sub-networks (called “winning tickets”) that can be trained 
in isolation to match or even surpass the performance of 
unpruned models. [24] demonstrated that an identified 
GANs ticket can be used as a sparse structural prior to 
alleviate the problem of limited data in GANs. However, 
identifying these winning tickets requires many iterations 
of a time-consuming and computationally expensive train-
prune-retrain process. This results in high training time and 
a number of floating-point operations (FLOPs) than 
training a dense GANs models, such as StyleGAN2 [18] 
and BigGAN [5]. In addition, these methods train a full-
scale model before pruning, and then, after the pruning 
process, they engage in an extra fine-tuning to improve the 
performance. Given this perspective, we ask: 

Is there any way to achieve training efficiency w.r.to 
both data and computation in GANs while preserving or 
even improving its performance? 

One potential solution is network pruning during 
training, which can allow the exploration of different sub-
network structures in training-time. Network structure 
exploration during training has shown to be effective in a 
variety of domains [25], [26], and its properties have been 
the subject of a significant amount of research [27], [28]. 
However, network pruning is never introduced to GANs 
training; as a result, the investigation of different sub-
network structures exploration during GANs training 
remains mysterious.  

To address this gap in the literature, we investigate and 
introduce the network pruning, i.e., connections, in GANs 
training by dynamically reconfiguring GANs architecture 
to allow the exploration of different sub-network structures 
in training time, dubbed as Re-GAN. However, on the 
other hand, it is common knowledge that the learning 
capabilities of the two competing networks—a generator 
(G) and a discriminator (D), need to be carefully 
maintained equilibrium in their respective capabilities for 
learning. Hence to build Re-GAN, the first question is: how 
to explore different network structures during GANs 
training? Network pruning during training regularizes the 
G to allow a robust gradient flow through G. This stabilizes 
the GANs models under limited training data and improves 
training efficiency. Re-GAN repeatedly prunes and grows 
the connections during the training process to reduce the 
risk of pruning important connections prematurely and 
prevent the model from losing its representational 
capabilities early in the training process. As a result, 
network growing provides a second opportunity to 

reinitialize pruned connections by reusing information 
from previously explored sub-network structures. 
 

 
Figure 2: Conventional GANs training has fixed connectivity 
space. Re-GAN uses network pruning and growing during 
training to make connectivity space flexible that helps in the 
propagation of robust gradients. Best viewed in color. 
 

The second question is: how to explore different sub-
network structures in G and D simultaneously? On the one 
hand, if we employ a pretrained D (or G) and prune solely 
for G (or D), it can quickly incur an imbalance between the 
capabilities of D or G (particularly in the early stage of 
training), resulting in slow convergence. While it is 
possible to prune for G and D simultaneously, empirical 
experiments show that doing so significantly degrades the 
initial unstable GANs training, resulting in highly 
fluctuating training curves and, in many cases, a failure to 
converge. As a trade-off, we propose expanding D as per 
standard GANs training while applying pruning 
exclusively to G's architecture. 

Additionally, our method is robust, working well with a 
wide range of GANs architectures (ProGANs [29], 
SNGAN [30], StyleGAN2, and AutoGAN [31], [32]) and 
datasets (CIFAR-10 [3], Tiny-ImageNet [33], Flickr Faces 
HQ [34], and many few-shot generation datasets). We find 
that exploring different sub-network structures during 
training accounts for a significant decrease in FID score 
compared to the vanilla DCGAN [35] architecture without 
a pre-trained model or fine-tuning the pruned model (see 
Figure 2). Our method delivers higher performance in less 
training time to state-of-the-art (SOTA) methods on most 
available datasets without additional hyperparameters that 
progressive growing method introduces, such as training 
schedules and learning rates for different generation stages 
(resolutions). This robustness allows the Re-GAN to be 
easily generalized on unseen datasets.  

To the best of our knowledge, Re-GAN is the first 
attempt to incorporate network pruning during GANs 
training. Our technical innovations are as follows: 
• We conduct the first in-depth study on taking a unified 

approach of incorporating pruning in GANs training 
without pre-training a large model or fine-tuning the 
pruned model.  

• Our method repeatedly prunes and grows the 
connections during training to reduce the possibility of 
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pruning important connections and helps the model to 
maintain its representation ability early in training. 
Thus, network growing gives another chance to 
reinitialize pruned connections from the explored 
network sub-structures.  

• Extensive experiments are conducted across a wide 
range of GANs architectures and demonstrated that 
Re-GAN could be easily applied on these GANs 
architectures to improve their performances, both in 
regular and low-data regime setups. For example, for 
the identified winning GANs ticket, ProGAN and 
StyleGAN2 on full CIFAR-10, we achieve 70.23%, 
18.81%, and 19% training FLOPs savings, 
respectively, while improved generated sample quality 
for both full and 10% training data. Re-GAN presents 
a viable alternative to the GANs tickets and 
progressive growing techniques. Additionally, the 
performance of Re-GAN is enhanced when integrated 
with recent augmentation techniques.  

2. Related Works 
Stabilize the GANs training. In recent years, different 

loss functions [4], [36], [37], regularization [30], [38], and 
architectural designs [39], [40] have all been proposed as 
ways to enhance GANs [6]. Our efforts are in the category 
of network architecture design. Recently, state-of-the-art 
(SOTA) models like StyleGAN2 and BigGAN have 
suggested making networks deeper and wider. They have 
also shown that training deep GANs networks usually leads 
to better generalization. However, a deeper model with 
more convolution layers results in a longer training time 
for GANs. This is because a deeper model contains a 
greater number of model parameters and a weaker gradient 
flow via G [29], [41], [42]. The findings of Progressive 
GAN (ProGAN) [29] show that gradually growing and 
training both networks together from a lower resolution, 
stabilizes the training and enhances the generation quality. 
MSG-GAN [39] introduced a solution to the gradient flow 
issue in which G gets feedback from a number of different 
resolutions simultaneously. Nevertheless, these methods 
further add to the computational cost, necessitating an even 
high amount of GPU memory and more training time.  

GANs compression. GANs, like other deep neural 
networks, excel in image generation and translation tasks 
[29], [43]–[45], but suffer from high computational 
complexity and memory requirements. Han et al. [46] 
introduced a co-evolutionary pruning technique for GANs 
compression, while Wang et al. [47] proposed quantizing 
GANs to 1 or 2 bits. Li et al. [48] used distillation to 
improve compressed D with a pre-trained GANs model, 
and Wang et al. [49] combined these three techniques into 
one framework. Although impressive results were 
achieved in training compressed G with a pre-trained D 
[50], existing GANs compression approaches require pre-

training an over-parameterized model, limiting training 
efficiency. Meanwhile, [51] proposed dynamic network 
size modification during training, but design space 
exploration is constrained by network augmentation. Our 
approach injects sparsity during training to enhance 
generalization, stabilize GANs with limited data, and 
improve training efficiency, distinguishing it from these 
inference-focused techniques. 

Lottery Ticket Hypothesis (LTH). Recently, [22]–[24] 
have shown the existence of winning tickets in the min-
max game beyond minimization by extending LTH to 
GANs. [52] claims the existence of independently trainable 
sparse sub-networks capable of performing at the same 
level as dense networks and in some instances, even better. 
While [53], [54] scaled up LTH by rewinding [55], [56]. 
However, these methods do not restore key connections 
that have been prematurely pruned, which restricts the 
model’s capacity. In contrast, the proposed method can 
restore connections that have been prematurely pruned and 
can better preserve the capacity of the model. 

On the other hand, the total number of FLOPs necessary 
to locate and train a winning ticket at a sparsity level of 
80% is more than four times as many as the number of 
FLOPs necessary to train a dense model [57]. As the size 
of SOTA models have grown (e.g., BigGAN and 
StyleGAN2), such huge resource needs would cause 
financial and environmental problems [58]–[60]. Being 
unique and orthogonal efforts from ours, these methods do 
not focus on the training efficiency yet.  

3. Methodology 

3.1. Design motivation  
The synaptic connection topology of the brain is very 

dynamic, yet the brain still maintains a stable and efficient 
computing function [61], [62]. It has been shown that the 
underlying process of synaptic rewiring plays a crucial part 
in learning [63]. We consider the training of GANs to be 
akin to such biological learning processes and combine it 
with different training objectives under sparsity constraint. 

In contrast to conventional GANs training with 
predefined static connectivity, we prune and grow the 
connections during the GANs training. We conduct a 
thorough investigation to find that introducing network 
pruning and growing into GANs training yields desirable 
results on many fronts, specifically: (1) stabilizes GANs 
across various datasets, resolutions, domains, and 
architectures; (2) maintaining comparable or even 
generating higher-quality samples; and (3) enhancing the 
GANs training efficiency w.r.to both data and computation 
by removing the unimportant connections. 

In the next sub-section, we review the traditional GANs 
models, then describe in detail our proposed GANs training 
methodology via architectural reconfiguration.  
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Figure 3: Architecture of Re-GAN, shown here on the base model proposed in GANs [6]. The key feature of Re-GAN is that it provides 
sparse–dense model pairs at the end of the training process. This is beneficial in practice, as it may be desired to deploy compressed variant 
in resource-constrained environments without redoing the full training process.  
 

3.2. Generative Adversarial Networks 
A GANs model consists of a discriminator D and a 

generator G. The training objectives of the D and G can be 
represented as 𝜃"  and 𝜃# , respectively. The GANs 
framework can be as follows:  

        max
'!

𝔼)∽+"#$#[𝑓".𝐷(𝑥)3] +	𝔼7∽+%[𝑓# 8𝐷.𝐺(z)3;]        (1) 

                            min
'&
	𝔼7∽+%[𝑔# 8𝐷.𝐺(z)3;],                       (2) 

where 𝑝7 is the prior distribution (e.g., N(0, I)) and 𝑝@ABA 
is the real training data used to approximate the data 
distribution. The notations 𝑓", 𝑓#, and 𝑔# in Eq. (1) and (2) 
represent the mapping functions from which various GANs 
losses can be derived [64].  

3.3. GANs training with architectural 
reconfiguration 

A network's topology is equivalent to a directed acyclic 
graph with a predetermined order of nodes. Each node Xin 
serves as an input feature, and each edge functions as a 
computation cell with hyperparameters. We parameterize 
architectural space by associating a mask variable 𝑚	 ∈
{0,1} with each computation cell to enable training time 
pruning (𝑚 = 1 → 0)  and growing (𝑚 = 0 → 1) . We 
consider a single-level configuration space for GANs 
architecture that enables dynamic pruning and growing 
networks width-wise.  

Revisiting GANs training. Re-GAN reconfigures G’s 
architecture to explore different sub-network structures 
during training. As shown in Algorithm 1, we start the 

GANs training on the dense network for several iterations, 
warm-up phase, and learn the connection weights to know 
their importance. To achieve the sparse structure, we prune 
the least important weights based on the pre-defined 
pruning criterion. We then activate the pruned connections 
to further grow the network after a series of iterative 
optimizations. Once the network topology has been 
changed from sparse to dense, it will train the new network 
until the next connectivity update. The overview of Re-
GAN is shown in Figure 3. The main factors of Re-GAN 
training are as follows: 1) sparsity distribution, 2) update 
schedule, 3) pruning, and 4) grow.  

GANs sub-networks exploration. We prune the low-
weight connections by using unstructured magnitude 
pruning [65], [66] by using the binary masks 𝑚3 and 𝑚4. 
The pruning ratio ρ determines the amount of weights 
removed during the pruning phase. We use ρ = 10% in all 
experiments except StyleGAN2 for FFHQ (ρ = 30%). We 
use the same sparsity across all layers, i.e., uniform sparsity 
distribution. First, we sort the weights and produced a 
binary mask to exclude weights smaller than λ. If the mask 
of each layer that has to be regularized is calculated, then 
the mask of the whole parameter space, M, can be obtained 
for both G and D. Consequently, Eq. 1 and 2 here become: 

max
'!

𝔼)∽+"#$#[𝑓".𝐷(𝑥, 𝜃"⨀𝑀")3] +	𝔼7∽+%[𝑓# 8𝐷.𝐺(z, 𝜃#⨀𝑀#)3;]     
                                                                                        (3) 

                    min
'&
	𝔼7∽+%[𝑔# 8𝐷.𝐺(z, 𝜃#⨀𝑀#)3;],                (4) 

where 𝜃#, 𝑀#, 𝜃" and 𝑀" are the corresponding weights 
and masks for G and D, ⊙ stands for Hadamard product. 

The update schedule contains two key factors, (i) the 
update interval (g) is the number of training iterations 
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between the pruning and growing phase and vice versa; (ii) 
the learning rate, we set 1/10 the initial learning rate during 
the network growing phase. Other hyperparameters 
remained the same as per the given GANs network 
architecture.  

During each connectivity update, we use the weight 
magnitude as the indicator for pruning and make the 
following state transitions: if an indicator changes from 1 
to 0, we remove the corresponding connection from the 
computational graph; During the network growing, all the 
pruned connections return to 1, indicating that the network 
will be grown back, initialized weights with 0 and trained. 
The network growing phase boosts the network's model 
capacity and makes it easier to get a better local minimum 
than with a sparse network topology. Similarly, growing 
new connections in G allows for the search for optimal 
connectivity and escape from undesired local minima. In 
addition, by deleting the least significant connections, our 
method considerably reduces both the training memory 
cost and the training time, hence enhancing training 
efficiency. We experiment with three distinct loss 
functions for the dcritic function namely, WGAN-GP [67] 
which is used by ProGAN, hinge loss is used by SNGAN 
and non-saturating GAN loss with 1-sided GP [6] which is 
used by StyleGAN2.  

4. Experimental Results 
In this section, we perform experiments on various 

datasets that contain a wide range of content categories. We 
evaluate CIFAR-10 and Tiny-ImageNet at 64×64 
resolution, based on unconditional ProGAN [29][68], 
SNGAN [30][69], and SOTA StyleGAN2 [18][70]. We 
use the widely adopted evaluation metrics, such as the 
Fréchet Inception Distance (FID) [71] and Inception Score 
(IS) [4], and also provide the number of real images (#RI 
(in Millions (M)) [29][30]. If model A is taking less number 
of real images and is achieving comparable or better results 
than model B, it shows that model A is efficient. Note that 
higher performing GANs models are indicated by lower 
FID (↓), and larger IS (↑). We further extend our study on 
2562 resolution, we test on Animal-Face Dog and Cat [2], 
100-Shot-Obama [1], Panda [1], and Grumpy-cat [1], and 
Oxford-flowers [72]. On 10242 resolution, we test on 1k, 
5k, 10k and 70k Flickr-Face-HQ (FFHQ) [34]. We also 
perform extensive ablation study to analyze the 
effectiveness of each component in Re-GAN.  

4.1. Implementation details 
For ProGAN and StyleGAN2, for each dataset, we use 

the same 512-dimensional initial latent space, derived from 
a standard normal distribution N(0, 1), followed by 
hypersphere normalization [29]. For SNGAN, the latent 
variable dimension is 128 for all datasets. For all 
experiments, we use the same hyperparameter settings. 

However, we reduce the learning rate ten times during 
network growing phase for better learning. We initialize 
parameters using standard normal distribution N(0, 1).  

We trained all models ourselves and used the same 
hardware to provide fair comparisons of the training times 
for the corresponding set of experiments. We use NVIDIA 
RTX 3090 GPU with 24 GB for all 64×64, and 256×256 
experiments, and NVIDIA Quadro RTX 8000 GPU with 
48 GB for all 1024×1024 experiments. We train for the 
same number of iterations predefined by the baseline 
models. We save the checkpoints every 10k iterations 
during training and report the best FID as well as the time 
it took to obtain that score from the checkpoints (e.g., 
happens at least after 15 hours of training for StyleGAN2). 
 

 
 
For StyleGAN2, we find that using default settings is 

hardly to converge on CIFAR-10 and Tiny-ImageNet, so 
we follow the settings in [4] for CIFAR-10, in which both 
path length regularization and lazy regularization are not 
used, the coefficient for R1 regularization 𝛾 is set to 0.1 for 
CIFAR-10, the output channel at final size level is 128 
instead of 512 and doubled at each coarser level with a 
maximum 512. We use a similar setting for Tiny-ImageNet 
except setting 𝛾 to 1. For few-shot learning, FFHQ 
experiments, we set 𝛾 to 10. We note a discrepancy 
between the results the author described scores and what 
we could able to accomplish using the author's provided 
code. This could be the result of subtle hardware variations 
or variations between runs. 

4.2. Comparison to state-of-the-art 
We use the best-performing model ProGAN and 

StyleGAN2 and perform experiments at 64 × 64 resolution 
on CIFAR-10 and Tiny-ImageNet. We evaluate our 
method with 100% data available and with 10%, 20% and 
50% data available, with the findings summarized in Table 
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1 and 2, respectively.  
The following observations can be drawn: First, Re-

ProGAN and Re-StyleGAN2 can achieve consistently 
improved performance for all training cases, from 
complete data to limited data. In particular, likely to gain 
more when there is less training data available (e.g., 10%), 
which is consistent with our design principle. With only 
10% training data available, Re-ProGAN and Re-
StyleGAN2 obtain massive gains of 29.33 FID/7.69 IS and 
32.91 FID/7.35 IS on CIFAR-10, respectively, and 79.08 

FID/6.45 IS and 82.63 FID/6.47 IS on Tiny-ImageNet, 
respectively. Second, due to removing unimportant 
connections of low weights, Re-GAN consistently reduces 
the cost of computation associated with training and 
requires fewer total hours of GPU training time.  

Qualitative results and precision-recall curve for Re-
StyleGAN2 on CIFAR-10 is in the supplementary 
material. We also provide a study in the supplementary 
material to show that Re-GAN helps to alleviate mode 
collapse. 

 

Table 1: FID comparison on few-shot datasets at 64×64 resolution. FID and IS are calculated using 10k randomly generated samples, with 
the test data (10k) serving as the reference distribution. The best performance is highlighted. 

Dataset Size Methods #Real Images 
(RI)(in M) 

Training Time 
(hour) FLOPs ×109 IS↑ FID↓ 

CIFAR-10 50K 

ProGAN 19.5 11.6 12.97 8.05 ± 0.20 26.14 
Re-ProGAN 15.9 9.8 10.53 8.22 ± 0.19 21.17 
StyleGAN2 17.7 14.2 5.0 8.76 ± 0.22 13.19 
Re-StyleGAN2 12.1 10.1 4.05 8.88 ± 0.24 12.16 

Tiny-
ImageNet 100K 

ProGAN 9.4 53 27.47 9.44 ± 0.31 40.27 
Re-ProGAN 8.7 48.9 22.18 9.57 ± 0.35 37.47 
StyleGAN2 19.2 52.5 21.07 11.75 ± 0.25 20.95 
Re-StyleGAN2 17.8 46.7 17.04 12.10 ± 0.28  20.21 

 
Table 2: Experiments on 64×64 resolution 50%, 20% and 10% of training datasets. The best performance is highlighted. 

Dataset Methods 
50% data 20% data 10% data 

#RI  
(in M) IS↑ FID↓ #RI  

(in M) IS↑ FID↓ #RI   
(in M) IS↑ FID↓ 

CIFAR-10 

ProGAN 10.5 7.75±0.19 28.33 7.2 7.51±0.19   28.64 5.6 7.47±0.16  30.08 
Re-ProGAN 9.4 7.97±0.13   25.74 6.1 7.63±0.18   27.19 4.9 7.69±0.23  29.33 
StyleGAN2 6.4 8.39±0.15   17.22 4.1 7.36±0.27   29.77 3.2 7.20±0.24 36.45 
Re-StyleGAN2 4 8.48±0.16  16.09 3.8 7.46±0.23   27.98 2.7 7.35±0.13 32.91 

Tiny-
ImageNet 

ProGAN 9.6 8.71±0.27 49 8 6.84±0.12    77.86 7.7 6.38±0.19   83.27 
Re-ProGAN 8.3 8.84±0.25  46.78 7.7 6.92±0.15 75.22 7.4 6.45±0.22  79.08 
StyleGAN2 14.5  11.02±0.27 30.03 5.1 8.32±0.24 65.26 3.2 6.32±0.10 84.86 
Re-StyleGAN2 13.2 11.25±0.31 29.19 4.2 8.53±0.29 62.34 1.3 6.47±0.10 82.63 

Table 3: FID comparison to NAS-based GANs, i.e., AutoGAN 
for full CIFAR-10 dataset. 

Methods #RI  
(M) 

Training 
time  

(hour) 

Flops 
(×1016) 

FID↓ 
Full 
data 

AutoGAN (Top A) 4.7 6.7 19M 17.70 
Re-AutoGAN (Top A) 4.1 5.72 16.5M 17.61 
AutoGAN (Top B) 5.2 7.75 23M 18.08 
Re-AutoGAN (Top B) 4.2 5.95 18M 17.30 
AutoGAN (Top C) 5.7 8.12 23M 17.09 
Re-AutoGAN (Top C) 5 6.73 20M 16.61 
 

We extend our method comparison with the NAS-based 
GANs method, i.e., AutoGAN (Top A, B and C 
architectures) [31], [32]. The result in Table 3 shows that 
Re-GAN not only improves the performance for human-
designed networks (e.g., SNGAN, ProGAN, StyleGAN2) 
but also boosts the performance and reduces training time 
and FLOPs for automatically searched architecture, 
AutoGAN. It also minimizes training time and FLOPs for 
all top three searched GANs architectures. 

4.3. Comparison with GANs tickets 
Recently, Iterative Magnitude Pruning (IMP), an 

unstructured magnitude pruning [24] have shown 
performing well in finding lottery tickets in GANs than 
other pruning methods [66], [73] to find GANs tickets [22], 
[23] [24]. We find GANs tickets using IMP at 20% and 
46% pruning ratio for the full training dataset, named 
ST_SNGAN@20% and ST_SNGAN@46%, respectively. 
We also include growing with random initialization (RI), 
Re-SNGAN-RI in which weights are randomly initialized 
during the growing rather than zero initialization. Also, we 
set same learning rate for both dense and sparse phases, Re-
SNGAN-lr. The results are summarized in Table 4. The 
results show that our proposed Re-SNGAN performs well 
w.r.to FID. Re-SNGAN-RI results in longer convergence 
times, as network has to explore more diverse weight 
configurations to find best solution. While, setting 1/10 
learning rate during dense phase performs better than same 
learning rate in both phases as it promotes stability by 
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avoiding large, sudden weight updates. Also, finding 
GANs tickets is highly time consuming. While the training 
time for exploring different sub-network structures during 
training, even only at 10% pruning ratio, is comparable to 
the dense model; In addition, Re-SNGAN consumes less 
training FLOPs than the GANs tickets.  

 

Table 4: Comparison to GANs tickets methods on CIFAR-10. 

Methods #RI  
(M) 

Training 
time  

(hour) 

Flops 
(×1017) 

FID↓ 
Full 
data 

SNGAN@0% 30 6.2 1.01 20.12 
ST_SNGAN@20% 92.5 19.7 2.60 18.96 
ST_SNGAN@46% 150 32 3.46 18.22 
Re-SNGAN-lr 49.4 10.5 1.57 19.06 
Re-SNGAN-RI 33.1 7.3 1.25 19.71 
Re-SNGAN 31.5 6.6 1.03 17.87 

 
 
Figure 4: IS (↑) and FID (↓) results of SNGAN with 10%, 20%, 
40%, 80%, and full training data of CIFAR-10. Four settings are 
evaluated: (i) SNGAN (unpruned SNGAN), (ii) ST_SNGAN 
(applied IMP for finding sparse GANs ticket at 20% pruning 
ratio), (iii) Sparse_Re-SNGAN (Re-GAN output is sparse), (iv) 
Dense_Re-SNGAN (Re-GAN output is dense). The main 
advantage is that it provides both a high-performing dense model 
and its compressed version at the end of the training. 

Table 5: FID comparison on few-shot datasets at 256×256 resolution. FID and IS are calculated using 5k randomly generated samples, 
with the training data serving as the reference distribution. The best performance is highlighted. 

Methods Obama Grumpy Cat Panda  Animal Face  Oxford 
Flowers  Cat Dog  

# of images 100 100 100  389 160  1000 
ProGAN 129.52 135.89 235.86  289.73 259.32  224.70 
Re-ProGAN 110.46 124.06 205.82  283.29 227.59  198.56 
StyleGAN2 86.67 51.3 95.08  81.91 157.63  147.67 
Re-StyleGAN2 72.92 38.23 78.45  73.05 133.4  138.35 
StyleGAN2 + APA 68.74 33.72 18.24  62.71 81.13  85.88 
Re-StyleGAN2 + APA 64.28 31.74 16.33  60.26 77.44  82.19 
StyleGAN2 + DiffAug 46.31 28.6 12.89  42.85 58.47  46.21 
Re-StyleGAN2 + DiffAug 45.7 27.36 12.6  42.11 57.2  45.13 

We provide another set of experiments of SNGAN 
training on CIFAR-10, with training data ranging from 
10% to 100%. Figure 4 provides a summary of the key 
findings. The following observations can be drawn: First, 
at the same data availability (from 10% to even 100%), 
exploring multiple sub-networks during training at only 
10% pruning ratio is always preferable to training the dense 
model and sparse ticket; Second, sparse Re-GAN model is 
also performing consistently well than GANs tickets.  

4.4. Few-shot generation 
Collecting a large number of image datasets can be 

prohibitively costly or perhaps impossible for a certain 
character or a topic. In this context, a data-efficient model 
for the image synthesis task will be highly important. In 
Table 5, we show that our method finds data-efficient 
GANs that can be trained from scratch with only 100 
training image data (without any pre-training) and 
demonstrates consistently superior performance (See 
supplementary material for visualizations of few-shot 
generation and style interpolation). Results also show that 
proposed Re-GAN improve the generated sample quality 
of SOTA methods, such as Diffaug [1] and APA [21] for 
few-shot datasets. We further extend our study for high-
resolution experiments (Table 6 and Figure 5) where the 

Re-StyleGAN2 model gets better FID scores on all 1k, 5k, 
10k and 70k FFHQ datasets (see supplementary material 
for more details). To further demonstrate the effectiveness 
of our Re-GAN, we apply it to other recent methods, 
FastGAN [74] for several few-shot datasets. Results are 
shown in supplementary material.  
 
Table 6: FID comparison on few-shot datasets at 1024×1024 
resolution. FID and IS are calculated using 50k randomly 
generated samples, with the training data (70k) serving as the 
reference distribution. 

Methods FFHQ 
70k 10k 5k 1k 

StyleGAN2 4.35 13.06 21.76 40.24 
Re-StyleGAN2 4.19 11.22 19.13 36.3 

4.5. Ablation and analysis 
Prune G/D: We study the impact of exploring different 

sub-network structures on G or D only, or on both G and D 
(represented as B) at 10%, 30%, and 50% pruning ratio 
(i.e., weight remaining ratio indicates the sparsity levels of 
explored sub-network structures during training) on 
CIFAR-10 full training dataset. Figure 6 shows a summary 
of the results. We notice that employing pruning on D or 
both G and D, achieves comparable or better performance 
than the base model. While for the same sparsity 
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distribution (i.e., pruning ratio), pruning only on G 
achieves significant performance improvement (i.e., 
largely reducing the FID). We also notice that update 
interval (g) 100 works well with only G. 

 

 
Figure 5: Few-shot generalization results of Re-StyleGAN2 on 
10k FFHQ (1024×1024). Samples are randomly drawn without 
cherry picking. 
 

Robustness to learning rate. Previous research works 
[75]–[77] have observed that GANs convergence highly 
depends on the selection of hyperparameters, especially the 
learning rate, 𝛼 . As shown in Table 7, we validate our 
network by training it with five different 𝛼 values (0.0001, 
0.0002, 0.0005, 0.0007, and 0.00001) for the CIFAR-10 
dataset. Results show that for all different 𝛼 values, our 
models converged and achieved similar inception scores. 
 

 
Figure 6: FID with different pruning ratio and update interval 

(g) of Re-SNGAN (CIFAR-10). 

 
Figure 7: Stability during training on the 10% CIFAR-10. 

Stability during training. To compare the stability of 
Re-SNGAN with SNGAN, we evaluate how the samples 
produced for the same set of latent points vary during 
training. As proposed in [30], we use the mean squared 
error (MSE) between two consecutive generated samples 
as a quantitative measure of training stability. Figure 7 
shows the MSE between generated images from the same 
latent code in the midst of successive epochs on the 10% 
CIFAR-10 dataset. Results show that dense Re-SNGAN 
converges consistently over time, while SNGAN varies 
dramatically across epochs. 
 

Table 7: Robustness to learning rate. 

Methods Learning 
rate 

Results 
IS FID 

Real images - 11.34 - 
SNGAN 0.0002 8.07±0.16  20.12 

Re-SNGAN 

0.0007 7.93±0.30 21.76 
0.0005 8.03±0.23 20.17 
0.0002 8.16±0.15 17.87 
0.0001 8.03±0.17 19.03 
0.00001 8.01±0.25 19.65 

5. Conclusion and Discussion of Broader 
Impact 

We introduce a new perspective on data-efficient GANs 
by exploring different sub-network structures during 
training, which is a novel approach compared to existing 
methods. Extensive experiments on various GANs 
architectures, objectives, and datasets demonstrate the 
effectiveness and training efficiency of our proposed 
GANs training methodology, Re-GAN. In this work, we 
focus on unstructured sparsity to showcase the algorithm-
level innovations of Re-GAN. However, only specific 
hardware supports sparse tensor cores for weight pruning. 
Future work could aim for a high pruning ratio and 
reconfigure network width and depth simultaneously 
during GANs training, addressing the limitations of the 
current approach. 

This research aims to enhance generalization 
performance, stabilize GANs models under limited data, 
and improve training efficiency, which has practical 
implications for various applications and industries. 
However, these advancements might also exacerbate 
existing social risks associated with GANs. We plan to 
investigate whether the sparse structures affect issues like 
image generation bias in future work. The ability to 
generate images with less data could potentially be 
exploited for undesirable applications, such as DeepFakes.  
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