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Abstract

Dramatic demand for manpower to label pixel-level an-
notations triggered the advent of unsupervised semantic
segmentation. Although the recent work employing the vi-
sion transformer (ViT) backbone shows exceptional perfor-
mance, there is still a lack of consideration for task-specific
training guidance and local semantic consistency. To tackle
these issues, we leverage contrastive learning by excavating
hidden positives to learn rich semantic relationships and
ensure semantic consistency in local regions. Specifically,
we first discover two types of global hidden positives, task-
agnostic and task-specific ones for each anchor based on
the feature similarities defined by a fixed pre-trained back-
bone and a segmentation head-in-training, respectively. A
gradual increase in the contribution of the latter induces the
model to capture task-specific semantic features. In addi-
tion, we introduce a gradient propagation strategy to learn
semantic consistency between adjacent patches, under the
inherent premise that nearby patches are highly likely to
possess the same semantics. Specifically, we add the loss
propagating to local hidden positives, semantically similar
nearby patches, in proportion to the predefined similarity
scores. With these training schemes, our proposed method
achieves new state-of-the-art (SOTA) results in COCO-stuff,
Cityscapes, and Potsdam-3 datasets. Our code is available
at: https://github.com/hynnsk/HP.

1. Introduction

Semantic segmentation is a major task for scene under-

standing and plays a crucial role in many applications in-

cluding medical imaging and autonomous driving [5, 11,

28, 34, 38, 41]. However, existing supervised approaches

demand large-scale pixel-level annotations which require

huge labeling costs. It has triggered the advent of weakly-

supervised [23, 33, 35, 36] and unsupervised semantic seg-

mentation [8, 14, 19, 37] which are to learn without expen-

sive pixel-level annotations.
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Figure 1. Assuming a mini-batch comprising two images shown in

(a), we describe two types of hidden positives, to leverage for con-

trastive learning. (a) With two types of hidden positives introduced

in (b) and (c), we provide an example of how our training scheme

provides more precise and consistent semantics. (b) (top) Seman-

tically analogous patches throughout the mini-batch are selected as

global hidden positives. (bottom) Data-driven criterion per anchor

is designed for reliable positive collection. With the criterion, se-

lected positives are illustrated in (b top). (c) (top) We define local

hidden positives for each anchor to be the adjacent patches with

high semantic consistency, i.e., blue boxes. (bottom) Average at-

tention scores for adjacent patches from the pretrained transformer

architecture. The blue line represents the attention score for local

hidden positives while the red line for patches neighboring anchors

but having low semantic consistency.

Particularly, unsupervised semantic segmentation is one

of the most challenging tasks, since it needs to capture

pixel-level semantics from unlabeled data. In this context,

clustering-based approaches have been proposed to learn
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semantic-preserving clusters by attracting the augmented

views in the pixel-level [8,19]. They implemented the intu-

ition of contrastive learning [3, 6, 7, 13, 15, 25] by ensuring

the augmented pairs yield symmetric cluster assignments.

More recently, as discovering pixel-level semantics from

scratch is challenging, STEGO [14] broke down the prob-

lem into learning the representation and learning the seg-

mentation head. With the learned patch-level representation

from the seminal work in unsupervised learning [4,39], they

train the segmentation head with a distillation strategy. Al-

though they have made great advancements, we point out

their limitations in that they rely solely on a fixed backbone

that is not specifically trained for the segmentation task and

overlook the importance of semantic consistency along the

adjacency that could be a crucial clue for segmentation.

To take these into consideration, we leverage contrastive

learning based on the mined hidden positives to ensure con-

textual consistency along the patches with analogous se-

mantics, particularly the nearby patches, as described in

Fig. 1. Specifically, we elaborately select the pseudo-

positive samples (i.e., global hidden positive, GHP) for con-

trastive learning to learn semantic consistency. Also, to en-

sure local consistency, we propagate the loss gradient to the

adjacent patches (i.e., local hidden positive, LHP) in propor-

tion to their equivalency. First, the GHP selection process

is designed with two types of data reference pools, task-

agnostic and task-specific, to collect the semantically con-

sistent patch features throughout the mini-batch per anchor.

For instance, the task-agnostic data reference pool is com-

posed of features extracted by the unsupervised pretrained

backbone. On the other hand, the task-specific reference

pool is constructed with the features from the segmenta-

tion head-in-training to complement task relevance. Based

on the two reference pools, two sets of GHP are selected

each with generalized and task-specific perspectives. Sec-

ond, to implement the property of locality and prevent the

semantics from fluctuating, we propagate the loss gradient

to adjacent patches (i.e., LHP) in proportion to the similar-

ity scores built within the pretrained backbone. This en-

ables the model to learn the relevance of the local context

that nearby patches often belong to the same instance.

Our main contributions are summarized as:

• We propose a novel method to discover semantically

similar pairs, called global hidden positives, to explic-

itly learn the semantic relationship among patches for

unsupervised semantic segmentation.

• We utilize the task-specific features from a model-in-

training and validate the effectiveness of progressive

increase of their contribution.

• A gradient propagation to nearby similar patches, local

hidden positives, is developed to learn local semantic

consistency which is the nature of segmentation.

• Our approach outperforms existing state-of-the-art

methods across extensive experiments.

2. Related Work
2.1. Unsupervised Semantic Segmentation

Semantic segmentation has been extensively studied for

its wide applicability [5, 11, 29, 34, 38, 41], but collecting

pixel-level annotations requires expensive costs. There-

fore, many studies [8, 14, 17, 19, 30, 37] attempted to ad-

dress semantic segmentation without any supervision. Ear-

lier techniques tried to learn semantic correspondence at

the pixel level. IIC [19] maximizes the mutual information

between the features of two differently augmented images,

and PiCIE [8] learns photometric and geometric invariances

as an inductive bias. Yet, their training process highly de-

pends on data augmentation, and learning semantic consis-

tency without any prior knowledge is challenging. There-

fore, recent methods [14,37] adopted the ViT model trained

in a self-supervised manner, i.e., DINO [4], as a back-

bone architecture. For instance, TransFGU [37] relocates

the high-level semantic features from DINO into low-level

pixel-wise features by generating pixel-wise pseudo labels.

On the other hand, STEGO [14] utilizes knowledge distilla-

tion that learns correspondences between features extracted

from DINO. Although STEGO shows a dramatic perfor-

mance improvement compared to the prior works, it heavily

relies on the pretrained backbone and overlooks the prop-

erty of local consistency that the adjacent pixels are likely to

belong to the same category. On the other hand, our training

is driven by both the task-agnostic and task-specific pseudo-

positive features, and the gradients are conditionally prop-

agated to the neighboring patches, thereby ensuring task-

specificity and locality.

2.2. Contrastive Learning

Self-supervised learning methods [2,3,6,7,12,13,15] aim

to learn general representations without any annotations.

Thanks to their good representation capability, they have

been employed to yield remarkable performances in vari-

ous downstream tasks [8,16,20,26,40]. Among them, con-

trastive learning approaches [3, 6, 7, 13, 15, 25] have shown

unrivaled performances. In general, they learn representa-

tion by attracting a self-augmented set and repulsing other

images [3,6]. Other variants use additional memory [15] or

only exploit the positive set for the attraction [7, 13]. This

training scheme has also been utilized for unsupervised se-

mantic segmentation [8, 19]. However, the aforementioned

methods only considered augmented pairs for the positive

which makes them very sensitive to the quality of the aug-

mentation techniques. Our work differs in that our key idea

is to collect and exploit reliable pseudo-positives through-

out the mini-batch as described in Fig. 1 (b).
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Figure 2. Illustration of the global hidden positive (GHP) selection process. Our GHP can be divided into two sub-sets: task-agnostic and

task-specific. An index set of task-agnostic GHP P ag
i comprises the indices of positives discovered within the task-agnostic reference pool

Qag. Note that, Qag is composed of randomly sampled features extracted by the feature extractor F . Once the anchor feature fi is projected

to zi, other patches in the mini-batch are gathered as positives if their similarity with the anchor feature exceeds the similarity between the

anchor and the most similar feature in Qag. On the other hand, task-specific GHP is discovered in a similar manner but with task-specific

reference pool Qsp which keeps being updated with the features from the momentum segmentation head S′. Whereas the task-agnostic

GHP set solely contributes to the initial training, the task-specific GHP set gradually replaces the portion of the task-agnostic set until the

end of training.

3. Method
In this section, we introduce the pseudo-positive selec-

tion strategy to discover hidden positives with analogous

semantics in Sec. 3.2, the training objective with discovered

positives in Sec. 3.3, and the gradient propagation scheme

to preserve the property of locality in Sec. 3.4.

3.1. Preliminary

In unsupervised semantic segmentation, the model uti-

lizes unlabeled image set X = {xb}Bb=1 where B is the

number of training data in the mini-batch. Given an image

xb processed to the feature extractor F , we have H ·W fea-

tures of fi ∈ R
C , where i ∈ [1, ..., H · W ]. Subsequently,

the segmentation head S maps a patch feature fi to the cor-

responding segmentation feature si ∈ R
K . And then, the

projection head Z produces a projected vector zi ∈ R
K to

formulate a contrastive loss function. In the inference stage,

we use the segmentation feature si.
Based on the projected vector zi for the i-th patch, let

j be the index of the augmented patch of i-th one. Then,

the conventional self-supervised contrastive loss [6] for i-th
patch in unsupervised semantic segmentation can be defined

as follows:

Lself
i = −log

exp(sim(zi, zj/τ))∑
a∈A exp(sim(zi, za)/τ)

, (1)

where A indicates a set of all indexes except i, τ denotes the

scalar temperature parameter, and sim(·, ·) is cosine similar-

ity between two vectors.

3.2. Global Hidden Positives

Learning mutual information with augmented pixels

only provides insufficient training signal in unsupervised

semantic segmentation [14]. Therefore, it is important to

discover hidden pseudo-positives to tailor the contrastive

loss for unsupervised segmentation. To discover the hid-

den positives at the initial stage, we utilize the self-

supervised pretrained backbone [4] as the task-agnostic cri-

terion. Then, we gradually increase the contribution of hid-

den positives found in a task-specific way for the training.

Fig. 2 provides the overview of the global hidden posi-

tive (GHP) selection process.

Initially, the pretrained backbone is utilized to construct

a task-agnostic reference pool to assess whether other fea-

tures in the mini-batch are semantically-alike for each an-

chor feature. Specifically, task-agnostic reference pool,

Qag = {qm}Mm=1, is composed of M randomly sampled

features that are extracted by the unsupervised pretrained

backbone F . Note that, we only sample a single patch fea-

ture per image to ensure the semantic randomness of the

reference pool. This task-agnostic reference pool is fixed as

the pretrained backbone is frozen throughout the training.

Once the reference pool is gathered, for each patch fea-

ture fi, we define an anchor-dependent similarity criterion
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ci to collect positives, as the distance to the closest feature

within the reference pool Qag by the cosine similarity:

ci = max
qm∈Qag

sim(qm, fi). (2)

For each anchor feature fi, we basically treat the other fea-

ture in the mini-batch fj as positive if the similarity between

fi and fj is greater than ci. Still, although one patch fea-

ture might be the positive sample for the other, it may not

hold mutually. This is because the criterion ci is anchor-

dependent. To endow consistency in training, we make the

GHP selection symmetric to prevent the relation between

two patches from being ambiguous. Therefore, index set of

GHP P ag
i for each i-th anchor feature fi is defined as fol-

lows:

P ag
i = {j | sim(fi, fj) > ci ∨ sim(fi, fj) > cj}, (3)

where j indicates the index for different patch features in

the mini-batch. Accordingly, such a distribution-aware ref-

erence pool allows the discovery of globally analogous fea-

tures in consideration of each anchor.

However, although the reference pool built upon the fea-

tures from an unsupervised pretrained network can serve

as an appropriate basis for positivity, it may be insufficient

since it lacks task-specificity. We argue that features from

the segmentation head are more task-specific than those

from the pretrained backbone. Therefore, along with the

GHP selected by P ag, we construct additional task-specific

GHP utilizing the features from the segmentation head.

Specifically, an index set of task-specific GHP P sp
i is

formed similarly to Eq. 3 by comparing the features s′ =
S ′(f) and task-specific reference pool Qsp, where S ′ in-

dicates the momentum segmentation head, and the task-

specific reference pool Qsp comprises s′. Also, along with

the update of the segmentation head, during training, the

reference pool is periodically renewed. Formally, with c′i,
calculated by substituting Qag and fi in Eq. 2 with Qsp and

s′i, respectively, the P sp
i is expressed as follows:

P sp
i = {j | sim(s′i, s′j) > c′i ∨ sim(s′i, s′j) > c′j}. (4)

Note that, the usage of the momentum segmentation head is

for the stability of the reference pool [22, 42].

3.3. Objective Function

To formulate a contrastive objective with mined GHP in

Sec. 3.2, we also need negative features. As we collected

the positives throughout the mini-batch, the naive imple-

mentation of contrastive learning would utilize all features

except the selected positives in the mini-batch as the neg-

atives. However, since an immoderate increase in the size

of the negative set may disturb the model training [32], we

form a negative set Ni by randomly choosing ρ% of the re-

maining patches for each i-th anchor. Note that, the separate

index sets of negative samples N ag
i and N sp

i are defined for

each P ag
i and P sp

i , correspondingly. Also, unlike Eq. 1, our

contrastive loss for each i-th anchor is more like a super-

vised objective [20] since we are given multiple positives:

Lcont(zi, P,N) =
−1

|P |
∑

p∈P

log
exp(sim(zi, zp)/τ)∑

n∈(N∪P )

exp(sim(zi, zn)/τ)
, (5)

where zi, P , and N are the projected anchor vector

Z(S(fi)), positive index set, and negative index set, respec-

tively. For simplicity, we use Φag
i and Φsp

i to denote the

objective functions with task-agnostic GHP P ag
i and task-

specific GHP P sp
i for each i-th anchor as follows:

Φag
i = Lcont(zi, P

ag
i , N ag

i )

Φsp
i = Lcont(zi, P

sp
i , N sp

i ).
(6)

3.4. Gradient Propagation to Local Hidden Posi-
tives

Besides considering the semantically analogous features

globally, it is a common hypothesis that nearby pixels are

highly likely to belong to the same semantic class. To this

end, we consider the property of locality by propagating

the loss gradient to the surrounding features of the anchor.

Still, the propagation should be cautiously designed since

semantic labels of the adjacent patches are not given; se-

mantic consistency between adjacent patches mostly holds,

but sometimes does not (i.e., at object boundaries). Thus, to

decide the semantically consistent patches nearby, we uti-

lize the attention scores from the unsupervised pretrained

ViT backbone F .

In detail, we first define the index set Isurr
i for surround-

ing patches of the i-th anchor including i-th anchor it-

self. Also, given the spatial attention score for i-th anchor

T̃i ∈ R
H·W from the last self-attention layer in the back-

bone F , we use the average value of T̃i as a threshold to

select an index set of LHP I local
i among Isurr

i :

I local
i = {j | j ∈ Isurr

i ∧ tj > Avg(T̃i)}, (7)

where tj is j-th element of T̃i and Avg(·) denotes the av-

eraging function. The visualization of the attention scores

for the adjacent patches is shown in Fig. 1 (b). By utilizing

I local
i , we obtain the surrounding positive features Gi and

the corresponding attention score Ti for LHP as follows:

Gi = {sj | j ∈ I local
i }

Ti = {tj | j ∈ I local
i }, (8)

where sj is the feature of j-th patch extracted by the seg-

mentation head S .

To propagate the loss gradient to the LHP, we mix the

patch features in Gi in proportion to the corresponding at-

tention scores in Ti. Formally, the mixed patch composed
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Figure 3. Illustration of our gradient propagation strategy to preserve local semantic consistency. For each anchor, with its surrounding

patches I surr and corresponding attention scores from feature extractor F , local hidden positives (LHP) I local are appointed based on the

threshold Avg(T̃ ) (Eq. 7). In a forward pass, the features of LHP G (Eq. 8) are mixed by weighted average according to the attention scores

T to compute the objective function Ψ. In this way, the loss gradient propagates toward the LHP in proportion to T in the backward pass.

of LHP smix
i is expressed as:

smix
i =

1

|I local
i |

∑

j∈I local
i

σgjtj , (9)

where σ is a scalar value to scale the attention score, and gj
and tj indicate the j-th element of Gi and Ti, respectively.

Then, we define the objective functions Ψag
i and Ψsp

i to learn

the locality by inserting the projected mixed vector zmix
i =

Z(smix
i ) into Eq. 5 as follows:

Ψag
i = Lcont(zmix

i , P ag
i , N ag

i )

Ψsp
i = Lcont(zmix

i , P sp
i , N sp

i ).
(10)

Since these functions are calculated by utilizing the mixed

vector zmix
i , the loss gradients are propagated to all features

composing the Gi, as described in Fig. 3. Therefore, the

semantically-alike surrounding vectors in Gi are updated in

the same direction, thereby retaining semantic consistency

within the neighboring patches.

Overall, by combining all loss formulations with con-

sistency regularizer Ri that minimizes Euclidean distance

between the projected vectors of two differently augmented

patches, the final loss function is defined as follows:

Li = (Φag
i +Ψag

i ) + λ(Φsp
i +Ψsp

i ) + αRi, (11)

where λ and α control the contribution of each loss. For

instance, λ gradually increases from 0 to 1 during the train-

ing and α remains constant at 0.05 throughout the training.

Note that, the sample with zero positive is excluded from

training although it rarely exists.

4. Experiments
4.1. Datasets and Experimental Settings

Datasets. We utilize COCO-stuff [1], Cityscapes [9], and

Potsdam-3 datasets following the existing works [8, 14,

19]. COCO-stuff is a large-scale scene understanding

dataset that consists of dense pixel-level annotations and

Cityscapes is a more recently publicized dataset having

street scenes across 50 different cities. Potsdam-3 dataset

contains satellite images. Following the baselines [8,14,19],

we choose the 27 classes for COCO-stuff and Cityscapes

datasets, and 3 classes for Potsdam-3 dataset.

Evaluation Protocols and Metrics. To evaluate our ap-

proach, we conduct two testing methods; clustering and

linear probe [14]. Clustering is to measure how well the

semantic-preserving clusters are formed. Once the unla-

beled clusters are computed with the extracted representa-

tions, clusters are matched with the ground truth class la-

bels using the Hungarian matching algorithm. On the other

hand, the linear probe is a popular method to evaluate the

quality of representations learned in unsupervised manners.

Specifically, an additional linear layer is learned with rep-

resentations extracted from the frozen unsupervised model

for evaluation and ground truth labels. Inferring the repre-

sentations of test data extracted by the frozen model with

the learned linear layer, we can measure the quality of rep-

resentations. With two types of protocols, the performance

is measured by two common metrics; accuracy (Acc.) and

mean Intersection Over Union (mIoU).

Implementation Details. For fair comparisons with our

baselines [14, 37], we follow them to mainly use DINO

pretrained ViT models as a backbone network F for the

COCO-stuff dataset. In addition, we also test with the

advanced backbone, SelfPatch [39], on the COCO-stuff

dataset. The segmentation head S is constructed with a two-

layer RELU MLP as STEGO, and the projection head Z is

composed of a linear layer equipped with a normalization

layer. The embedding dimension K is set to 512 for ViT-
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Method Backbone
Unsupervised Linear

Acc. mIoU Acc. mIoU

DC [2] R18+FPN 19.9 - - -

MDC [2] R18+FPN 32.2 9.8 48.6 13.3

IIC [19] R18+FPN 21.8 6.7 44.5 8.4

PiCIE [8] R18+FPN 48.1 13.8 54.2 13.9

PiCIE+H [8] R18+FPN 50.0 14.4 54.8 14.8

DINO [4] ViT-S/8 28.7 11.3 68.6 33.9

+ TransFGU [37] ViT-S/8 52.7 17.5 - -

+ STEGO [14] ViT-S/8 48.3 24.5 74.4 38.3

+ HP (Ours) ViT-S/8 57.2 24.6 75.6 42.7
DINO [4] ViT-S/16 22.0 8.0 50.3 18.1

+ STEGO [14] ViT-S/16 52.5 23.7 70.6 34.5

+ HP (Ours) ViT-S/16 54.5 24.3 74.1 39.1
SelfPatch [39] ViT-S/16 35.1 12.3 64.4 28.5

+ STEGO [14] ViT-S/16 52.4 22.2 72.2 36.0

+ HP (Ours) ViT-S/16 56.1 23.2 74.9 41.3

Table 1. Experimental results on COCO-stuff dataset with various

backbones and pretrained models.

Method Backbone
Unsupervised Linear

Acc. mIoU Acc. mIoU

MDC [2] R18+FPN 40.7 7.1 - -

IIC [19] R18+FPN 47.9 6.4 - -

PiCIE [8] R18+FPN 65.5 12.3 - -

DINO [4] ViT-S/8 34.5 10.9 84.6 22.8

+ TransFGU [37] ViT-S/8 77.9 16.8 - -

+ HP (Ours) ViT-S/8 80.1 18.4 91.2 30.6
DINO [4] ViT-B/8 43.6 11.8 84.2 23.0

+ STEGO [14] ViT-B/8 73.2 21.0 90.3 26.8

+ HP (Ours) ViT-B/8 79.5 18.4 90.9 33.0

Table 2. Experimental results on Cityscapes dataset.

S/8 and ViT-B/8 models, and 256 for ViT-S/16. We train the

model for 3, 20, and 10 epochs for COCO-stuff, Cityscapes,

and Potsdam-3 datasets, respectively, based on the AdamW

optimizer with a learning rate of 0.0005 and weight decay

of 0.1. The task-specific reference pool Qsp is renewed ev-

ery 100 iterations throughout the training. The percentage

of negative samples usage ρ is set to 2. In the last stage,

we add a feature refinement step utilizing Conditional Ran-

dom Field [21] as did in STEGO. Evaluation metrics, i.e.,

clustering and linear probe, are optimized with the Adam

optimizer each with learning rates of 0.005 and 0.001.

4.2. Experimental Results

We compare our proposed method against the prior tech-

niques for the unsupervised segmentation [2, 8, 14, 19, 37].

Most of the results in the result tables are brought from

the literature [8, 14]. In Tab. 1, it is observed that self-

supervised models, i.e., DINO and SelfPatch, are already

good segmentation predictors with the linear probe, which

makes them a new baseline over the prior works for unsu-

Method Backbone Unsup. Acc.

Random CNN [19] VGG11 38.2

K-Means [27] VGG11 45.7

SIFT [24] VGG11 38.2

ContextPrediction [10] VGG11 49.6

CC [18] VGG11 63.9

DeepCluster [2] VGG11 41.7

IIC [19] VGG11 65.1

DINO [4] ViT-B/8 53.0

+ STEGO [14] ViT-B/8 77.0

+ HP (Ours) ViT-B/8 82.4

Table 3. Experimental results on Potsdam-3 dataset.

pervised segmentation. Furthermore, we utilize two pre-

trained backbones with two kinds of architectures to com-

pare with STEGO, in detail. As reported, our proposed

model provides consistent performance improvements over

the previous SOTA model in almost all cases on the COCO-

stuff dataset.

Results on Cityscapes also show a similar tendency. As

shown in Tab. 2, ours outperform previous methods ex-

cept for the mIoU when clustering is used for the evalu-

ation. For instance, we achieve 8.6% and 23% improve-

ments in cluster accuracy and linear mIoU over STEGO,

respectively. For the slight decrease in cluster mIoU with

ViT-B/8 architecture, we argue that it is insignificant since

the linear probe better describes the quality of representa-

tions. Specifically, clustering evaluation highly depends on

the purpose of the dataset so that it is sensitive to the de-

gree of class-specificity as different body parts can be either

classified as human or as independent body parts. However,

whereas it is more appropriate to detect each body part in-

dependently for unsupervised learning as ours do in Fig. 5,

the annotations for general datasets, e.g., COCO-stuff and

cityscape, treat these body parts as a human class. Such cir-

cumstances make the clustering evaluation vulnerable to the

degree of the class hierarchy. In contrast, the linear probe

projects these features to close proximity if the given label

space considers them as a human body. Thus, we believe

the linear probe is a more appropriate measure of represen-

tation quality.

Also, we compare the cluster accuracy in Tab. 3 on

Potsdam-3 dataset. We have achieved a 7% boost over

STEGO, confirming that ours also performs well even in a

completely new domain. Likewise, our superior results ver-

ify the effectiveness of our process of discovering global-

and local-hidden positive patches.

Qualitative Results. In addition to the quantitative re-

sults, we report qualitative results in Fig. 4. In comparison

to STEGO, we observe that our results include fewer mis-

predicted pixels throughout the images, while the strength
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Figure 4. Qualitative comparison results of Ours and STEGO on the COCO-stuff dataset with DINO pretrained ViT-S/8 backbone.

of preserving semantic locality is also validated. For in-

stance, whereas we find that the predicted label of the wheel

is only partially correct in the 4th column, our results are

consistent along the neighboring pixels. These results also

demonstrate the superiority of our method.

5. Ablation Study and Further Analysis
In this section, we provide ablation studies and an analy-

sis of our model. Particularly, we explore the contributions

of main components and test with varying hyperparame-

ters. Most experiments for ablation studies are conducted

on the COCO-stuff dataset using the DINO pretrained ViT-

S/8 model, except for Sec. 5.2, which utilized the ViT-S/16.

5.1. Importance of the Main Components.

Tab. 4 reports the performances when an individual com-

ponent or various combinations of them are not utilized. We

found that task-specific GHP and LHP are essential in im-

proving the performance of the unsupervised segmentation

task. Compared to (d) where both the task-specific GHP and

LHP are not used, the use of them each leads to 6.5% (b) and

11.6% (c) improvements. Also when used together, they

bring 16% of performance boosts (a). Furthermore, the im-

portance of preserving symmetricity in selecting GHP can

be found by comparing (a) to (e) as its usage boosts 5.9%,

and consistency regularizer enhances performance by 2.5%

by comparing (a) to (f). Lastly, (g) shows the performance

of naively implemented contrastive learning (Eq. 1) with

photometric perturbations used in PiCIE [8]. This also con-

firms the strengths of our proposed method as (a) enhances

(g) by 51.3%.

5.2. Alternatives to Gradient Propagation Strategy

There can be alternative ways to meet our goal of re-

flecting semantic consistency between adjacent patches. As

an alternative method of gradient propagation, we simply

apply the identical loss to the surrounding patches pro-

GHP
LHP SA Reg

Unsupervised

TA TS Acc. mIoU

(a) � � � � � 57.2 24.6

(b) � � � � 52.5 23.1

(c) � � � � 55.0 19.1

(d) � � � 49.3 20.1

(e) � � � � 54.0 23.6

(f) � � � � 55.8 24.5

(g) 37.8 10.4

Table 4. Ablation study for each component. GHP, LHP, TA, TS,

SA, and Reg denote Global Hidden Positive, Local Hidden Pos-

itive, task-agnostic, task-specific, symmetrical assignments, and

consistency regularizer, respectively.

Method
Unsupervised Linear

Acc. mIoU Acc. mIoU

DINO + GradProp 54.5 24.3 74.1 39.1

DINO + LossProp 54.7 23.2 74.3 40.5

SelfPatch + GradProp 56.1 23.2 74.9 41.3

SelfPatch + LossProp 54.5 22.2 75.1 41.4

Table 5. Comparison results between gradient propagation and

loss propagation strategies.

portionally to their attention score (i.e., loss propagation).

The results in Tab. 5 show that the loss propagation strat-

egy performs comparably to the gradient propagation strat-

egy. Nonetheless, we observed that the loss propagation

approach incurs higher computational costs (1.2× memory

and 3× time). Likewise, our method is implemented con-

sidering both effectiveness and efficiency.

5.3. Visualization

Discovered GHP. To demonstrate the effectiveness of our

GHP selection process, we visualize the selected GHP sets

for different anchors in a single image in Fig. 5. First, we

observe that the corresponding reference point in the second

column is semantically correlated with the anchor patch.
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Figure 5. Discovered patches by our GHP selection process. From

the left to right columns, red boxes indicate the anchors, the closest

patches within the task-agnostic reference pool (reference), and

GHP sets chosen in the mini-batch, respectively.

Also, the obtained GHP sets verify the appropriateness of

the use of reference points as each anchor’s criterion as

they are capable of precisely discovering the semantically-

similar positives. For example, we find that all the anchors,

reference points, and GHP sets have the same semantic la-

bels in the first and the second rows (solid (mountain) and

ground (snow)). More intriguing results are in the third and

fourth rows where we find that the GHP selection process

distinguishes the body parts in a much more fine-grained

manner than the given annotation, i.e., person. These results

imply that the designed GHP selection is well-designed and

capable of capturing detailed semantic contexts.

5.4. Robustness to Hyperparameters

In this subsection, we enumerate our use of hyperparam-

eters in Tab. 6 and conduct an ablation study. Overall, our

proposed training scheme is robust to hyperparameters as

Fig. 6 supports the claim. Below, we illustrate the influ-

ences of each parameter. Despite the slight drop in perfor-

mance from time to time, it is insignificant since the change

in performance is very marginal and results are consistent.

The Number of Data in the Reference Pool. Fig. 6 (a)

shows the performances with varying numbers of data M in

the reference pool. Generally, the reference pool is not very

vulnerable to its size, unless the capacity is either too small

or too large. When the reference pool is skinny, it may not

be sufficient to represent all kinds of semantics present in

the dataset. In other words, the small reference pool may

induce a biased criterion for each anchor which may incur

biased training. On the other hand, when the reference pool

is too large, a tight threshold (ci) could be derived, which

can interfere with gathering GHP.

Dataset M τ

COCO-stuff 2048 0.8

Cityscapes 2048 0.6

Potsdam-3 1024 0.4

Table 6. Hyperparameter used for each dataset.

Acc mIoU

(a) Reference pool size M (b) Temperature 
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Figure 6. Ablation studies on hyperparameters.

Temperature Parameter. The temperature parameter τ
is the scaling parameter to manipulate the sensitivity of the

contrastive loss. If τ gets bigger, the objective function be-

comes robust to the difference between the similarity of the

positive and negative samples. On the other hand, when τ
gets lower, the embedding distribution is likely to be more

uniform [31]. Although the results do not fluctuate much,

we observe that training uniformly distributed embedding

space leads to a slight performance drop in Fig. 6 (b).

6. Conclusion
In this paper, we introduced a novel unsupervised se-

mantic segmentation method by discovering and leveraging

two types of hidden positives, global hidden positive (GHP)

and local hidden positive (LHP), to learn rich semantic in-

formation with local consistency. First, anchor-dependent

GHP comprises task-agnostic and task-specific positive sets

which are used to tailor the contrastive learning for the un-

supervised semantic segmentation task. Whereas the task-

agnostic features are collected to guide the initial training,

task-specific features are progressively engaged to learn the

task-specific semantics information. Moreover, under the

inherent premise that the adjacent patches are likely to be

semantically similar, we propagate the loss gradient to the

surrounding patches in proportion to their attention scores.

This encourages the semantically similar peripheral patches

to have the same objective as the anchor, resulting in seman-

tic consistency between adjacent patches unless they belong

to different objects. Finally, our proposed method achieves

new state-of-the-art results in various datasets.
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