

Figure 1: Results of our proposed Re-GAN where dynamically GANs architecture is reconfigured to explore different GANs sub-
network structures during training time. (left) Image generation trained on multiple few-shot generation datasets, such as 100-shot
Obama [1], Panda [1], and Animal Face-Cat (A-Cat) [2]; (right) FID scores vs. CIFAR-10 [3] training set size with training cost, FLOPs.
Best viewed in color.

Abstract

Training Generative Adversarial Networks (GANs) on
high-fidelity images usually requires a vast number of
training images. Recent research on GAN tickets reveals
that dense GANs models contain sparse sub-networks or
"lottery tickets" that, when trained separately, yield better
results under limited data. However, finding GANs tickets
requires an expensive process of train-prune-retrain. In
this paper, we propose Re-GAN, a data-efficient GANs
training that dynamically reconfigures GANs architecture
during training to explore different sub-network structures
in training time. Our method repeatedly prunes
unimportant connections to regularize GANs network and
regrows them to reduce the risk of prematurely pruning
important connections. Re-GAN stabilizes the GANs
models with less data and offers an alternative to the
existing GANs tickets and progressive growing methods.
We demonstrate that Re-GAN is a generic training
methodology which achieves stability on datasets of
varying sizes, domains, and resolutions (CIFAR-10, Tiny-
ImageNet, and multiple few-shot generation datasets) as
well as different GANs architectures (SNGAN, ProGAN,

StyleGAN2 and AutoGAN). Re-GAN also improves
performance when combined with the recent augmentation
approaches. Moreover, Re-GAN requires fewer floating-
point operations (FLOPs) and less training time by
removing the unimportant connections during GANs
training while maintaining comparable or even generating
higher-quality samples. When compared to state-of-the-art
StyleGAN2, our method outperforms without requiring any
additional fine-tuning step. Code can be found at this link:
https://github.com/IntellicentAI-Lab/Re-GAN

1. Introduction
In recent years, Generative adversarial networks

(GANs) [4]–[7] have made great strides in generating high-
fidelity images. The GANs models serve as the backbone
of several vision applications, such as data augmentation
[5], [8], [9], domain adaptation [10], [11], and image-to-
image translation [14]–[16].

The success of the GANs methods largely depends on a
massive quantity of diverse training data, which is often
time-consuming and challenging to collect [17]. Figure 1
shows how the performance of the StyleGAN2 [18] model
drastically declines under the limited training data. As a

Re-GAN: Data-Efficient GANs Training via Architectural Reconfiguration

Divya Saxena, Jiannong Cao, Jiahao Xu, Tarun Kulshrestha
The Hong Kong Polytechnic University, Hong Kong
{divsaxen, csjcao}@comp.polyu.edu.hk,

jiahaoxxuu@gmail.com, tarun.kulshrestha@polyu.edu.hk

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16230

result, various new methods [1], [19], [20] have emerged
to deal with the problem of insufficient data. Dynamic
data-augmentation [1], [19]–[21] fills in the gap and
stabilizes GANs training with less data. Very recently,
[22], [23] introduced the lottery ticket hypothesis (LTH) in
GANs (called “GANs tickets”), a complementary to the
existing augmentation techniques. LTH identifies sparse
sub-networks (called “winning tickets”) that can be trained
in isolation to match or even surpass the performance of
unpruned models. [24] demonstrated that an identified
GANs ticket can be used as a sparse structural prior to
alleviate the problem of limited data in GANs. However,
identifying these winning tickets requires many iterations
of a time-consuming and computationally expensive train-
prune-retrain process. This results in high training time and
a number of floating-point operations (FLOPs) than
training a dense GANs models, such as StyleGAN2 [18]
and BigGAN [5]. In addition, these methods train a full-
scale model before pruning, and then, after the pruning
process, they engage in an extra fine-tuning to improve the
performance. Given this perspective, we ask:

Is there any way to achieve training efficiency w.r.to
both data and computation in GANs while preserving or
even improving its performance?

One potential solution is network pruning during
training, which can allow the exploration of different sub-
network structures in training-time. Network structure
exploration during training has shown to be effective in a
variety of domains [25], [26], and its properties have been
the subject of a significant amount of research [27], [28].
However, network pruning is never introduced to GANs
training; as a result, the investigation of different sub-
network structures exploration during GANs training
remains mysterious.

To address this gap in the literature, we investigate and
introduce the network pruning, i.e., connections, in GANs
training by dynamically reconfiguring GANs architecture
to allow the exploration of different sub-network structures
in training time, dubbed as Re-GAN. However, on the
other hand, it is common knowledge that the learning
capabilities of the two competing networks—a generator
(G) and a discriminator (D), need to be carefully
maintained equilibrium in their respective capabilities for
learning. Hence to build Re-GAN, the first question is: how
to explore different network structures during GANs
training? Network pruning during training regularizes the
G to allow a robust gradient flow through G. This stabilizes
the GANs models under limited training data and improves
training efficiency. Re-GAN repeatedly prunes and grows
the connections during the training process to reduce the
risk of pruning important connections prematurely and
prevent the model from losing its representational
capabilities early in the training process. As a result,
network growing provides a second opportunity to

reinitialize pruned connections by reusing information
from previously explored sub-network structures.

Figure 2: Conventional GANs training has fixed connectivity
space. Re-GAN uses network pruning and growing during
training to make connectivity space flexible that helps in the
propagation of robust gradients. Best viewed in color.

The second question is: how to explore different sub-
network structures in G and D simultaneously? On the one
hand, if we employ a pretrained D (or G) and prune solely
for G (or D), it can quickly incur an imbalance between the
capabilities of D or G (particularly in the early stage of
training), resulting in slow convergence. While it is
possible to prune for G and D simultaneously, empirical
experiments show that doing so significantly degrades the
initial unstable GANs training, resulting in highly
fluctuating training curves and, in many cases, a failure to
converge. As a trade-off, we propose expanding D as per
standard GANs training while applying pruning
exclusively to G's architecture.

Additionally, our method is robust, working well with a
wide range of GANs architectures (ProGANs [29],
SNGAN [30], StyleGAN2, and AutoGAN [31], [32]) and
datasets (CIFAR-10 [3], Tiny-ImageNet [33], Flickr Faces
HQ [34], and many few-shot generation datasets). We find
that exploring different sub-network structures during
training accounts for a significant decrease in FID score
compared to the vanilla DCGAN [35] architecture without
a pre-trained model or fine-tuning the pruned model (see
Figure 2). Our method delivers higher performance in less
training time to state-of-the-art (SOTA) methods on most
available datasets without additional hyperparameters that
progressive growing method introduces, such as training
schedules and learning rates for different generation stages
(resolutions). This robustness allows the Re-GAN to be
easily generalized on unseen datasets.

To the best of our knowledge, Re-GAN is the first
attempt to incorporate network pruning during GANs
training. Our technical innovations are as follows:
• We conduct the first in-depth study on taking a unified

approach of incorporating pruning in GANs training
without pre-training a large model or fine-tuning the
pruned model.

• Our method repeatedly prunes and grows the
connections during training to reduce the possibility of

16231

pruning important connections and helps the model to
maintain its representation ability early in training.
Thus, network growing gives another chance to
reinitialize pruned connections from the explored
network sub-structures.

• Extensive experiments are conducted across a wide
range of GANs architectures and demonstrated that
Re-GAN could be easily applied on these GANs
architectures to improve their performances, both in
regular and low-data regime setups. For example, for
the identified winning GANs ticket, ProGAN and
StyleGAN2 on full CIFAR-10, we achieve 70.23%,
18.81%, and 19% training FLOPs savings,
respectively, while improved generated sample quality
for both full and 10% training data. Re-GAN presents
a viable alternative to the GANs tickets and
progressive growing techniques. Additionally, the
performance of Re-GAN is enhanced when integrated
with recent augmentation techniques.

2. Related Works
Stabilize the GANs training. In recent years, different

loss functions [4], [36], [37], regularization [30], [38], and
architectural designs [39], [40] have all been proposed as
ways to enhance GANs [6]. Our efforts are in the category
of network architecture design. Recently, state-of-the-art
(SOTA) models like StyleGAN2 and BigGAN have
suggested making networks deeper and wider. They have
also shown that training deep GANs networks usually leads
to better generalization. However, a deeper model with
more convolution layers results in a longer training time
for GANs. This is because a deeper model contains a
greater number of model parameters and a weaker gradient
flow via G [29], [41], [42]. The findings of Progressive
GAN (ProGAN) [29] show that gradually growing and
training both networks together from a lower resolution,
stabilizes the training and enhances the generation quality.
MSG-GAN [39] introduced a solution to the gradient flow
issue in which G gets feedback from a number of different
resolutions simultaneously. Nevertheless, these methods
further add to the computational cost, necessitating an even
high amount of GPU memory and more training time.

GANs compression. GANs, like other deep neural
networks, excel in image generation and translation tasks
[29], [43]–[45], but suffer from high computational
complexity and memory requirements. Han et al. [46]
introduced a co-evolutionary pruning technique for GANs
compression, while Wang et al. [47] proposed quantizing
GANs to 1 or 2 bits. Li et al. [48] used distillation to
improve compressed D with a pre-trained GANs model,
and Wang et al. [49] combined these three techniques into
one framework. Although impressive results were
achieved in training compressed G with a pre-trained D
[50], existing GANs compression approaches require pre-

training an over-parameterized model, limiting training
efficiency. Meanwhile, [51] proposed dynamic network
size modification during training, but design space
exploration is constrained by network augmentation. Our
approach injects sparsity during training to enhance
generalization, stabilize GANs with limited data, and
improve training efficiency, distinguishing it from these
inference-focused techniques.

Lottery Ticket Hypothesis (LTH). Recently, [22]–[24]
have shown the existence of winning tickets in the min-
max game beyond minimization by extending LTH to
GANs. [52] claims the existence of independently trainable
sparse sub-networks capable of performing at the same
level as dense networks and in some instances, even better.
While [53], [54] scaled up LTH by rewinding [55], [56].
However, these methods do not restore key connections
that have been prematurely pruned, which restricts the
model’s capacity. In contrast, the proposed method can
restore connections that have been prematurely pruned and
can better preserve the capacity of the model.

On the other hand, the total number of FLOPs necessary
to locate and train a winning ticket at a sparsity level of
80% is more than four times as many as the number of
FLOPs necessary to train a dense model [57]. As the size
of SOTA models have grown (e.g., BigGAN and
StyleGAN2), such huge resource needs would cause
financial and environmental problems [58]–[60]. Being
unique and orthogonal efforts from ours, these methods do
not focus on the training efficiency yet.

3. Methodology

3.1. Design motivation
The synaptic connection topology of the brain is very

dynamic, yet the brain still maintains a stable and efficient
computing function [61], [62]. It has been shown that the
underlying process of synaptic rewiring plays a crucial part
in learning [63]. We consider the training of GANs to be
akin to such biological learning processes and combine it
with different training objectives under sparsity constraint.

In contrast to conventional GANs training with
predefined static connectivity, we prune and grow the
connections during the GANs training. We conduct a
thorough investigation to find that introducing network
pruning and growing into GANs training yields desirable
results on many fronts, specifically: (1) stabilizes GANs
across various datasets, resolutions, domains, and
architectures; (2) maintaining comparable or even
generating higher-quality samples; and (3) enhancing the
GANs training efficiency w.r.to both data and computation
by removing the unimportant connections.

In the next sub-section, we review the traditional GANs
models, then describe in detail our proposed GANs training
methodology via architectural reconfiguration.

16232

Figure 3: Architecture of Re-GAN, shown here on the base model proposed in GANs [6]. The key feature of Re-GAN is that it provides
sparse–dense model pairs at the end of the training process. This is beneficial in practice, as it may be desired to deploy compressed variant
in resource-constrained environments without redoing the full training process.

3.2. Generative Adversarial Networks
A GANs model consists of a discriminator D and a

generator G. The training objectives of the D and G can be
represented as 𝜃" and 𝜃# , respectively. The GANs
framework can be as follows:

 max
'!

𝔼)∽+"#$#[𝑓".𝐷(𝑥)3] +	𝔼7∽+%[𝑓# 8𝐷.𝐺(z)3;] (1)

 min
'&
	𝔼7∽+%[𝑔# 8𝐷.𝐺(z)3;], (2)

where 𝑝7 is the prior distribution (e.g., N(0, I)) and 𝑝@ABA
is the real training data used to approximate the data
distribution. The notations 𝑓", 𝑓#, and 𝑔# in Eq. (1) and (2)
represent the mapping functions from which various GANs
losses can be derived [64].

3.3. GANs training with architectural
reconfiguration

A network's topology is equivalent to a directed acyclic
graph with a predetermined order of nodes. Each node Xin
serves as an input feature, and each edge functions as a
computation cell with hyperparameters. We parameterize
architectural space by associating a mask variable 𝑚	 ∈
{0,1} with each computation cell to enable training time
pruning (𝑚 = 1 → 0) and growing (𝑚 = 0 → 1) . We
consider a single-level configuration space for GANs
architecture that enables dynamic pruning and growing
networks width-wise.

Revisiting GANs training. Re-GAN reconfigures G’s
architecture to explore different sub-network structures
during training. As shown in Algorithm 1, we start the

GANs training on the dense network for several iterations,
warm-up phase, and learn the connection weights to know
their importance. To achieve the sparse structure, we prune
the least important weights based on the pre-defined
pruning criterion. We then activate the pruned connections
to further grow the network after a series of iterative
optimizations. Once the network topology has been
changed from sparse to dense, it will train the new network
until the next connectivity update. The overview of Re-
GAN is shown in Figure 3. The main factors of Re-GAN
training are as follows: 1) sparsity distribution, 2) update
schedule, 3) pruning, and 4) grow.

GANs sub-networks exploration. We prune the low-
weight connections by using unstructured magnitude
pruning [65], [66] by using the binary masks 𝑚3 and 𝑚4.
The pruning ratio ρ determines the amount of weights
removed during the pruning phase. We use ρ = 10% in all
experiments except StyleGAN2 for FFHQ (ρ = 30%). We
use the same sparsity across all layers, i.e., uniform sparsity
distribution. First, we sort the weights and produced a
binary mask to exclude weights smaller than λ. If the mask
of each layer that has to be regularized is calculated, then
the mask of the whole parameter space, M, can be obtained
for both G and D. Consequently, Eq. 1 and 2 here become:

max
'!

𝔼)∽+"#$#[𝑓".𝐷(𝑥, 𝜃"⨀𝑀")3] +	𝔼7∽+%[𝑓# 8𝐷.𝐺(z, 𝜃#⨀𝑀#)3;]
 (3)

 min
'&
	𝔼7∽+%[𝑔# 8𝐷.𝐺(z, 𝜃#⨀𝑀#)3;], (4)

where 𝜃#, 𝑀#, 𝜃" and 𝑀" are the corresponding weights
and masks for G and D, ⊙ stands for Hadamard product.

The update schedule contains two key factors, (i) the
update interval (g) is the number of training iterations

Dense G Network Sparse G Network Dense G Network
G

en
er

at
or

 G
D

is
cr

im
in

at
or

 D

Dense D Network Sparse D Network Dense D Network

Noise (z)

Prune

Prune Grow

Grow

Real / Fake Real / Fake Real / Fake

Real
Image

Real
Image

Real
Image

Generated
Image

Generated
Image

Generated
Image

Training Progresses

Prune

Prune ...

...

Dense G Network

Dense D Network

Real / Fake

Real
Image

Generated
Image

Grow

Noise (z) Noise (z) Noise (z)

Sparse G Network

Sparse D Network

Real / Fake

Real
Image

Generated
Image

Noise (z)

Grow

Warm-up Sparse-Dense Pair Sparse-Dense Pair

Prune

Prune

16233

between the pruning and growing phase and vice versa; (ii)
the learning rate, we set 1/10 the initial learning rate during
the network growing phase. Other hyperparameters
remained the same as per the given GANs network
architecture.

During each connectivity update, we use the weight
magnitude as the indicator for pruning and make the
following state transitions: if an indicator changes from 1
to 0, we remove the corresponding connection from the
computational graph; During the network growing, all the
pruned connections return to 1, indicating that the network
will be grown back, initialized weights with 0 and trained.
The network growing phase boosts the network's model
capacity and makes it easier to get a better local minimum
than with a sparse network topology. Similarly, growing
new connections in G allows for the search for optimal
connectivity and escape from undesired local minima. In
addition, by deleting the least significant connections, our
method considerably reduces both the training memory
cost and the training time, hence enhancing training
efficiency. We experiment with three distinct loss
functions for the dcritic function namely, WGAN-GP [67]
which is used by ProGAN, hinge loss is used by SNGAN
and non-saturating GAN loss with 1-sided GP [6] which is
used by StyleGAN2.

4. Experimental Results
In this section, we perform experiments on various

datasets that contain a wide range of content categories. We
evaluate CIFAR-10 and Tiny-ImageNet at 64×64
resolution, based on unconditional ProGAN [29][68],
SNGAN [30][69], and SOTA StyleGAN2 [18][70]. We
use the widely adopted evaluation metrics, such as the
Fréchet Inception Distance (FID) [71] and Inception Score
(IS) [4], and also provide the number of real images (#RI
(in Millions (M)) [29][30]. If model A is taking less number
of real images and is achieving comparable or better results
than model B, it shows that model A is efficient. Note that
higher performing GANs models are indicated by lower
FID (↓), and larger IS (↑). We further extend our study on
2562 resolution, we test on Animal-Face Dog and Cat [2],
100-Shot-Obama [1], Panda [1], and Grumpy-cat [1], and
Oxford-flowers [72]. On 10242 resolution, we test on 1k,
5k, 10k and 70k Flickr-Face-HQ (FFHQ) [34]. We also
perform extensive ablation study to analyze the
effectiveness of each component in Re-GAN.

4.1. Implementation details
For ProGAN and StyleGAN2, for each dataset, we use

the same 512-dimensional initial latent space, derived from
a standard normal distribution N(0, 1), followed by
hypersphere normalization [29]. For SNGAN, the latent
variable dimension is 128 for all datasets. For all
experiments, we use the same hyperparameter settings.

However, we reduce the learning rate ten times during
network growing phase for better learning. We initialize
parameters using standard normal distribution N(0, 1).

We trained all models ourselves and used the same
hardware to provide fair comparisons of the training times
for the corresponding set of experiments. We use NVIDIA
RTX 3090 GPU with 24 GB for all 64×64, and 256×256
experiments, and NVIDIA Quadro RTX 8000 GPU with
48 GB for all 1024×1024 experiments. We train for the
same number of iterations predefined by the baseline
models. We save the checkpoints every 10k iterations
during training and report the best FID as well as the time
it took to obtain that score from the checkpoints (e.g.,
happens at least after 15 hours of training for StyleGAN2).

For StyleGAN2, we find that using default settings is

hardly to converge on CIFAR-10 and Tiny-ImageNet, so
we follow the settings in [4] for CIFAR-10, in which both
path length regularization and lazy regularization are not
used, the coefficient for R1 regularization 𝛾 is set to 0.1 for
CIFAR-10, the output channel at final size level is 128
instead of 512 and doubled at each coarser level with a
maximum 512. We use a similar setting for Tiny-ImageNet
except setting 𝛾 to 1. For few-shot learning, FFHQ
experiments, we set 𝛾 to 10. We note a discrepancy
between the results the author described scores and what
we could able to accomplish using the author's provided
code. This could be the result of subtle hardware variations
or variations between runs.

4.2. Comparison to state-of-the-art
We use the best-performing model ProGAN and

StyleGAN2 and perform experiments at 64 × 64 resolution
on CIFAR-10 and Tiny-ImageNet. We evaluate our
method with 100% data available and with 10%, 20% and
50% data available, with the findings summarized in Table

16234

1 and 2, respectively.
The following observations can be drawn: First, Re-

ProGAN and Re-StyleGAN2 can achieve consistently
improved performance for all training cases, from
complete data to limited data. In particular, likely to gain
more when there is less training data available (e.g., 10%),
which is consistent with our design principle. With only
10% training data available, Re-ProGAN and Re-
StyleGAN2 obtain massive gains of 29.33 FID/7.69 IS and
32.91 FID/7.35 IS on CIFAR-10, respectively, and 79.08

FID/6.45 IS and 82.63 FID/6.47 IS on Tiny-ImageNet,
respectively. Second, due to removing unimportant
connections of low weights, Re-GAN consistently reduces
the cost of computation associated with training and
requires fewer total hours of GPU training time.

Qualitative results and precision-recall curve for Re-
StyleGAN2 on CIFAR-10 is in the supplementary
material. We also provide a study in the supplementary
material to show that Re-GAN helps to alleviate mode
collapse.

Table 1: FID comparison on few-shot datasets at 64×64 resolution. FID and IS are calculated using 10k randomly generated samples, with
the test data (10k) serving as the reference distribution. The best performance is highlighted.

Dataset Size Methods #Real Images
(RI)(in M)

Training Time
(hour) FLOPs ×109 IS↑ FID↓

CIFAR-10 50K

ProGAN 19.5 11.6 12.97 8.05 ± 0.20 26.14
Re-ProGAN 15.9 9.8 10.53 8.22 ± 0.19 21.17
StyleGAN2 17.7 14.2 5.0 8.76 ± 0.22 13.19
Re-StyleGAN2 12.1 10.1 4.05 8.88 ± 0.24 12.16

Tiny-
ImageNet 100K

ProGAN 9.4 53 27.47 9.44 ± 0.31 40.27
Re-ProGAN 8.7 48.9 22.18 9.57 ± 0.35 37.47
StyleGAN2 19.2 52.5 21.07 11.75 ± 0.25 20.95
Re-StyleGAN2 17.8 46.7 17.04 12.10 ± 0.28 20.21

Table 2: Experiments on 64×64 resolution 50%, 20% and 10% of training datasets. The best performance is highlighted.

Dataset Methods
50% data 20% data 10% data

#RI
(in M) IS↑ FID↓ #RI

(in M) IS↑ FID↓ #RI
(in M) IS↑ FID↓

CIFAR-10

ProGAN 10.5 7.75±0.19 28.33 7.2 7.51±0.19 28.64 5.6 7.47±0.16 30.08
Re-ProGAN 9.4 7.97±0.13 25.74 6.1 7.63±0.18 27.19 4.9 7.69±0.23 29.33
StyleGAN2 6.4 8.39±0.15 17.22 4.1 7.36±0.27 29.77 3.2 7.20±0.24 36.45
Re-StyleGAN2 4 8.48±0.16 16.09 3.8 7.46±0.23 27.98 2.7 7.35±0.13 32.91

Tiny-
ImageNet

ProGAN 9.6 8.71±0.27 49 8 6.84±0.12 77.86 7.7 6.38±0.19 83.27
Re-ProGAN 8.3 8.84±0.25 46.78 7.7 6.92±0.15 75.22 7.4 6.45±0.22 79.08
StyleGAN2 14.5 11.02±0.27 30.03 5.1 8.32±0.24 65.26 3.2 6.32±0.10 84.86
Re-StyleGAN2 13.2 11.25±0.31 29.19 4.2 8.53±0.29 62.34 1.3 6.47±0.10 82.63

Table 3: FID comparison to NAS-based GANs, i.e., AutoGAN
for full CIFAR-10 dataset.

Methods #RI
(M)

Training
time

(hour)

Flops
(×1016)

FID↓
Full
data

AutoGAN (Top A) 4.7 6.7 19M 17.70
Re-AutoGAN (Top A) 4.1 5.72 16.5M 17.61
AutoGAN (Top B) 5.2 7.75 23M 18.08
Re-AutoGAN (Top B) 4.2 5.95 18M 17.30
AutoGAN (Top C) 5.7 8.12 23M 17.09
Re-AutoGAN (Top C) 5 6.73 20M 16.61

We extend our method comparison with the NAS-based
GANs method, i.e., AutoGAN (Top A, B and C
architectures) [31], [32]. The result in Table 3 shows that
Re-GAN not only improves the performance for human-
designed networks (e.g., SNGAN, ProGAN, StyleGAN2)
but also boosts the performance and reduces training time
and FLOPs for automatically searched architecture,
AutoGAN. It also minimizes training time and FLOPs for
all top three searched GANs architectures.

4.3. Comparison with GANs tickets
Recently, Iterative Magnitude Pruning (IMP), an

unstructured magnitude pruning [24] have shown
performing well in finding lottery tickets in GANs than
other pruning methods [66], [73] to find GANs tickets [22],
[23] [24]. We find GANs tickets using IMP at 20% and
46% pruning ratio for the full training dataset, named
ST_SNGAN@20% and ST_SNGAN@46%, respectively.
We also include growing with random initialization (RI),
Re-SNGAN-RI in which weights are randomly initialized
during the growing rather than zero initialization. Also, we
set same learning rate for both dense and sparse phases, Re-
SNGAN-lr. The results are summarized in Table 4. The
results show that our proposed Re-SNGAN performs well
w.r.to FID. Re-SNGAN-RI results in longer convergence
times, as network has to explore more diverse weight
configurations to find best solution. While, setting 1/10
learning rate during dense phase performs better than same
learning rate in both phases as it promotes stability by

16235

avoiding large, sudden weight updates. Also, finding
GANs tickets is highly time consuming. While the training
time for exploring different sub-network structures during
training, even only at 10% pruning ratio, is comparable to
the dense model; In addition, Re-SNGAN consumes less
training FLOPs than the GANs tickets.

Table 4: Comparison to GANs tickets methods on CIFAR-10.

Methods #RI
(M)

Training
time

(hour)

Flops
(×1017)

FID↓
Full
data

SNGAN@0% 30 6.2 1.01 20.12
ST_SNGAN@20% 92.5 19.7 2.60 18.96
ST_SNGAN@46% 150 32 3.46 18.22
Re-SNGAN-lr 49.4 10.5 1.57 19.06
Re-SNGAN-RI 33.1 7.3 1.25 19.71
Re-SNGAN 31.5 6.6 1.03 17.87

Figure 4: IS (↑) and FID (↓) results of SNGAN with 10%, 20%,
40%, 80%, and full training data of CIFAR-10. Four settings are
evaluated: (i) SNGAN (unpruned SNGAN), (ii) ST_SNGAN
(applied IMP for finding sparse GANs ticket at 20% pruning
ratio), (iii) Sparse_Re-SNGAN (Re-GAN output is sparse), (iv)
Dense_Re-SNGAN (Re-GAN output is dense). The main
advantage is that it provides both a high-performing dense model
and its compressed version at the end of the training.

Table 5: FID comparison on few-shot datasets at 256×256 resolution. FID and IS are calculated using 5k randomly generated samples,
with the training data serving as the reference distribution. The best performance is highlighted.

Methods Obama Grumpy Cat Panda Animal Face Oxford
Flowers Cat Dog

of images 100 100 100 389 160 1000
ProGAN 129.52 135.89 235.86 289.73 259.32 224.70
Re-ProGAN 110.46 124.06 205.82 283.29 227.59 198.56
StyleGAN2 86.67 51.3 95.08 81.91 157.63 147.67
Re-StyleGAN2 72.92 38.23 78.45 73.05 133.4 138.35
StyleGAN2 + APA 68.74 33.72 18.24 62.71 81.13 85.88
Re-StyleGAN2 + APA 64.28 31.74 16.33 60.26 77.44 82.19
StyleGAN2 + DiffAug 46.31 28.6 12.89 42.85 58.47 46.21
Re-StyleGAN2 + DiffAug 45.7 27.36 12.6 42.11 57.2 45.13

We provide another set of experiments of SNGAN
training on CIFAR-10, with training data ranging from
10% to 100%. Figure 4 provides a summary of the key
findings. The following observations can be drawn: First,
at the same data availability (from 10% to even 100%),
exploring multiple sub-networks during training at only
10% pruning ratio is always preferable to training the dense
model and sparse ticket; Second, sparse Re-GAN model is
also performing consistently well than GANs tickets.

4.4. Few-shot generation
Collecting a large number of image datasets can be

prohibitively costly or perhaps impossible for a certain
character or a topic. In this context, a data-efficient model
for the image synthesis task will be highly important. In
Table 5, we show that our method finds data-efficient
GANs that can be trained from scratch with only 100
training image data (without any pre-training) and
demonstrates consistently superior performance (See
supplementary material for visualizations of few-shot
generation and style interpolation). Results also show that
proposed Re-GAN improve the generated sample quality
of SOTA methods, such as Diffaug [1] and APA [21] for
few-shot datasets. We further extend our study for high-
resolution experiments (Table 6 and Figure 5) where the

Re-StyleGAN2 model gets better FID scores on all 1k, 5k,
10k and 70k FFHQ datasets (see supplementary material
for more details). To further demonstrate the effectiveness
of our Re-GAN, we apply it to other recent methods,
FastGAN [74] for several few-shot datasets. Results are
shown in supplementary material.

Table 6: FID comparison on few-shot datasets at 1024×1024
resolution. FID and IS are calculated using 50k randomly
generated samples, with the training data (70k) serving as the
reference distribution.

Methods FFHQ
70k 10k 5k 1k

StyleGAN2 4.35 13.06 21.76 40.24
Re-StyleGAN2 4.19 11.22 19.13 36.3

4.5. Ablation and analysis
Prune G/D: We study the impact of exploring different

sub-network structures on G or D only, or on both G and D
(represented as B) at 10%, 30%, and 50% pruning ratio
(i.e., weight remaining ratio indicates the sparsity levels of
explored sub-network structures during training) on
CIFAR-10 full training dataset. Figure 6 shows a summary
of the results. We notice that employing pruning on D or
both G and D, achieves comparable or better performance
than the base model. While for the same sparsity

16236

distribution (i.e., pruning ratio), pruning only on G
achieves significant performance improvement (i.e.,
largely reducing the FID). We also notice that update
interval (g) 100 works well with only G.

Figure 5: Few-shot generalization results of Re-StyleGAN2 on
10k FFHQ (1024×1024). Samples are randomly drawn without
cherry picking.

Robustness to learning rate. Previous research works
[75]–[77] have observed that GANs convergence highly
depends on the selection of hyperparameters, especially the
learning rate, 𝛼 . As shown in Table 7, we validate our
network by training it with five different 𝛼 values (0.0001,
0.0002, 0.0005, 0.0007, and 0.00001) for the CIFAR-10
dataset. Results show that for all different 𝛼 values, our
models converged and achieved similar inception scores.

Figure 6: FID with different pruning ratio and update interval

(g) of Re-SNGAN (CIFAR-10).

Figure 7: Stability during training on the 10% CIFAR-10.

Stability during training. To compare the stability of
Re-SNGAN with SNGAN, we evaluate how the samples
produced for the same set of latent points vary during
training. As proposed in [30], we use the mean squared
error (MSE) between two consecutive generated samples
as a quantitative measure of training stability. Figure 7
shows the MSE between generated images from the same
latent code in the midst of successive epochs on the 10%
CIFAR-10 dataset. Results show that dense Re-SNGAN
converges consistently over time, while SNGAN varies
dramatically across epochs.

Table 7: Robustness to learning rate.

Methods Learning
rate

Results
IS FID

Real images - 11.34 -
SNGAN 0.0002 8.07±0.16 20.12

Re-SNGAN

0.0007 7.93±0.30 21.76
0.0005 8.03±0.23 20.17
0.0002 8.16±0.15 17.87
0.0001 8.03±0.17 19.03
0.00001 8.01±0.25 19.65

5. Conclusion and Discussion of Broader
Impact

We introduce a new perspective on data-efficient GANs
by exploring different sub-network structures during
training, which is a novel approach compared to existing
methods. Extensive experiments on various GANs
architectures, objectives, and datasets demonstrate the
effectiveness and training efficiency of our proposed
GANs training methodology, Re-GAN. In this work, we
focus on unstructured sparsity to showcase the algorithm-
level innovations of Re-GAN. However, only specific
hardware supports sparse tensor cores for weight pruning.
Future work could aim for a high pruning ratio and
reconfigure network width and depth simultaneously
during GANs training, addressing the limitations of the
current approach.

This research aims to enhance generalization
performance, stabilize GANs models under limited data,
and improve training efficiency, which has practical
implications for various applications and industries.
However, these advancements might also exacerbate
existing social risks associated with GANs. We plan to
investigate whether the sparse structures affect issues like
image generation bias in future work. The ability to
generate images with less data could potentially be
exploited for undesirable applications, such as DeepFakes.

Acknowledgments
This work is supported by PolyU Internal Start-up Fund
(Grant no: P0038876), Research Impact Fund (No. R5034-
18), and RGC Collaborative Research Fund (Grant no:
C5026-18G).

16237

References
[1] S. Zhao, Z. Liu, J. Lin, J. Y. Zhu, and S. Han,

“Differentiable augmentation for data-efficient GAN
training,” in Advances in Neural Information Processing
Systems, 2020, pp. 7559–7570.

[2] Z. Si and S.-C. Zhu, “Learning hybrid image templates
(HIT) by information projection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 7, pp. 1354–1367, 2011.

[3] A. Krizhevsky and others, “Learning multiple layers of
features from tiny images,” 2009.

[4] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
generative adversarial networks,” in International
conference on machine learning, Jan. 2017, pp. 214–223,
Accessed: Apr. 05, 2019. [Online]. Available:
http://arxiv.org/abs/1701.07875.

[5] A. Brock, J. Donahue, and K. Simonyan, “Large scale GaN
training for high fidelity natural image synthesis,” in
Proceedings of International Conference on Learning
Representations, 2019.

[6] I. J. Goodfellow et al., “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014,
vol. 3, no. January, pp. 2672–2680, doi:
10.3156/jsoft.29.5_177_2.

[7] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P.
Smolley, “Least Squares Generative Adversarial
Networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2813–2821,
doi: 10.1109/ICCV.2017.304.

[8] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J.
Goldberger, and H. Greenspan, “GAN-based synthetic
medical image augmentation for increased CNN
performance in liver lesion classification,”
Neurocomputing, vol. 321, pp. 321–331, 2018.

[9] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H.
Greenspan, “Synthetic data augmentation using GAN for
improved liver lesion classification,” in International
symposium on biomedical imaging (ISBI), 2018, pp. 289–
293.

[10] J. Hoffman et al., “Cycada: Cycle-consistent adversarial
domain adaptation,” in International conference on
machine learning, 2018, pp. 1989–1998.

[11] H.-K. Hsu et al., “Progressive domain adaptation for object
detection,” in Proceedings of the IEEE/CVF winter
conference on applications of computer vision, 2020, pp.
749–757.

[12] Y.-C. Cheng, C. H. Lin, H.-Y. Lee, J. Ren, S. Tulyakov,
and M.-H. Yang, “InOut: Diverse Image Outpainting via
GAN Inversion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022, pp. 11431–11440.

[13] P. Teterwak et al., “Boundless: Generative adversarial
networks for image extension,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2019, pp. 10521–10530.

[14] X. Huang, M. Y. Liu, S. Belongie, and J. Kautz,
“Multimodal Unsupervised Image-to-Image Translation,”
in European conference on computer vision (ECCV), 2018,
pp. 172–189, doi: 10.1007/978-3-030-01219-9_11.

[15] H. Y. Lee et al., “DRIT++: Diverse Image-to-Image
Translation via Disentangled Representations,” Int. J.
Comput. Vis., vol. 128, no. 10–11, pp. 2402–2417, 2020,

doi: 10.1007/s11263-019-01284-z.
[16] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired

Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks,” in Proceedings of the IEEE
International Conference on Computer Vision, Mar. 2017,
vol. 2017-Octob, pp. 2242–2251, doi:
10.1109/ICCV.2017.244.

[17] R. Webster, J. Rabin, L. Simon, and F. Jurie, “Detecting
overfitting of deep generative networks via latent
recovery,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp.
11273–11282.

[18] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and
T. Aila, “Analyzing and improving the image quality of
stylegan,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 8110–
8119.

[19] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and
T. Aila, “Training generative adversarial networks with
limited data,” in Advances in Neural Information
Processing Systems, 2020, vol. 33, pp. 12104–12114.

[20] Z. Zhao, Z. Zhang, T. Chen, S. Singh, and H. Zhang,
“Image augmentations for gan training,” arXiv Prepr.
arXiv2006.02595, 2020.

[21] L. Jiang, B. Dai, W. Wu, and C. C. Loy, “Deceive D:
adaptive pseudo augmentation for GAN training with
limited data,” in Advances in Neural Information
Processing Systems, 2021, vol. 34, pp. 21655–21667.

[22] X. Chen, Z. Zhang, Y. Sui, and T. Chen, “GANs Can Play
Lottery Tickets Too,” arXiv Prepr. arXiv2106.00134,
2021, [Online]. Available:
http://arxiv.org/abs/2106.00134.

[23] N. M. Kalibhat, Y. Balaji, and S. Feizi, “Winning lottery
tickets in deep generative models,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2021, vol. 35,
no. 9, pp. 8038–8046.

[24] T. Chen, Y. Chen, Z. Gan, J. Liu, and Z. Wang, “Data-
Efficient GAN Training Beyond (Just) Augmentations: A
Lottery Ticket Perspective,” in Advances in Neural
Information Processing Systems, 2021, vol. 25, pp. 20941–
20955, Accessed: Jul. 06, 2022. [Online]. Available:
https://github.

[25] M. R. U. Saputra, P. P. B. De Gusmao, Y. Almalioglu, A.
Markham, and N. Trigoni, “Distilling knowledge from a
deep pose regressor network,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2019, pp. 263–272.

[26] H. Tian, B. Liu, X.-T. Yuan, and Q. Liu, “Meta-learning
with network pruning,” in European Conference on
Computer Vision, 2020, pp. 675–700.

[27] S. Han et al., “Dsd: Dense-sparse-dense training for deep
neural networks,” arXiv Prepr. arXiv1607.04381, 2016.

[28] A. Peste, E. Iofinova, A. Vladu, and D. Alistarh, “Ac/dc:
Alternating compressed/decompressed training of deep
neural networks,” in Advances in Neural Information
Processing Systems, 2021, vol. 34, pp. 8557–8570.

[29] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive
growing of GANs for improved quality, stability, and
variation,” in Proceedings of International Conference on
Learning Representations, 2018.

[30] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida,

16238

“Spectral normalization for generative adversarial
networks,” in Proceedings of International Conference on
Learning Representations, 2018.

[31] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “AutoGAN:
Neural architecture search for generative adversarial
networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, vol. 2019-Octob,
pp. 3223–3233, doi: 10.1109/ICCV.2019.00332.

[32] “AutoGAN.” https://github.com/VITA-Group/AutoGAN.
[33] J. Wu, Q. Zhang, and G. Xu, “Tiny imagenet challenge,”

Tech. Rep., 2017.
[34] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator

Architecture for Generative Adversarial Networks,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Dec. 2019, pp. 4401–4410,
Accessed: Oct. 02, 2019. [Online]. Available:
http://arxiv.org/abs/1812.04948.

[35] A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional generative
adversarial networks,” arXiv Prepr. arXiv1511.06434,
2015.

[36] I. Deshpande, Z. Zhang, and A. G. Schwing, “Generative
modeling using the sliced wasserstein distance,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 3483–3491.

[37] D. Berthelot, T. Schumm, and L. Metz, “BEGAN:
Boundary Equilibrium Generative Adversarial Networks,”
arXiv Prepr. arXiv1703.10717, 2017, doi:
10.1109/ACCESS.2018.2804278.

[38] H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency
Regularization for Generative Adversarial Networks,”
arXiv Prepr. arXiv1910.12027, 2019, [Online]. Available:
http://arxiv.org/abs/1910.12027.

[39] T. D. Nguyen, T. Le, H. Vu, and D. Phung, “Dual
discriminator generative adversarial nets,” in Advances in
Neural Information Processing Systems, 2017, vol. 2017-
Decem, pp. 2671–2681.

[40] A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional generative
adversarial networks,” Nov. 2016, Accessed: Apr. 04,
2019. [Online]. Available:
http://arxiv.org/abs/1511.06434.

[41] H. Zhang et al., “Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks,” in
Proceedings of the IEEE international conference on
computer vision, 2017, pp. 5907–5915.

[42] A. Karnewar and O. Wang, “Msg-gan: Multi-scale
gradients for generative adversarial networks,” in
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 7799–7808.

[43] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “Cartoongan:
Generative adversarial networks for photo cartoonization,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9465–9474.

[44] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song,
“Neural style transfer: A review,” IEEE Trans. Vis.
Comput. Graph., vol. 26, no. 11, pp. 3365–3385, 2019.

[45] D. Saxena and J. Cao, “Generative adversarial networks
(GANs) challenges, solutions, and future directions,” ACM
Comput. Surv., vol. 54, no. 3, pp. 1–42, 2021.

[46] H. Shu et al., “Co-evolutionary compression for unpaired

image translation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, vol.
2019-Octob, pp. 3234–3243, doi:
10.1109/ICCV.2019.00333.

[47] P. Wang et al., “QGAN: Quantized Generative Adversarial
Networks,” arXiv Prepr. arXiv1901.08263, 2019, [Online].
Available: http://arxiv.org/abs/1901.08263.

[48] M. Li, J. Lin, Y. DIng, Z. Liu, J. Y. Zhu, and S. Han, “GAN
Compression: Efficient Architectures for Interactive
Conditional GANs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2020, pp. 5283–5293, doi:
10.1109/CVPR42600.2020.00533.

[49] H. Wang, S. Gui, H. Yang, J. Liu, and Z. Wang, “Gan
slimming: All-in-one gan compression by a unified
optimization framework,” in European Conference on
Computer Vision, 2020, pp. 54–73.

[50] C. Yu and J. Pool, “Self-supervised generative adversarial
compression,” in Advances in Neural Information
Processing Systems, 2020, vol. 2020-Decem.

[51] X. Song, Y. Chen, Z. H. Feng, G. Hu, D. J. Yu, and X. J.
Wu, “SP-GAN: Self-Growing and Pruning Generative
Adversarial Networks,” IEEE Trans. Neural Networks
Learn. Syst., vol. 32, no. 6, pp. 2458–2469, 2021, doi:
10.1109/TNNLS.2020.3005574.

[52] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in Proceedings
of International Conference on Learning Representations,
2019.

[53] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell,
“Rethinking the value of network pruning,” in Proceedings
of International Conference on Learning Representations,
2019.

[54] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in
deep neural networks,” arXiv Prepr. arXiv1902.09574,
2019.

[55] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Linear
mode connectivity and the lottery ticket hypothesis,” in
International Conference on Machine Learning, 2020, pp.
3259–3269.

[56] A. Renda, J. Frankle, and M. Carbin, “Comparing
Rewinding and Fine-tuning in Neural Network Pruning,”
in Proceedings of International Conference on Learning
Representations, 2020, [Online]. Available:
http://arxiv.org/abs/2003.02389.

[57] S. Liu et al., “Deep Ensembling with No Overhead for
either Training or Testing: The All-Round Blessings of
Dynamic Sparsity,” 2021, Accessed: Jun. 27, 2022.
[Online]. Available: http://arxiv.org/abs/2106.14568.

[58] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn,
“Estimation of energy consumption in machine learning,”
J. Parallel Distrib. Comput., vol. 134, pp. 75–88, 2019,
doi: 10.1016/j.jpdc.2019.07.007.

[59] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green
ai,” Commun. ACM, vol. 63, no. 12, pp. 54–63, 2020.

[60] E. Strubell, A. Ganesh, and A. McCallum, “Energy and
policy considerations for deep learning in NLP,” arXiv
Prepr. arXiv1906.02243, 2019.

[61] A. J. G. D. Holtmaat et al., “Transient and persistent
dendritic spines in the neocortex in vivo,” Neuron, vol. 45,
no. 2, pp. 279–291, 2005.

16239

[62] D. D. Stettler, H. Yamahachi, W. Li, W. Denk, and C. D.
Gilbert, “Axons and synaptic boutons are highly dynamic
in adult visual cortex,” Neuron, vol. 49, no. 6, pp. 877–887,
2006.

[63] A. J. Peters, S. X. Chen, and T. Komiyama, “Emergence of
reproducible spatiotemporal activity during motor
learning,” Nature, vol. 510, no. 7504, pp. 263–267, 2014.

[64] J. H. Lim and J. C. Ye, “Geometric gan,” arXiv Prepr.
arXiv1705.02894, 2017.

[65] Y. LeCun, J. S. Denker, and S. A. Solla, “Advances in
Neural Information Processing Systems.” San Francisco,
CA: Morgan Kaufmann, 1990.

[66] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” arXiv Prepr.
arXiv1510.00149, 2015.

[67] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A.
Courville, “Improved training of wasserstein GANs,” in
Advances in Neural Information Processing Systems, Mar.
2017, vol. 2017-Decem, pp. 5768–5778, Accessed: Apr.
05, 2019. [Online]. Available:
http://arxiv.org/abs/1704.00028.

[68] “ProGAN.”
https://github.com/BakingBrains/Progressive_GAN-
ProGAN-_implementation.

[69] “SNGAN.” https://github.com/w86763777/pytorch-gan-
collections.

[70] “StyleGAN-V2.” https://github.com/rosinality/stylegan2-
pytorch.

[71] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.
Hochreiter, “GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium,” in Advances
in neural information processing systems, 2017, pp. 6626-
-6637.

[72] M.-E. Nilsback and A. Zisserman, “A visual vocabulary for
flower classification,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’06), 2006, vol. 2, pp. 1447–1454.

[73] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,
“Learning efficient convolutional networks through
network slimming,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.
2736–2744.

[74] B. Liu, Y. Zhu, K. Song, and A. Elgammal, “Towards
Faster and Stabilized Gan Training for High-Fidelity Few-
Shot Image Synthesis,” in Proceedings of International
Conference on Learning Representations, 2021.

[75] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A.
Radford, and X. Chen, “Improved techniques for training
GANs,” in Advances in Neural Information Processing
Systems, Jun. 2016, pp. 2234–2242, Accessed: Sep. 06,
2019. [Online]. Available:
http://arxiv.org/abs/1606.03498.

[76] L. Mescheder, A. Geiger, and S. Nowozin, “Which training
methods for GANs do actually converge?,” in International
conference on machine learning, 2018, pp. 3481–3490.

[77] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein,
“Unrolled Generative Adversarial Networks,” Nov. 2016,
Accessed: Sep. 06, 2019. [Online]. Available:
http://arxiv.org/abs/1611.02163.

16240

