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Abstract

Self-supervised representation learning techniques have
been developing rapidly to make full use of unlabeled im-
ages. They encode images into rich features that are oblivi-
ous to downstream tasks. Behind their revolutionary repre-
sentation power, the requirements for dedicated model de-
signs and a massive amount of computation resources ex-
pose image encoders to the risks of potential model steal-
ing attacks - a cheap way to mimic the well-trained en-
coder performance while circumventing the demanding re-
quirements. Yet conventional attacks only target supervised
classifiers given their predicted labels and/or posteriors,
which leaves the vulnerability of unsupervised encoders un-
explored.

In this paper, we first instantiate the conventional steal-
ing attacks against encoders and demonstrate their severer
vulnerability compared with downstream classifiers. To bet-
ter leverage the rich representation of encoders, we fur-
ther propose Cont-Steal, a contrastive-learning-based at-
tack, and validate its improved stealing effectiveness in var-
ious experiment settings. As a takeaway, we appeal to our
community’s attention to the intellectual property protec-
tion of representation learning techniques, especially to the
defenses against encoder stealing attacks like ours. !

1. Introduction

Recent years have witnessed the great success of apply-
ing deep learning (DL) to computer vision tasks. Different
from supervised DL models, self-supervised learning which
transforms unlabeled data samples into rich representations,
has gained more and more popularity.

Behind its powerful representation, it is non-trivial to ob-
tain a state-of-the-art image encoder. For instance, Sim-
CLR [6] uses 128 TPU v3 cores to pre-train a ResNet-
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Figure 1. Model stealing attacks against classifiers (previous) v.s.
model stealing attacks against encoders (ours). Previous works
aim to steal a whole classifier using the predicted label or posteri-
ors of a target model. In our work, we aim to steal the target en-
coder using its embeddings. The target encoder (£} ) is pre-trained
and fixed, as shown in the solid frame. The surrogate encoder (E)
is trainable by the adversary, as shown in the dashed frame.

50 encoder with a batch size of 4096. Therefore, many
big companies provide cloud-based self-supervised learn-
ing encoder services for users. For instance, Cohere,> Ope-
nAL> and Clarifai* provide the embedding API of images
and texts for commercial usage. There are many works
[10,26,30] exploring security issues of encoder-based API.
Therefore, it is a very important and urgent problem.

These kinds of service leave the possibility of model
stealing attacks [5, 25, 28,37,44,48,50,51]. In these at-
tacks, the adversary aims to steal the parameters or func-
tionalities of target models with only query access to them.
A successful model stealing attack does not only threaten
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the intellectual property of the target model, but also serves
as a stepping stone for further attacks such as adversarial ex-
amples [3,4, 16,38,47,52], backdoor attacks [7,26,41,43],
and membership inference attacks [22-24,30,33,34,40,42,
45,46]. So far, model stealing attacks concentrate on the su-
pervised classifiers, i.e., the model responses are prediction
posteriors or labels for a specific downstream task. The vul-
nerability of unsupervised image encoders is unfortunately
unexplored.

Our Work. To fill this gap, we pioneer the systematic
investigation of model stealing attacks against image en-
coders. In this work, the adversary’s goal is to steal the
functionalities of the target model. See Figure 1 for an
overview and a comparison with previous works. More
specifically, we focus on encoders trained by contrastive
learning, which is one of the most cutting-edge unsuper-
vised representation learning strategies that unleash the in-
formation of unlabeled data.

We first instantiate the conventional stealing attacks
against encoders and expose their vulnerability. Given an
input image, the target encoder outputs its representation
(referred to as embedding). Similar to model stealing at-
tacks against classifiers, we consider the embedding as the
“ground truth” label to guide the training procedure of a sur-
rogate encoder on the adversary side. To measure the effec-
tiveness of stealing attacks, we train an extra linear layer for
the target and surrogate encoders towards the same down-
stream classification task. Preferably, the surrogate model
should achieve both high classification accuracy and high
agreement with the target predictions.

We evaluate our attacks on five datasets against four con-
trastive learning encoders. Our results demonstrate that
the conventional attacks are more effective against encoders
than against downstream classifiers. For instance, when we
steal the downstream classifier pre-trained by SimCLR on
CIFARI10 (with posteriors as its responses) using STL10 as
the surrogate dataset, the adversary can only achieve an ac-
curacy of 0.359. The accuracy, however, increases to 0.500
instead when we steal its encoder (with the embedding as
its response).

Despite its encouraging performance, conventional at-
tacks are not the most suitable ones against encoders. This
is because they treat each image-embedding pair individu-
ally without interacting across pairs. Different embeddings
are beneficial to each other as they can serve as anchors to
better locate the position of the other embeddings in their
space. Contrastive learning [6, 8, 17, 20, 27, 49, 53] is a
straightforward idea to achieve this goal. It is formulated
to enforce the embeddings of different augmentations of the
same images closer and those of different images further.

In a similar spirit, we propose Cont-Steal, a contrastive-
learning-based model stealing attack against the encoder.
The goal of Cont-Steal is to enforce the surrogate embed-

ding of an image close to its target embedding (defined as
a positive pair) and also push away embeddings of different
images irrespective of being generated by the target or the
surrogate encoders (defined as negative pairs).

The comprehensive evaluation shows that Cont-Steal
outperforms the conventional model stealing attacks to a
large extent. For instance, when CIFARIO is the target
dataset, Cont-Steal achieves an accuracy of 0.714 on the
SimCLR encoder pretrained on CIFAR10 with the surro-
gate dataset and downstream dataset being STL10, while
the conventional attack only achieves 0.457 accuracy. Also,
Cont-Steal is more query-efficient and dataset-independent
(see Figure 9 for more details). This is because Cont-Steal
leverages higher-order information across samples to mimic
the functionality of the target encoder. To mitigate the at-
tacks, we evaluate different defense mechanisms including
noise, top-k, rounding, and watermark. Our evaluations
show that in most cases, these mechanisms cannot effec-
tively defend against Cont-Steal. Among them, top-k can
reduce the attack performance to the largest extent. How-
ever, it also strongly limits the target model’s utility.

As a takeaway, our attack further exposes the severe
vulnerability of pre-trained encoders. We appeal to our
community’s attention to the intellectual property protec-
tion of representation learning techniques, especially to the
defenses against encoder stealing attacks like ours.

2. Threat Model

In this work, for the encoder pre-trained with images, we
consider image classification as the downstream task. We
refer to the encoder as the target encoder. Then we treat both
the encoder and the linear layer trained for the downstream
task together as the target model. We first introduce the
adversary’s goal and then characterize different background
knowledge that the adversary might have.

Adversary’s Goal. Following previous work [25,28,44],
we taxonomize the adversary’s goal into two dimensions,
i.e., theft and utility. The theft adversary aims to build a sur-
rogate encoder that has similar performance on the down-
stream tasks as the target encoder. Different from the thief
adversary, the goal of the utility adversary is to construct a
surrogate encoder that behaves normally on different down-
stream tasks. In this case, the surrogate encoder not only
faithfully “copies” the behaviors of the target encoder, but
also serves as a stepping stone to conduct other attacks.
Adversary’s Background Knowledge. We categorize the
adversary’s background knowledge into two dimensions,
i.e., the knowledge of the target encoder and the distribu-
tion of the surrogate dataset.

Regarding knowledge of the target encoder, we assume
that the adversary only has black-box access to it, which
means that they can only query the target encoder with an
input image and obtain the corresponding output, i.e., the
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embedding of the input image.

Regarding the surrogate dataset that is used to train the
surrogate encoder, we consider two cases. First, we as-
sume the adversary has the same training dataset as the tar-
get encoder. However, such an assumption may be hard to
achieve as such datasets are usually private and protected by
the model owner. In a more extreme case, we assume that
the adversary has totally no information about the target en-
coder’s training dataset, which means that they can only use
a different distribution dataset to conduct the model stealing
attacks. We later show that the adversary can still launch
effective model stealing attacks against the target encoder
given a surrogate dataset that is distributed differently com-
pared to the target dataset.

For the model architecture that is used to train the sur-
rogate encoder, we consider two cases. First, we assume
the adversary is aware of the target encoder’s architecture
and can train the same architecture surrogate encoder. Then
we relax our assumption that the adversary uses different
architectures to train the surrogate encoder. Our evalua-
tion shows that the choice of architecture does not have
much impact on the attack performance (see Table 3), which
makes the attack more realistic.

Note that we also compare our attacks against the en-
coders to the traditional model stealing attacks that focus
on the whole classifier (which has an encoder and a linear
layer). If the attack targets a whole classifier, we assume
the adversary may obtain the posteriors or the predicted la-
bel for an input image.

3. Model Stealing Attacks

In this section, we first describe the conventional attacks
against the encoders. Then, we propose a novel contrastive
stealing framework, Cont-Steal, to steal the encoders more
effectively.

3.1. Conventional Attacks Against Encoders

The adversary takes two steps to conduct the model steal-
ing attacks against the target encoder and one step for fur-
ther evaluation.

Obtain the Surrogate Dataset. To conduct model steal-
ing attacks, the adversary first needs to obtain a surrogate
dataset. Based on the knowledge of the target classifier’s
training dataset (target dataset), we consider two cases. If
the adversary has full knowledge of the target dataset, they
can directly leverage the target dataset itself as the surrogate
dataset. Or the adversary has no knowledge of the target
dataset, which means that they can only construct the surro-
gate dataset, which is distributed differently from the target
dataset.

Train the Surrogate Encoder.  Slightly different from
the classifier, the response of the encoder is an embedding,
which is a feature vector. In this case, the adversary can still

leverage a similar loss function to optimize the surrogate
encoder, which can be defined as follows:

N

Lus = Y U(Er(zy), Bs(x)) )
k=1

where Er(-)/Eg(+) is the target/surrogate encoder, N is the
total number of samples on the surrogate dataset, and I(-) is
the MSE loss.

Apply the Surrogate Encoder to Downstream Tasks. To
evaluate the effectiveness of model stealing attacks against
the encoder, the adversary can leverage the same down-
stream task to both the target and surrogate encoders. Con-
cretely, the adversary trains an extra linear layer for the tar-
get and surrogate encoders, respectively. Note that we refer
to the target/surrogate encoder and the extra linear layer as
the target/surrogate classifiers. Then, the adversary quanti-
fies the attack effectiveness by measuring the performance
of the target/surrogate classifier on the downstream tasks.

3.2. Cont-Steal Attacks Against Encoders

To better leverage the rich information from the embed-
dings, we propose Cont-Steal, a contrastive learning-based
model stealing attacks against encoders, which leverages
contrastive learning to enhance the stealing performance.
Concretely, Cont-Steal aims to enforce the surrogate em-
bedding of an image to get close to its target embedding (de-
fined as a positive pair), and also push away embeddings of
different images regardless of being generated by the target
or the surrogate encoders (defined as negative pairs). There
are three steps for the adversary to conduct contrastive steal-
ing attacks against encoders and one step for further evalu-
ation.

Obtain the Surrogate Dataset. The adversary follows the
same strategy as Section 3.1 to obtain the surrogate dataset.
Data Augmentation. Our proposed Cont-Steal leverages
data augmentation to transform an input image into its two
augmented views. In this paper, we leverage RandAug-
ment [ 1] as the augmentation method, which is made up of
a group of advanced augmentation operations. Concretely,
we setn = 2 and m = 14 following Cubuk et al. [1 1] where
n denotes the number of transformations to a given sample
and m represents the magnitude of global distortion.

Train the Surrogate Encoder. Instead of querying the en-
coders with the original images, the adversary queries the
encoders with the augmented views of them. Concretely,
for an input image x;, we generate two augmented views of
it, i.e., ¥; s and x; 4+, where z; ;/Z; ; is used to query the sur-
rogate/target encoder. We consider (Z; s, Z;¢) as a positive
pair if ¢ = j, and otherwise a negative pair.

Given a mini-batch of N samples, we generate N aug-
mented views as the input of the target encoder and another
N augmented views as the input of the surrogate encoders.
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Concretely, the loss of Cont-Steal can be formulated as fol-
lows:

D}coter (1) = exp(sim(Es(Ti,s), Br (i) /7)), ()
N
Dicoaer()) = Y (exp(sim(Es (i,s), Er(Fx.)) /7)), (3)
k=1
N
Diys (i) = Y Lipga (exp(sim(Es (Fs,s), Bs(Fx,s)) /7)),
k=1
(C))
. D} ()
l = -] encoder , 5
(Z) % ‘De—ncoder(i) + Ds_elf(i) ( )
N
LCont—Steal = M7 (6)

N

where Es(-) and E7(-) denotes the surrogate and target
encoder, sim(u,v) = ulv/||ul|||v|| represents the cosine
similarity between v and v, and 7 is parameter to control
the temperature.

As illustrated in Figure 2, the conventional attack treats
each embedding individually without interacting across
pairs. However, different embeddings are beneficial to each
other as they can serve as anchors to better locate the po-
sition of the other embeddings in their space. Cont-Steal
maximizes the similarity of embeddings generated from the
target and surrogate encoders for a positive pair (Z; s, Z; ;)
(orange arrows in Figure 2). For the embedding gener-
ated from the target and surrogate encoders for any pair
(%i,s, %), contrastive stealing aims to make them more
distant (green arrows in Figure 2). Besides, as pointed out
by Chen et al. [6], contrastive learning benefits larger neg-
ative samples. To achieve this goal, we also consider the
embeddings generated from the surrogate encoder for aug-
mented views of different images, i.e., (Z;,s,Z;5), as neg-
ative pairs minimize their similarity (blue arrows in Fig-
ure 2). We later show that such design can enhance the
performance of contrastive stealing (see Table 5).

Apply the Surrogate Encoder to Downstream Tasks.
We follow Section 3.1 to evaluate the effectiveness of model
stealing on downstream tasks.

4. Experiments

In this section, we first describe the experimental setup
in Section 4.1. Then we show the performance of the tar-
get encoders on the downstream tasks. Next, we summa-
rize the performance of conventional attacks against classi-
fiers and encoders in Section 4.2. Lastly, we evaluate the
performance of Cont-Steal and conduct ablation studies to
demonstrate its effectiveness under different settings in Sec-
tion 4.3.
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Figure 2. Conventional attack (top) vs. Cont-Steal (bottom)
against encoders. Conventional attack applies MSE loss to ap-
proximate target embeddings for each sample individually. Cont-
Steal (bottom) introduces data augmentation and interacts across
multiple samples: associating target/surrogate embeddings of the
same images closer and repulsing those of different images farther
away. The target encoder (FE;) is pre-trained and fixed, as shown
in the solid frame. The surrogate encoder (E) is trainable by the
adversary, as shown in the dashed frame.

4.1. Experimental Setup

Our encoders are pre-trained on CIFAR10 [1], and Im-
ageNet [12]. We use four different kinds of contrastive
methods: SImCLR [6], MoCo [20], BYOL [17] and Sim-
Siam [8] to train a ResNetl18 [21] as our target encoders.
Our implementation is based on a PyTorch framework of
contrastive learning.’ Then, these well pre-trained encoders
will be applied to train downstream classifiers on CIFAR10
[1], STL10 [9], Fashion-MNIST [54], and SVHN [35].
In the experiments in the model stealing section, we use CI-
FAR10, STL10, Fashion-MNIST, and SVHN to conduct the
attack.

Agreement and accuracy are used as metrics to evalu-
ate the model stealing attack’s performance. The agreement
will evaluate the similarity of surrogate encoders and target
encoders in downstream tasks. The accuracy will evaluate

Sf ttps://github.com/vturrisi/solo-learn/
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Figure 3. The performance of target classifiers composed by tar-
get encoder and an extra linear layer. The encoders are pre-trained
on CIFAR10 (a) and ImageNet100 (b). The x-axis represents dif-
ferent downstream datasets for the target encoder and classifier.
The y-axis represents the target model’s accuracy on downstream
tasks.

the utility of surrogate models on downstream tasks. For
each metric, a larger value is more desirable. During the
stealing process, we set the batch size as 128 and the learn-
ing rate as 0.001. We show more results on the impact of
hyperparameters in Supplementary Material in Section A.2

4.2. Performance of Conventional Attacks

We first show the target encoder’s performance in vari-
ous downstream tasks. The results are summarized in Fig-
ure 3. We conduct our experiments to explore whether the
encoders are more vulnerable to model stealing attacks. We
show our results of target encoders and downstream classi-
fiers both trained on CIFAR10 in Figure 4. In all cases, the
adversary can get better attack performance by stealing en-
coders rather than classifiers. This gap becomes especially
apparent when the adversary has absolutely no knowledge
of the train data. This is because the rich information in
embeddings can better facilitate the learning process of sur-
rogate encoders. For instance, when the surrogate dataset
is CIFAR10 (the same as the target downstream dataset),
stealing SimCLR’s embeddings can achieve 0.785 agree-
ment, while stealing predicted labels can achieve 0.712
agreement. However, when the surrogate dataset is totally
different from the downstream target dataset, e.g., SVHN,
stealing embeddings from SimCLR can still achieve 0.507
agreement while the agreement of stealing predicted labels
drops to 0.192. We show more results in Supplementary
Material Section A.4 due to the page limitation.

We also find that all model stealing attacks’ accuracy and
agreement are highly correlated. As shown in Figure 5, the
agreement is highly correlated with the accuracy. This indi-
cates that besides accuracy, the agreement can also be used
as a metric to evaluate the performance of model stealing
attacks. We show the result on Figure 5. It can be obvi-
ously seen that agreement is highly related to accuracy. We
use the linear regression method to describe the relationship
between agreement and accuracy and find that the relation
function is y=0.940 * x

4.3. Performance of Cont-Steal

As shown in Section 4.2, encoders are more vulnerable
to model stealing attacks since the embedding usually con-
tains richer information compared to the predicted label or
posteriors. We then show that our proposed Cont-Steal can
achieve better attack performance by making deeper use of
embeddings’ information.

Figure 7 shows the attack performance when the target
pre-training dataset is CIFAR10. Note that we also show
the attack performance on other settings in the appendix.
We discover that compared to conventional attacks against
encoders, Cont-Steal can consistently achieve better per-
formance. For instance, as shown in Figure 7d, when the
target encoder is MoCo trained on CIFARI1O, if the adver-
sary uses STL10 to conduct model stealing attacks against
encoders, the surrogate encoder can achieve 0.841 agree-
ment in CIFAR10 downstream tasks with the Cont-Steal
but only 0.479 with conventional attacks. Another finding
is that compared to the same distribution surrogate dataset,
our Cont-Steal can better enhance the performance when
the surrogate dataset comes from a different distribution
from the pre-trained dataset. For instance, when the target
encoder is SImCLR trained on CIFAR10, Cont-Steal out-
performs conventional attack by 0.055 agreement when the
surrogate dataset is also CIFAR10, while the improvement
increases to 0.207 and 0.214 when the surrogate dataset is
STL10. We show more comparing results in Supplemen-
tary Material Section A.5. Note that our Cont-Steal also
has great performance on other recent state-of-the-art visual
models (ViT [13], MAE [19], and CLIP [39]), as we show
in Section A.6, and can have better performance than other
recent similar attacks [14,31] shown in Section A.7.

To better understand why Cont-Steal can always achieve
better performance, we extract samples’ embeddings gener-
ated by different encoders, i.e., the target encoder, surrogate
encoder trained with the conventional attack, and surrogate
encoder trained with the Cont-Steal, and project them into
a 2-dimensional space using t-SNE. From the results sum-
marized in Figure 6, we find that Cont-Steal can effectively
mimic the pattern of the embeddings as the target encoder.
However, the conventional attack fails to capture such pat-
terns for a number of input samples, e.g., the outer circle in
Figure 8c. This further demonstrates that Cont-Steal bene-
fits from jointly considering different embeddings as they
can serve as anchors to better locate the position of the
other embeddings in their space. We also show some ab-
lation study results on Supplementary Material Section A.2
to show that with the less surrogate dataset, less training
epoch, and different model architecture, Cont-Steal can still
achieve much better results than conventional steal. Also,
we show further attacks based on the stole models on Sup-
plementary Material Section A.3 to show that Cont-Steal
can be used as a springboard for other attacks.
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Figure 4. The performance of model stealing attack against target encoders and downstream classifiers both trained on CIFAR10. Target
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SVHN to conduct model stealing attacks. The x-axis represents different kinds of target models. The first line’s y-axis represents the
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(a) Target encoder

(b) Cont-Steal
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Figure 6. The t-SNE projection of 1,000 randomly selected sam-
ples’ embeddings from target encoder, surrogate encoder under
Cont-Steal, and surrogate encoder under the conventional attack,
respectively. Note that the target encoder is pre-trained by Sim-
CLR on CIFARI10.

Table 1. The monetary and (training) time costs for normal train-
ing and Cont-Steal attack. Cont-Steal’s monetary cost contains
two parts: query cost and training cost. Note that we ignore the
query time cost of Cont-Steal as it normally has a smaller value
than the training time cost.

Monetary Cost Time Cost
Model Normal (§)  Cont-Steal (§)  Normal (h) Cont-Steal (h)
SimCLR 58.68 11.83 (1.83 + 10) 20.01 0.62
MoCo 54.83 12.13 (2.13 + 10) 18.69 0.73
BYOL 61.46 12.08 (2.08 + 10) 20.96 0.71
SimSiam 57.14 12.00 (2.00 + 10) 19.46 0.68
4.4. Cost Analysis

As we mentioned before, pre-train a state-of-the-art en-
coder is time-consuming and resource-demanding. We
wonder if the model stealing attacks can steal the function-
ality of the encoder with much less cost. To this end, we
evaluate the time and monetary cost of training an encoder
from scratch or stealing a pre-trained encoder via Cont-
Steal. The monetary cost of model stealing includes query-
ing the target model and training the surrogate model. We
refer to the query price as $1 for 1,000 queries based on
AWS.® Our experiment is conducted on 1 NVIDIA A100
whose price is $2.934 per hour based on google cloud.’

The monetary and time cost is shown in Table 1. We ob-
serve that Cont-Steal can obtain a surrogate encoder with
much less money and time cost than training the encoder
from scratch. For instance, a ResNet18 trained by SimCLR

Shttps://aws.amazon.com/rekognition/pricing/
Thttps://cloud.google.com/compute/gpus—pricing/
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Figure 7. The performance of Cont-Steal and conventional attack against target encoders trained on CIFAR10. The adversary uses

CIFAR10, STL10, F-MNIST, and SVHN to conduct model stealing attacks.

The adversary uses CIFAR10 as the downstream task to

evaluate the attack performance. The x-axis represents different kinds of the target model. The first line’s y-axis represents the agreement
of the model stealing attack. The second line’s y-axis represents the accuracy of the model stealing attack.
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Figure 8. The performance of different defense methods. Target
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defense levels. The y-axis represents the model’s accuracy.

on CIFARI10 takes 20.01 hours and 58.68% on 1 NVIDIA
A100 GPU, while Cont-Steal only takes 0.62 hours and
11.83$ to steal an encoder that performs similarly on down-
stream tasks. The results demonstrate that Cont-Steal is able
to construct surrogate encoders that perform similarly to the
target encoders but with much less time and monetary cost.

4.5. Defenses

In this section, we will consider different defenses

against model stealing attacks on encoders to evaluate the
robustness of our proposed attack. We divided all defenses
into three categories: perturbation-based defense [37] and
watermark-based defense [2].
Perturbation-based Defense. In this defense setting, the
defender aims to perturb the output of the target model
to limit the information the adversary can obtain. The
common practice of this kind of defense includes adding
noise [37], top-k [37], and feature rounding [48].

Adding noise means that the defender will introduce
noise value to the original output of the model. In our case,

we consider adding Gaussian noise to the embeddings gen-
erated by the target encoder. We set the mean value to 0, and
different noise levels represent different standard deviations
of the Gaussian distribution. For Top-k, the defender will
only output the first k£ largest number of each embedding
(and set the rest as 0). In this way, the high-dimensional
information of the image contained in embeddings can be
appropriately reduced. Regarding feature rounding, the de-
fender will truncate the values in the embedding to a spe-
cific digit. As a case study, we consider a ResNet18 encoder
pre-trained on CIFAR10 with SimCLR and take STL10 to
train its downstream classifier. The experimental results
are summarized in Figure 8. We can observe that while
adding noise and top-k can reduce the model stealing at-
tacks’ performance, it may also degrade the target model
performance to a large extent. For instance, when the noise
increases from O to 10, the attack performance of Cont-
Steal decreases from 0.729 to 0.410, while the target en-
coder’s performance drops from 0.734 to 0.098. On the
other hand, rounding only has a limited effect on both target
model performance and attack performance. This indicates
that perturbation-based defense cannot defend against the
encoder’s model stealing attack effectively since they can-
not reach a good trade-off between attack performance and
model utility.

Watermark-based Defense. =~ Watermark-based defense
is also one of the most popular defense methods against
model stealing attacks [2]. Watermark provides copyright
protection by adding some specific identification to the tar-
get model. If the surrogate model is stolen from the wa-
termarked target model, then ideally, it will contain the
same watermark as well. Adi et al. [2] show that back-
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Table 2. Watermark defense. Pretrain dataset and surrogate dataset
are both CIFAR10. Watermark leverages a watermark rate (wr) to
verify the ownership of target models. A higher wr denotes a better
verification performance.

Dataset Target model (acc/wr) Cont-Steal (acc/wr) Baseline (acc/wr)
CIFARI10 0.864 /0.998 0.769 /0.130 0.871/0.095
STL10 0.721/0.999 0.702/0.034 0.733/0.111
SVHN 0.501/0.999 0.535/0.303 0.492/0.103
F-MNIST 0.857/0.999 0.813/0.061 0.850/0.099

door technology can be used as the watermark to protect the
model. In that sense, BadEncoder [26], a backdoor mecha-
nism against the encoder, can be leveraged as a watermark-
ing technology for our target encoder as well. The defend-
ers first will train the watermarked (backdoored) encoder,
where images with a certain trigger will cause misclassi-
fication. Then, if they find the surrogate model can also
misclassify images with the same trigger, the defenders can
claim ownership of the surrogate model.

In our experiments, we leverage BadEncoder to water-
mark the encoder pre-trained on CIFAR10 by SimCLR, and
leverage different downstream datasets to perform differ-
ent tasks. We assume a strong adversary that has the same
downstream dataset as the surrogate dataset. Also, we con-
sider the baseline cases where the trigger samples are fed
into the clean model to calculate the watermark rate (wr).
As shown in Table 2), the watermark cannot be preserved as
the surrogate models constructed by Cont-Steal have simi-
lar wr as the baseline model. For instance, when the down-
stream dataset is CIFAR10, Cont-Steal builds a surrogate
model with 0.769 accuracy while only 0.130 wr, which is
close to the baseline model. This indicates that Cont-Steal
can bypass the watermarking technique as it can reach sim-
ilar utility while reducing the wr to a large extent. Note
that there is also another work to protect contrastive learn-
ing models from model stealing attacks using dataset in-
ference [15]. We show in Supplementary Material in Sec-
tion A.8 that this kind of defense can be easily bypassed by
Cont-Steal.

5. Related Work

Contrastive Learning. Contrastive learning is one of the
most popular methods to train encoders. Current works [0,
8, 17, 20, 49, 53] propose different advanced contrastive
learning algorithms. SimCLR, MoCo, BYOL, SimSiam are
currently the mainstream frameworks of contrastive learn-
ing. Thus, we concentrate on them in this paper. There are
many works on evaluating the security and privacy risks of
contrastive learning. Previous works [23, 26, 30] propose
membership inference attacks, attribution inference attacks,
and backdoor attacks on contrastive learning. All proposed
attacks show that contrastive-based models are vulnerable

to popular attacks. Therefore, the security issues of self-
supervised learning deserve more attention.

Model Stealing Attack. In model stealing, the adversary’s
goal is to steal part of the target model. Tramer et al. [48]
proposed the first model stealing attack against black-box
machine learning API to steal its parameters. Wang et
al. [50] proposed the first hyperparameter stealing attacks
against ML models. Oh et al. [36] also tried to steal ma-
chine learning model’s architectures and hyperparameters.
Orekondy et al. [37] proposed knockoff nets, which aim at
stealing the functionality of black-box models. Krishna et
al. [28] formulated a model stealing attack against BERT-
based API. Besides, Wu et al. [51] and Shen et al. [44]
perform model stealing attacks against Graph Neural Net-
works. These works often have relatively strong assump-
tions, such as the model family is known and the victim’s
data is partly available while we conduct model stealing at-
tacks against encoders and relax the above assumption.

6. Conclusion

In this paper, we conduct the first model stealing risk
assessment towards image encoders. Our evaluation shows
that the encoder is more vulnerable to model stealing attacks
compared to the classifier. This is because the embedding
provided by the encoder contains richer information than
the posteriors or predicted labels from whole classifiers.

To better unleash the power from the embeddings, we
propose Cont-Steal, a contrastive learning-based model
stealing method against encoders. Concretely, Cont-Steal
introduces different types of negative pairs as “anchors” to
better navigate the surrogate encoder and learn the func-
tionality of the target encoder. Extensive evaluations show
that Cont-Steal consistently performs better than conven-
tional attacks against encoders. And such an advantage is
further amplified when the adversary has no information on
the target dataset, a limited amount of data, and restricted
query budgets. Our work points out that the threat of model
stealing attacks against encoders is largely underestimated,
which prompts the need for more effective intellectual prop-
erty protection of representation learning techniques.
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