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Abstract

Monocular 3D human pose and shape estimation is an ill-
posed problem since multiple 3D solutions can explain a 2D
image of a subject. Recent approaches predict a probability
distribution over plausible 3D pose and shape parameters
conditioned on the image. We show that these approaches
exhibit a trade-off between three key properties: (i) accuracy
- the likelihood of the ground-truth 3D solution under the pre-
dicted distribution, (ii) sample-input consistency - the extent
to which 3D samples from the predicted distribution match
the visible 2D image evidence, and (iii) sample diversity - the
range of plausible 3D solutions modelled by the predicted
distribution. Our method, HuManiFlow, predicts simultane-
ously accurate, consistent and diverse distributions. We use
the human kinematic tree to factorise full body pose into
ancestor-conditioned per-body-part pose distributions in an
autoregressive manner. Per-body-part distributions are im-
plemented using normalising flows that respect the manifold
structure of SO(3), the Lie group of per-body-part poses.
We show that ill-posed, but ubiquitous, 3D point estimate
losses reduce sample diversity, and employ only probabilistic
training losses. HuManiFlow outperforms state-of-the-art
probabilistic approaches on the 3DPW and SSP-3D datasets.

1. Introduction

Estimating 3D human pose and shape from a single RGB
image is an inherently ill-posed [25, 47] computer vision
task. Many 3D solutions can correspond to an input 2D ob-
servation, due to depth ambiguity, occlusion and truncation.
Thus, several recent approaches [1, 2, 23, 42, 43] use deep
neural networks to predict a probability distribution over
3D pose and shape, conditioned on the 2D input. In theory,
this has a few advantages over deterministic single-solution
predictors [18, 20, 21, 27, 55] - such as the quantification of
prediction uncertainty, sampling of multiple plausible 3D
solutions, and usage in downstream tasks such as multi-input
fusion [43, 44] or as a prior in parametric model fitting [23].

To fully realise the advantages of probabilistic 3D pose

Figure 1. Comparison between pose and shape distributions from
HuManiFlow and ProHMR [23]. 3D samples from HuManiFlow
are consistent with the visible 2D evidence, while being more di-
verse than samples from ProHMR. Per-vertex sample variances
along the x/y/z-axes highlight interpretable uncertainty due to oc-
clusion/truncation (all axes), and depth ambiguity (z-axis-specific).

and shape estimation in practice, we suggest that pre-
dicted distributions should exhibit three properties: accuracy,
sample-input consistency and sample diversity. Accuracy de-
notes the likelihood of the ground-truth (GT) 3D pose and
shape under the distribution. Sample-input consistency mea-
sures the extent to which 3D samples from the distribution
match the 2D input. In particular, after projection to the im-
age plane, samples should agree with any pose and shape
information visible in the image. Sample diversity refers to
the range of 3D poses and shapes modelled by the distribu-
tion. The GT pose and shape is but one 3D solution - the
predicted distribution should model several plausible solu-
tions when ill-posedness arises due to occlusion, truncation
and depth ambiguity in the 2D input. More diverse samples
enable better estimates of prediction uncertainty.

We show that recent probabilistic approaches suffer from
a trade-off between accuracy, consistency and diversity.
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Several methods [23, 42–44] predict uni-modal pose and
shape distributions with limited expressiveness, and use non-
probabilistic loss functions such as L1/L2 losses between
GT 3D keypoints and a 3D point estimate (usually the mode
of the predicted distribution). These choices favour accuracy
and consistency but harm diversity, as shown in Figure 1.
Approaches that generate diverse samples [2], through the
use of more expressive probability distributions, often yield
samples that are not consistent with the 2D input image.

We aim to balance accuracy, consistency and diversity
with our approach, HuManiFlow, which outputs a distri-
bution over SMPL [29] pose and shape parameters condi-
tioned on an input image. We use normalising flows [37] to
construct expressive full body pose distributions, which are
factorised into per-body-part distributions autoregressively
conditioned on ancestors along the human kinematic tree.
We account for the manifold structure of the Lie Group of
per-body-part poses (or 3D rotations) SO(3) by predicting
distributions on the corresponding Lie algebra so(3), and
“pushing forward” the algebra distributions onto the group
via the exponential map [12]. We follow [42, 43] in pre-
dicting a Gaussian distribution over SMPL’s shape-space
PCA coefficients. Notably, our method is trained without
commonly-used point estimate losses on 3D keypoints. We
demonstrate that such non-probabilistic losses reduce sample
diversity while providing negligible accuracy improvements
when expressive distribution estimation models are used.

In summary, our main contributions are as follows:

• We demonstrate that current probabilistic approaches
to monocular 3D human pose and shape estimation
suffer from a trade-off between distribution accuracy,
sample-input consistency and sample diversity.

• We propose HuManiFlow, a normalising-flow-based
method to predict distributions over SMPL pose and
shape parameters that (i) considers the manifold struc-
ture of the 3D body-part rotation group SO(3), (ii)
exploits the human kinematic tree via autoregressive
factorisation of full body pose into per-body-part rota-
tion distributions, and (iii) is trained without any non-
probabilistic point estimate losses on 3D keypoints
(such as vertices or body joints).

• We show that HuManiFlow provides more accurate,
input-consistent and diverse pose and shape distribu-
tions than current approaches, using the 3DPW [51]
and SSP-3D [41] datasets (see Figure 1). Our method
interpretably and intuitively models uncertainty due to
occlusion, truncation and depth ambiguities.

2. Related Work
Monocular 3D pose and shape estimation approaches
can be labelled as optimisation-based or learning-based.

Optimisation-based approaches involve iteratively updating
the parameters of a 3D body model [29, 36, 54] (“model fit-
ting”) to match 2D observations, such as 2D keypoints [4,24],
silhouettes [24], body-part masks [56] or dense correspon-
dences [14]. These methods do not need expensive 3D-
labelled training data, but require accurate 2D observations,
good parameter initialisations and suitable 3D pose priors.

Learning-based approaches may be model-free or model-
based. Model-free approaches directly regress a 3D human
representation, such as a voxel grid [50], vertex mesh [7, 22,
33, 57] or implicit surface [39, 40]. Model-based methods
[18,20,41,49,55] regress body model parameters [29,36,54].
Both typically use deep neural networks (DNNs).

Recently, several approaches have combined optimisation
and learning. SPIN [21] initialises model fitting with a DNN
regression, then supervises the DNN with the optimised
parameters. EFT [17] optimises the weights of a pre-trained
DNN at test-time, instead of body model parameters. HybrIK
[27] uses a DNN to regress the longitudinal (twist) rotation
of 3D joints, and computes the in-plane (swing) rotation
analytically using inverse kinematics.
3D pose and shape distribution estimation. Early
optimisation-based approaches to 3D pose estimation [8, 45–
47] specified multi-modal posterior probabilities of 3D pose
given 2D observations, and provided methods to sample mul-
tiple plausible 3D poses from the posterior. Recent learning-
based approaches predict distributions over 3D keypoint
locations conditioned on 2D images, using mixture density
networks [3, 26, 34] or normalising flows [52]. Other meth-
ods extend this to distributions over 3D pose represented by
body-part rotations. 3D Multibodies [2] predicts a categori-
cal distribution over SMPL [29] pose and shape parameters,
while Sengupta et al. [43] estimate a Gaussian distribution.
HierProbHumans [42] outputs a hierarchical matrix-Fisher
distribution over body-part rotations, informed by the SMPL
kinematic tree. ProHMR [23] uses additive-coupling normal-
ising flows [9] to learn more-expressive distributions over
SMPL pose parameters. These methods exhibit a trade-off
between distribution accuracy, sample-input consistency and
sample diversity, as we show in Section 5.

3. Method
This section provides preliminary overviews of normalis-

ing flows [37], the Lie group SO(3) and SMPL [29], then
details our pose and shape distribution prediction method.

3.1. Normalising flows

Normalising flows [35, 37] are a method for construct-
ing expressive probability distributions using the change-of-
variables formula. Specifically, pushing a D-dimensional
continuous random vector Z ∼ pZ(z) through a diffeomor-
phism f : RD → RD (i.e. a bijective differentiable map
with differentiable inverse f−1) induces a random vector
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Figure 2. Overview of HuManiFlow, our method for image-conditioned pose and shape distribution prediction. We output a Gaussian
distribution over SMPL [29] shape, and learn normalising flows [10, 37] over full body pose, factorised into ancestor-conditioned per-body-
part distributions using the SMPL kinematic tree. Normalising flows are defined on SO(3), the Lie group of per-body-part poses, by pushing
distributions over the Lie algebra so(3) ∼= R3 through the exponential map [12]. 3D body samples are obtained using ancestral sampling.

Y = f(Z) with density function given by

pY (y) = pZ(f
−1(y))|det Jf−1(y)|

= pZ(z)|det Jf (z)|−1
(1)

where y ∈ RD, z = f−1(y) and Jf (z) ∈ RD×D is the
Jacobian matrix representing the differential of f at z. Intu-
itively, |det Jf (z)| gives the relative change of volume of
an infinitesimal neighbourhood around z due to f .

In a normalising flow model, f is the composition of
multiple simple diffeomorphisms f = fK ◦ . . . ◦ f1. Each
fk is implemented using a deep neural network. Typically,
the base distribution pZ(z) is specified as N (0, I).

This formulation may be extended to model conditional
probability distributions [53] pY |C(y|c), where c ∈ RC is a
context vector, using a transformation f : RD × RC → RD

such that y = f(z; c). f is bijective in y and z.

3.2. Lie group structure of SO(3)

The Lie group of 3D rotations may be defined as
SO(3) = {R ∈ R3×3|RTR = I,detR = 1}. The corre-
sponding Lie algebra so(3) (i.e. tangent space at the identity
I) consists of 3× 3 skew-symmetric matrices. Since so(3)
is a real 3D vector space, an isomorphism from R3 to so(3)
may be defined by the hat operator .̂ : R3 → so(3) where

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ∈ so(3) (2)

for v = [v1, v2, v3]
T ∈ R3.

SO(3) is a matrix Lie group; thus, the exponential map
exp : so(3) → SO(3) coincides with the matrix exponential

exp v̂ =
∑∞

k=0
v̂k

k! for v̂ ∈ so(3). In practice, we use

exp v̂ = I + (sin θ)û+ (1− cos θ)û2 (3)

i.e. the Rodrigues’ rotation formula with v̂ = θû. Here, θ ∈
R is the rotation angle and the unit vector u ∈ R3 is the axis.
Thus, there is a correspondence between axis-angle vectors
v = θu ∈ R3 and Lie algebra elements v̂ = θû ∈ so(3).

The exponential map for SO(3) is surjective, as SO(3)
is connected and compact, and smooth. However, it is not
injective, and thus not a diffeomorphism. This is because

exp(θû) = exp((θ + 2πk)û) = exp(θkû) (4)

for any θû ∈ so(3), k ∈ Z and θk = θ + 2πk. Given a
rotation R ∈ SO(3), the log operator may be used to find
the corresponding axis-angle vector with the smallest angle
(or minimum 2-norm). Specifically, θu = logR such that

θ = arccos

(
trR− 1

2

)
, u =

1

2 sin θ

R32 −R23

R13 −R31

R21 −R12

 (5)

where θ ∈ [0, π]. The set of all equivalent axis-angle vec-
tors, or so(3) elements, can be obtained with Eqn. 4 - thus
providing a many-valued inverse function to exp.

3.3. Constructing distributions on SO(3)

We ultimately aim to learn expressive probability distri-
butions on the Lie group SO(3). We can construct a dis-
tribution on the Lie algebra so(3) using a distribution over
axis-angle vectors in R3, since R3 is isomorphic to so(3) (or
R3 ∼= so(3)). The axis-angle density function, pR3(v) for
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Figure 3. Comparison between HuManiFlow and recent probabilistic approaches to monocular pose and shape estimation. 3D Multibodies [2]
generates diverse 3D samples, but these do not consistently match the input image. Samples from ProHMR [23] and HierProbHumans [42]
are input-consistent but not diverse, and tend to cluster around the predicted distribution’s mode. Our method outputs consistent and diverse
samples, and interpretably captures uncertainty due to depth ambiguity (z-axis variance), truncations and occlusions (all-axes variance).

v ∈ R3, can be modelled by, for example, normalising flows
(NFs) [37] or mixture density networks (MDNs) [3].

pR3(v) is pushed from R3 ∼= so(3) onto SO(3) via the
exponential map, using a variant of the change-of-variables
formula in Eqn. 1. exp is not a diffeomorphism over all
of so(3), which obstructs change-of-variables. However, it
is a local diffeomorphism (and surjective) within an open
Euclidean ball Br(0) of radius π < r < 2π about 0 ∈ R3 ∼=
so(3), as shown by [12], who then use this property to derive
a change-of-variables formula for the exp map:

pSO(3)(R) =
∑

k∈{0,±1}

pR3(θku)|det Jexp(θku)|−1 (6)

where R ∈ SO(3), θu = v = logR and θk = θ + 2πk.
pR3 must be constructed with compact support, such that
pR3(v) = 0 for v /∈ Br(0), to allow for a finite sum over
k ∈ {0,±1} instead of k ∈ Z (as in Eqn. 4). pSO(3) is the
density function on SO(3) induced by pushing pR3 through
exp. The determinant of Jexp at v = θu is given by [12]

det Jexp(v) = detJexp(θu) =
2− 2 cos θ

θ2
(7)

which, intuitively, gives the relative change of volume due
to exp of an infinitesimal neighbourhood around v = θu.

3.4. SMPL model

SMPL [29] is a parametric human body model. Body
shape is parameterised by coefficients β ∈ R10 correspond-
ing to a PCA shape-space basis. Pose is given by the 3D
rotation of each body-part relative to its parent joint in the
kinematic tree, which consists of 23 body (i.e. non-root)
joints. Full body pose can be represented as a set of per-
body-part relative rotations {Ri}23i=1 where Ri ∈ SO(3).
We denote the global rotation about the root joint as Rglob.
SMPL provides a function M(β, {Ri}23i=1,Rglob) that out-
puts a vertex mesh V ∈ R6890×3. 3D keypoints are given by
J3D = JV where J is a pre-trained linear regressor.

3.5. Pose and shape distribution prediction

Our method, HuManiFlow, predicts probability distribu-
tions over SMPL pose and shape parameters conditioned on
an input image, as shown in Figure 2. It also outputs deter-
ministic estimates of weak-perspective camera parameters
πππ = [s, tx, ty], denoting scale and xy translation, and Rglob.
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Body Pose
Distribution On

Distribution
Type

3DPW 3DPW Cropped
Accuracy Consistency Diversity Accuracy Consistency Diversity

MPJPE-PA 2DKP Error 3DKP Spread MPJPE-PA 2DKP Error 3DKP Spread
Point / Sample Min. Point / Samples Vis. / Invis. Point / Sample Min. Point / Samples Vis. / Invis.

Full Body (concatenated)
Axis-Angles Θ ∈ R69

Gaussian 55.3 / 47.8 (13.6%) 5.9 / 8.2 48.2 / 118.6 78.8 / 62.8 (20.3%) 10.9 / 15.5 57.4 / 140.7
MDN [3] 54.6 / 46.9 (14.1%) 5.9 / 8.1 50.5 / 122.3 78.4 / 62.2 (20.7%) 10.9 / 15.5 57.4 / 140.7
LRS-NF [10] 54.5 / 46.1 (15.4%) 5.8 / 8.1 51.3 / 124.0 78.6 / 61.9 (21.2%) 10.8 / 15.5 57.6 / 140.9

Ancestor-Conditioned
Axis-Angles {vi}23i=1,
vi ∈ R3 ∼= so(3)

Gaussian 55.0 / 43.6 (20.7%) 5.4 / 6.7 43.2 / 105.3 84.8 / 60.5 (28.7%) 9.8 / 12.5 43.8 / 136.4
MDN [3] 54.9 / 41.7 (24.0%) 5.3 / 6.7 47.6 / 118.7 84.4 / 60.0 (28.9%) 9.7 / 12.2 43.7 / 138.9
LRS-NF [10] 53.4 / 41.1 (23.0%) 5.1 / 6.6 44.7 / 110.5 83.6 / 59.3 (29.1%) 9.8 / 11.9 38.9 / 130.2

Ancestor-Conditioned
Matrices {Ri}23i=1,
Ri ∈ SO(3) manifold

Matrix-Fisher 54.0 / 43.4 (19.7%) 5.1 / 6.8 51.4 / 131.7 80.4 / 58.5 (27.2%) 9.9 / 11.6 49.6 / 142.7
MDN [3] 54.3 / 40.8 (24.9%) 5.2 / 6.7 47.2 / 119.2 80.3 / 57.8 (28.0%) 9.8 / 11.5 42.8 / 139.2
LRS-NF [10] 53.4 / 39.9 (25.3%) 5.1 / 6.2 42.8 / 116.0 78.2 / 54.9 (29.8%) 9.8 / 11.3 40.0 / 128.5

Table 1. Ablation study comparing pose distribution modelling choices in terms of accuracy, sample-input consistency and sample diversity
metrics (see Section 4) on 3DPW. “Point” indicates point estimate metrics. MPJPE-PA and 3DKP spread are in mm, while 2DKP reprojection
error is in pixels. Brackets contain % decreases from point estimate MPJPE-PA to the min. sample MPJPE-PA computed using 100 samples.

Given an input image, we first compute a proxy represen-
tation X ∈ RH×W×C consisting of an edge map and 2D
keypoint heatmaps [42], stacked along the channel dimen-
sion (see Figure 2). These are obtained using Canny edge
detection [5] and HRNet-W48 [48] respectively. Proxy repre-
sentations are often used to bridge the gap between synthetic
training images and real test images [6, 41].

The proxy representation is passed through a CNN en-
coder [15] to give input features. The camera πππ and global
rotation Rglob are regressed from these features with an MLP.

Next, we predict a joint distribution over SMPL pose and
shape parameters, pjoint({Ri}23i=1,β|X), conditioned on the
input proxy representation X. pjoint is factorised into

pjoint({Ri}23i=1,β|X) = pshape(β|X)ppose({Ri}23i=1|β,X).
(8)

We condition the full body pose distribution ppose on β as
this determines 3D body-part proportions, which affects the
posed locations of mesh vertices. In practice, we also explic-
itly condition ppose on πππ and Rglob (see Figure 2). These are
functions of X, and are notationally omitted for simplicity.

Following [43], we predict a Gaussian shape distribution

pshape(β|X) = N (β;µβ(X), diag(σ2
β(X)) (9)

where µβ and σ2
β are obtained with an MLP.

In SMPL, each body-part’s pose is defined relative to its
parent joint. The parent joint is rotated about its own parent,
all the way up the kinematic tree. Thus, it is reasonable to
inform the i-th body-part’s pose Ri on {Rj}j∈A(i), the rota-
tions of all its kinematic ancestors A(i), as noted by [13,42].
This motivates an autoregressive factorisation of ppose into
ancestor-conditioned per-body-part rotation distributions:

ppose({Ri}23i=1|β,X) =

23∏
i=1

pSO(3)(Ri|{Rj}j∈A(i),β,X)

=

23∏
i=1

pSO(3)(Ri|ci)

(10)

where ci is a context vector, which is computed as a function
of {Rj}j∈A(i), β and X, as shown in Figure 2. Autoregres-
sive factorisation is similar to the hierarchical distribution
proposed in [42]. However, we condition part rotations di-
rectly on ancestor rotations, instead of ancestor distribution
parameters as in [42]. This enables more input-consistent
distributions, since rotation samples give the exact 3D loca-
tions of ancestor joints, while distribution parameters only
say what the ancestors’ rotations are likely to be.

We implement pSO(3)(Ri|ci), the i-th body-part rota-
tion distribution, by first defining a conditional NF over the
axis-angle vector vi ∈ R3 ∼= so(3), with density function
pR3(vi|ci). This is shown in Figure 2, where the i-th flow
diffeomorphism is denoted as fi : R3 → R3. Then, letting
vi = θiui, Eqn. 6 is used to push pR3(vi|ci) onto SO(3),
finally yielding pSO(3)(Ri|ci) via the exponential map.

Eqn. 6 requires pR3(vi|ci) to have compact support
within Br(0) with π < r < 2π. Thus, we implement a
bijective radial tanh transform [12] t : R3 → Br(0), where

t(x) = r tanh

(
∥x∥
r

)
x

∥x∥
, (11)

as the last layer of each fi. We improve the transform pro-
posed in [12], by ensuring that t(x) ≈ x for small ∥x∥,
which empirically aids training as shown in the supplement.

3.6. Pose and shape sampling and point estimation

SMPL pose and shape samples can be obtained from
pjoint({Ri}23i=1,β|X) via ancestral sampling, as shown in
Figure 2. Specifically, we first sample β ∼ pshape(β|X),
which will be used to condition ppose. Then, each body-part’s
rotation Ri ∼ pSO(3)(Ri|ci) is sampled following the cor-
responding “limb” of the kinematic tree, by first sampling
all ancestor rotations {Rj}j∈A(i), then obtaining the context
vector ci from {Rj}j∈A(i), β and X using an MLP. Pose
and shape samples are converted into 3D vertex mesh sam-
ples with the SMPL function M. The variance of each vertex
along the x, y and z directions highlights the uncertainty cap-
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Losses Used 3DPW 3DPW Cropped
Accuracy Consistency Diversity Accuracy Consistency Diversity

NLL 2DKP
Samples

3DKP + 3D Vert.
Point Estimate

MPJPE-PA 2DKP Error 3DKP Spread MPJPE-PA 2DKP Error 3DKP Spread
Point / Sample Min. Point / Samples Vis. / Invis. Point / Sample Min. Point / Samples Vis. / Invis.

✓ 56.3 / 42.3 (24.9%) 5.6 / 8.1 55.7 / 124.0 90.2 / 64.9 (28.0%) 11.0 / 15.1 66.3 / 141.0
✓ ✓ 53.4 / 39.9 (25.3%) 5.1 / 6.2 42.8 / 116.0 78.2 / 54.9 (29.8%) 9.8/ 11.3 40.0 / 128.5
✓ ✓ ✓ 53.3 / 39.9 (25.1%) 5.1 / 6.3 39.3 / 109.6 83.4 / 61.1 (26.7% 9.8 / 11.4 39.7 / 115.1

Table 2. Ablation study comparing probabilistic losses - i.e. negative log-likelihood and visibility-masked 2DKP samples loss - and
non-probabilistic point estimate losses on 3D keypoints and vertices. Distribution accuracy, sample-input consistency and sample diversity
metrics are detailed in Section 4. “Point” indicates point estimate metrics. MPJPE-PA and 3DKP spread are in mm, while 2DKP reprojection
error is in pixels. Brackets contain % decreases from point estimate MPJPE-PA to the min. sample MPJPE-PA computed using 100 samples.

tured by the predicted distribution pjoint, arising due to depth
(i.e. z-axis) ambiguity, occlusion and truncation.

To obtain a point estimate of SMPL pose and shape
given an input image, we would want to compute the mode
({R∗

i }23i=1,β
∗) = argmax pjoint({Ri}23i=1,β|X). This is

challenging since pjoint is the product of multiple complex
NF distributions. The mode of each per-body-part NF dis-
tribution is itself non-trivial. As an approximation, we use

β∗ = µβ , R
∗
i = exp(fi(0; ci)) (12)

where the i-th body-part’s pose estimate R∗
i is acquired by

passing the base distribution mode (0) through the i-th flow
transform and exp map. While the resulting ({R∗

i }23i=1,β
∗)

is not, in general, the mode of pjoint, we show that it typically
has high likelihood under pjoint in the supplement.

3.7. Loss functions

We train our model using a dataset of synthetic inputs
paired with ground-truth pose, shape and global rotation la-
bels {Xn, {R̄n}23i=1, β̄

n
, R̄n

glob}Nn=1, as discussed in Section
4. We apply a negative log-likelihood (NLL) loss

LNLL = −
N∑

n=1

ln pjoint({R̄n
i }23i=1, β̄

n|Xn) (13)

over pose and shape parameters. Rglob is supervised using

Lglob =

N∑
n=1

∥Rglob(Xn)− R̄n
glob∥2F . (14)

Following [23, 42], we apply a loss between 2D keypoint
samples and visible GT 2D keypoints, L2D, to encourage
sample-input consistency. 2D keypoint samples are obtained
by sampling pose and shape from pjoint, computing the corre-
sponding 3D keypoint samples with SMPL, and projecting
these onto the image plane using the predicted camera πππ.

The overall training loss is given by L = λNLLLNLL +
λglobLglob + λ2DL2D where the λs are weights. We do not
use ubiquitous, but non-probabilistic, point estimate losses
on 3D keypoints, as justified by Section 5.1 and Table 2.

4. Implementation Details

Model architecture. We use a ResNet-18 [15] CNN encoder.
Per-body-part axis-angle probability densities pR3(vi|ci) are
implemented with Linear Rational Spline normalising flows
(LRS-NFs) [10]. Further architecture and hyperparameter
details are provided in the supplementary material.
Synthetic training data. We adopt the same train-
ing data generation pipeline as [42], which renders
synthetic proxy representation inputs {Xn}Nn=1 from
ground-truth (GT) poses, shapes and global rotations
{{R̄n

i }23i=1, β̄
n
, R̄n

glob}Nn=1. GT poses and global rotations
are sampled from the training sets of UP-3D [24], 3DPW
[51] and Human3.6M [16]. GT shapes are randomly sampled
from a prior Gaussian distribution. Truncation, occlusion and
noise augmentations bridge the synthetic-to-real gap.
Training details. We use Adam [19], with a learning rate of
1e-4 and batch size of 72, and train for 200 epochs.
Evaluation datasets and metrics. We use the 3DPW [51]
and SSP-3D [41] datasets to evaluate the accuracy, sample-
input consistency and sample diversity of predicted pose and
shape distributions. Moreover, we generate cropped versions
of 3DPW and SSP-3D, resulting in more ambiguous test
data to evaluate sample diversity. Cropped dataset generation
details are provided in the supplementary material.

Distribution accuracy refers to the likelihood of the GT
pose and shape under the predicted distribution. We measure
accuracy on 3DPW using MPJPE and MPJPE-PA computed
with the minimum error sample out of N samples from the
predicted distribution, where N is increased from 1 to 100.
If the GT pose and shape have high likelihood under the
predicted distribution, we expect the minimum MPJPE over
N samples to improve significantly with increasing N . For
N = 1, the sample is obtained as a point estimate from
the predicted pose and shape distribution, using Eqn. 12.
Similarly, shape-specific distribution accuracy is measured
on SSP-3D, using PVE-T-SC (per-T-pose-vertex-error after
scale correction) computed with the minimum error sample.

Sample-input consistency denotes the extent to which
predicted 3D samples match the visible pose and shape ev-
idence in the input 2D image. We measure consistency on
3DPW and SSP-3D using the average reprojection error be-
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Method 3DPW - Accuracy
MPJPE (mm) MPJPE-PA (mm)

Point Sample Min. Point Sample Min.

HMR [18] 130.0 - 76.7 -
SPIN [21] 96.9 - 59.0 -
I2L-MeshNet [33] 93.2 - 57.7 -
DaNet [57] 85.5 - 54.8 -
HUND [55] 81.4 - 57.5 -
PARE [20] 74.5 - 46.5 -
HybrIK [27] 74.1 - 45.0 -
3D Multibodies [2] 93.8 74.6 (20.5%) 59.9 48.3 (19.4%)

Sengupta et al. [43] 97.1 84.4 (13.1%) 61.1 52.1 (14.7%)

ProHMR [23] 97.0 81.5 (16.0%) 59.8 48.2 (19.4%)

HierProbHuman [42] 84.9 70.9 (16.5%) 53.6 43.8 (18.3%)

HuManiFlow 83.9 65.1 (22.4%) 53.4 39.9 (25.3%)

Table 3. Comparison of recent deterministic (top) and probabilistic
(bottom) methods in terms of 3D point estimate and distribution
accuracy on 3DPW [51].

tween predicted 2D keypoint (2DKP) samples projected onto
the image plane and visible GT 2DKPs, averaged over 100
samples for each test image. The 17 COCO keypoint con-
vention is used [28]. We also compute the reprojection error
between 2DKP point estimates (Eqn. 12) and GT 2DKPs.
An input-consistent distribution should have low average
sample reprojection error, close to that of the point estimate.

Sample diversity refers to the range of 3D reconstructions
modelled by the predicted distribution. We measure diver-
sity by drawing 100 predicted samples, and computing the
average 3D Euclidean distance from the mean for each 3D
keypoint (3DKP), split into visible and invisible keypoints. A
diverse distribution should exhibit significant spread in sam-
ple 3DKP locations - typically along the z-axis for visible
3DKPs (depth ambiguity) and all axes for invisible 3DKPs.
This is a simplistic metric; defining a good diversity metric
for high-dimensional, complex distributions is non-trivial,
and a potential area for future research.

5. Experimental Results
This section first presents ablation studies on distribu-

tion predictors and losses, and then compares our method’s
accuracy, consistency and diversity with the state-of-the-art.

5.1. Ablation studies

Pose distribution modelling choices. Table 1 compares
several different pose distribution prediction models, in terms
of accuracy, consistency and diversity on 3DPW. Rows 1-
3 report metrics from a naive approach, where SMPL pose
parameters are simply treated as a vector Θ ∈ R69 formed by
concatenating per-body-part axis-angle vectors vi ∈ R3. The
distribution over Θ is modelled as a multivariate Gaussian,
MDN [3] or LRS-NF [10]. Notably, all three models perform
similarly, despite the greater theoretical expressiveness of
MDNs and LRS-NFs. This suggests that it is challenging

Figure 4. Rate of improvement in min. sample MPJPE(-PA) with
increasing number of samples. A faster improvement rate indicates
that the GT solution has higher likelihood under the predicted
distribution - i.e. better distribution accuracy (see Section 4).

to directly predict complex probability distributions over
high-dimensional full body pose. The shortcomings of high-
dimensional MDNs in particular are well known [30, 38].

Rows 4-6 in Table 1 investigate an autoregressive ap-
proach, where the full body pose distribution is factorised
into per-body-part distributions on axis-angle vectors vi,
similar to Eqn. 10. The axis-angle distributions are modelled
as a 3D Gaussian, MDN or LRS-NF. However, they are not
pushed onto SO(3) using the change-of-variables formula
for the exp map (Eqn. 6). Thus, the manifold structure of
SO(3) and local “change of volume” due to exp are dis-
regarded. These models improve consistency and accuracy
over the naive approach (Rows 1-3), shown by better average
sample 2DKP error and minimum sample MPJPE-PA. De-
spite the latter, they yield worse point estimate MPJPE-PA
on the 3DPW Cropped split. This suggests that the point
estimate may not be close to the GT, even for an accurate
distribution, when faced with highly ambiguous inputs. The
naive approach has greater sample diversity - but this is
meaningless if the samples are not input-consistent.

Rows 7-9 in Table 1 investigate autoregressive per-body-
part distributions over SO(3) (Eqn. 10). These are defined
by pushing either MDNs or LRS-NFs over R3 ∼= so(3)
through exp onto SO(3), or as a matrix-Fisher distribution
[11, 31, 32]. Autoregressive LRS-NFs on SO(3) yield the
best accuracy and consistency metrics, with only slightly
reduced diversity; thus, we use this model in HuManiFlow.
Distribution prediction losses. Table 2 explores probabilis-
tic losses - i.e. NLL and a loss on 2DKP samples (see Section
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Method SSP-3D - Accuracy (Shape)
PVE-T-SC (mm)

Point Sample Min. Multi-Input

SPIN [21] 22.2 - 21.9 (Mean)

PARE [20] 21.7 - 21.6 (Mean)

HybrIK [27] 22.9 - 22.8 (Mean)

STRAPS [41] 15.9 - 14.4 (Mean)

3D Multibodies [2] 22.3 19.2 (13.9%) 22.1 (Mean)

Sengupta et al. [43] 15.2 10.4 (31.6%) 13.3 (Prob. Comb. [43])

ProHMR [23] 22.2 - 21.9 (Mean)

HierProbHuman [42] 13.6 8.7 (36.0%) 12.0 (Prob. Comb.)

HuManiFlow 13.5 8.3 (39.0%) 11.9 (Prob. Comb.)

Table 4. Comparison of recent deterministic (top) and probabilistic
(bottom) methods in terms of shape accuracy on SSP-3D [41].

3.7) - and non-probabilistic losses (e.g. MSE) applied be-
tween GT 3DKPs and point estimates (Eqn. 12). Despite
their ubiquity, we find that 3D point estimate losses do not
improve distribution accuracy (i.e. min. Sample MPJPE-
PA), or even point estimate MPJPE-PA, which is actually
worsened on 3DPW Cropped. This is likely due to the ill-
posedness of such losses for ambiguous inputs, where the
GT 3DKPs represent but one of many plausible solutions.
Point estimate losses also reduce sample diversity. Using
NLL and a visibility-masked loss on 2DKP samples results
in the best overall performance. Omitting the 2DKP samples
loss degrades sample-input consistency, as expected.

5.2. Comparison with the state-of-the-art

Distribution accuracy. Tables 3 and 4 evaluate the accuracy
of current pose and shape estimators. HuManiFlow predicts
more accurate distributions (i.e. lower min. sample metrics)
than other probabilistic approaches. This is corroborated by
Figure 4, where HuManiFlow has the fastest decrease in min.
sample MPJPE as the number of samples is increased. On
3DPW Cropped and SSP-3D, HuManiFlow’s point estimates
have lower error than the deterministic SOTA approaches.
Sample-input consistency and sample diversity. Table 5
compares the consistency and diversity of current probabilis-
tic methods. Samples from [23, 42] are input-consistent but
not diverse, likely due to the use of unimodal pose distri-
butions and 3D point estimate losses. [2] generates diverse
samples but does not always match the input. Our method is
generally the most input-consistent, with reasonably diverse
samples. A qualitative demonstration is given in Figure 3.
Model fitting with an image-conditioned prior. Distribu-
tions with greater accuracy, consistency and diversity should
be better for downstream tasks. An example task is model fit-
ting [4] i.e. optimising SMPL point estimates to better fit ob-
served 2DKPs. ProHMR [23] use their predicted distribution
as an image-conditioned prior during fitting, outperforming
generic pose priors [4, 36]. Table 6 shows that HuManiFlow
surpasses [23] in this task. Note the difference between prior-

Dataset Method Consistency Diversity
2DKP Error 3DKP Spread

Point / Samples Vis. / Invis.

3DPW

3D Multibodies [2] 5.2 / 7.8 80.1 / 126.9
Sengupta et al. [43] 5.6 / 8.1 48.3 / 98.8
ProHMR [23] 6.8 / 7.5 35.1 / 60.8
HierProbHuman [42] 5.1 / 7.2 47.6 / 101.4
HuManiFlow 5.1 / 6.2 42.8 / 116.0

3DPW
Cropped

Sengupta et al. [43] 11.5 / 17.1 47.8 / 96.5
ProHMR [23] 11.9 / 13.4 32.1 / 57.1
HierProbHuman [42] 9.7 / 12.8 38.5 / 100.2
HuManiFlow 9.8 / 11.3 40.0 / 128.5

SSP-3D

3D Multibodies [2] 5.3 / 7.8 80.7 / -
Sengupta et al. [43] 6.2 / 8.0 50.1 / -
ProHMR [23] 6.9 / 7.6 36.6 / -
HierProbHuman [42] 4.8 / 6.9 48.5 / -
HuManiFlow 4.8 / 6.0 47.3 / -

SSP-3D
Cropped

Sengupta et al. [43] 13.3 / 18.9 60.2 / 139.6
ProHMR [23] 13.8 / 15.2 41.9 / 60.8
HierProbHuman [42] 10.6 / 14.1 58.7 / 105.5
HuManiFlow 10.6 / 13.0 45.3 / 134.0

Table 5. Comparison of recent probabilistic methods in terms of
sample-input consistency and sample diversity on 3DPW [51] and
SSP-3D [41]. 3DKP spread is in mm and 2DKP error is in pixels.

Method Prior 3DPW
MPJPE-PA (mm)

SPIN [21] + Fit GMM [4] 66.5
SPIN + Fit VPoser [36] 70.9
SPIN + EFT [17] - 56.6
ProHMR [23] + Fit Image-conditioned 55.1
HuManiFlow + Fit None 53.4
HuManiFlow + Fit Image-conditioned 51.2

Table 6. Evaluation of model fitting methods with different SMPL
parameter priors, including image-conditioned priors from distri-
bution prediction methods ( [23] and HuManiFlow). Fitting does
not necessarily improve 3D point estimate accuracy, despite better
model-image alignment, unless image-conditioned priors are used.

less optimisation of HuManiFlow’s point estimates (row 5)
versus using the predicted distribution as a prior (row 6).

6. Conclusion
This work proposes a probabilistic approach to the ill-

posed problem of monocular 3D human pose and shape esti-
mation. We show that current methods suffer from a trade-off
between distribution accuracy, sample-input consistency and
sample diversity, which affects their utility in downstream
tasks. Our method, HuManiFlow, uses a normalising-flow-
based pose distribution which (i) accounts for the manifold
structure of SO(3), (ii) has an autoregressive factorisation
informed by the human kinematic tree, and (iii) is trained
without any ill-posed 3D point estimate losses. HuManiFlow
yields more accurate, consistent and diverse distributions.
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