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Figure 1. Given a bubble diagram as the input constraint, HouseDiffusion directly generates a vector floorplan by initializing the room/door
coordinates with Gaussian noise and iteratively denoising them. Qualitative and quantitative evaluations demonstrate that HouseDiffusion
significantly outperforms the current state-of-the-art with large margins.

Abstract

The paper presents a novel approach for vector-
floorplan generation via a diffusion model, which denoises
2D coordinates of room/door corners with two inference ob-
jectives: 1) a single-step noise as the continuous quantity to
precisely invert the continuous forward process; and 2) the
final 2D coordinate as the discrete quantity to establish ge-
ometric incident relationships such as parallelism, orthog-
onality, and corner-sharing. Our task is graph-conditioned
floorplan generation, a common workflow in floorplan de-
sign. We represent a floorplan as 1D polygonal loops,
each of which corresponds to a room or a door. Our dif-
fusion model employs a Transformer architecture at the
core, which controls the attention masks based on the in-
put graph-constraint and directly generates vector-graphics
floorplans via a discrete and continuous denoising pro-
cess. We have evaluated our approach on RPLAN dataset.
The proposed approach makes significant improvements in
all the metrics against the state-of-the-art with significant
margins, while being capable of generating non-Manhattan
structures and controlling the exact number of corners per
room. A project website with supplementary video and doc-
ument is here https://aminshabani.github.io/housediffusion.

1. Introduction
Automated floorplan generation made tremendous

progress in the last few years. While not being fully au-
tonomous yet, the state-of-the-art techniques help architects
to explore the space of possible designs quickly [33, 34].
90% of buildings do not have dedicated architects for floor-
plan design due to their cost in North America. This tech-
nology will make the work of professional architects afford-
able to more house buyers.

Despite recent progress, state-of-the-art floorplan gener-
ative models produce samples that are incompatible with
the input constraint, lack in variations, or do not look like
floorplans [34]. The issue is the raster geometry analysis
via convolutions, where a room is represented as a binary
image. The raster analysis is good at local shape refinement
but lacks in global reasoning, and requires non-trivial post-
processing for vectorization [7, 34]. On the other hand, di-
rect generation of vector floorplans is not trivial either. Dif-
ferent from the generation of images or natural languages,
structured geometry exhibit precise incident relationships
among architectural components (e.g., doors and rooms).

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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For example, a wall is usually axis-aligned, where the coor-
dinate values of adjacent corners are exactly equal. A wall
might be shared with adjacent rooms further. Direct regres-
sion of 2D coordinates currently faces limitations in achiev-
ing these relationships. One could use a discrete represen-
tation such as one hot encoding over possible coordinate
values with classification, but this causes a label imbalance
(i.e., most values are 0 in the encoding) and fails the net-
work training.

This paper presents a novel approach for graph-
constrained floorplan generation that directly gener-
ates a vector-graphics floorplan (i.e., without any post-
processing), handles non-Manhattan architectures, and
makes significant improvements on all the metrics. Con-
cretely, a bubble-diagram is given as a graph, whose nodes
are rooms and edges are the door-connections. We represent
a floorplan as a set of 1D polygonal loops, each of which
corresponds to a room or a door, then generate 2D coordi-
nates of room/door corners (See Fig. 1). The key idea is the
use of a Diffusion Model (DM) with a careful design in the
denoising targets. Our approach infers 1) a single-step noise
amount as a continuous quantity to precisely invert the con-
tinuous forward process; and 2) the final 2D coordinate as
the discrete quantity to establish incident relationships. The
discrete representation after the denoising iterations is the
final floorplan model.

Qualitative and quantitative evaluations show that the
proposed system outperforms the existing state-of-the-art,
House-GAN++ [34], with significant margins, while being
end-to-end and capable of generating non-Manhattan floor-
plans with exact control on the number of corners per room.
We will share all our code and models.

2. Related Work

Floorplan generation: Generation of 3D buildings and
floorplans has been an active area of research from a pre-
deep learning era [11,30–32,37]. The research area has fur-
ther flourished with the emergence of deep learning. Nau-
ata et al. [33] proposed House-GAN as a graph constrained
floorplan generative model via Generative Adversarial Net-
work [10]. House-GAN generates segmentation masks of
different rooms and combines them to a single floorplan.
The authors further improved the quality of the generation
by House-GAN++ [34], which iteratively refines a layout.
Given the boundary of a floorplan, Upadhyay et al. [44]
used the embedded input boundary as an additional input
feature to predict a floorplan. Hu et al. [16] proposed
Graph2Plan that retrieves a graph layout from a dataset and
generates room bounding boxes as well as a floorplan in an
ad-hoc way. Sun et al. [42] proposed to iteratively gener-
ate connectivity graphs of rooms and a floorplan semantic
segmentation mask. Given a set of room types and their

area sizes as the constraint, Luo and Huang [28] proposed a
vector generator and a raster discriminator to train a GAN
model using differential rendering. Although their method
generates vector floorplans directly, it is limited to rectan-
gular shapes. Along with the adjacency graph as the in-
put, Yin et al. [4] use graph-theoretic and linear optimiza-
tion techniques to generate floorplans. Our paper also tack-
les a graph-constrained floorplan generation with a bubble
diagram as the constraint [34]. The key difference is that
HouseDiffusion processes a vector geometry representation
from start to finish, and hence, directly generating vector
floorplan samples.

Diffusion models: Deep generative models have seen great
success in broader domains [10,23,36,38,46], where a Dif-
fusion Model (DM) [6, 41, 49] is an emerging technique.
Ho et al. [13] used a DM to boost image generation quality.
Dhariwal and Nichol [35] made improvements by propos-
ing a new noise schedule and learning the variances of the
reverse process. The same authors made further improve-
ments by novel architecture and classifier guidance [9].
DMs have been adapted to many other tasks such as Natu-
ral Language Processing [22], Image Captioning [8], Time-
Series Forecasting [43], Text-to-Speech [19, 21], and fi-
nally Text-to-Image as seen in the great success of DALL-E
2 [39] and Imagen [40].

Molecular Conformation Generation [15, 17, 27, 48] and
3D shape generation [25, 26, 29, 50] are probably the clos-
est to our task. What makes our task unique and challeng-
ing is the precise geometric incident relationships, such as
parallelism, orthogonality, and corner-sharing among dif-
ferent components, which continuous coordinate regression
would never achieve. In this regard, several works use dis-
crete state space [3,5,14] or learn an embedding of discrete
data [8,22] in the DM formulation. However, we found that
these pure discrete representations do not train well, prob-
ably because the diffusion process is continuous in nature.
In contrast, our formulation simultaneously infers a single-
step noise as the continuous quantity and the final 2D co-
ordinate as the discrete quantity, achieving superior gener-
ation capabilities (See Sect. 5.3 for more analysis). To our
knowledge, our work is the first in using DMs to generate
floorplans as vector graphics images.

3. Preliminary

Diffusion models (DMs) denoise a Gaussian noise xT

towards a data sample x0 in T steps, whose training con-
sists of the forward and the reverse processes. The forward
process takes a data sample x0 and generates a noisy sample
xt at time step t by sampling a Gaussian noise ϵ ∼ N (0, I):

xt =
√
γtx0 +

√
(1− γt)ϵ. (1)
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γt is a noise schedule that gradually changes from 1 to
0. The reverse process starts from a pure Gaussian noise
xT ∼ N (0, 1) and learns to denoise a sample step by step
until reaching x0, where the denoising process takes xt and
estimates xt−1 by inferring xt−1, ϵ, or x0 [13].

4. HouseDiffusion

HouseDiffusion solves a graph-constrained floorplan
generation problem (See Fig. 1). The constraint is a bub-
ble diagram, whose nodes are rooms and edges are door
connections. A room node is associated with a room type. 1

The choice of a data representation is crucial for the suc-
cess of any generative model. A floorplan is a graph, whose
general representation is a set of room-corners and their
connections as an adjacency matrix. However, this is not
an easy representation to generate with the bubble diagram
constraint. Instead, we represent a floorplan as a set of 1D
polygonal loops one for each room/door. The challenge is to
ensure geometric consistencies among the loops. For exam-
ple, room corners and walls must be shared exactly without
gaps or overlaps. The section explains our solution, namely,
the floorplan representation and the network architecture.

4.1. Floorplan Representation

Let P = {P1, P2, ..., PN} denote the set of polygonal
loops for each room/door to be generated. Each loop Pi is
defined by a sequence of corners with 2D coordinates:

Pi = {Ci,1, Ci,2, ..., Ci,Ni
|Ci,j ∈ R2}. (2)

Ni denotes the number of corners in Pi, which needs to be
specified or generated. A common approach is to set the
greatest possible number and let the network decide how
many corners to use via output flags. However, this signif-
icantly increases the representation size and makes training
harder and inefficient. Instead, we construct a histogram
of the number of corners for each room/door type from
the training samples, then probabilistically pick Ni where
the probabilities are proportional to their histogram counts.
This heuristic works well in practice. A user could also
directly specify the number of corners to control the room
shape complexity.

Coordinate values in our data are integers in the range of
[0, 255]. In the forward process, we affinely map the range
to [−1, 1] and treat as continuous values {Ci,j} to be mixed
with the Gaussian noiseN (0, 1). In the reverse process, we
also represent a coordinate value as a discrete integer in the
binary representation, that is, as 8 binary numbers.

1Room types are “Kitchen”, “Living-room”, “Bedroom”, “Dining-
room”, “Bathroom”, “Study-room”, “Balcony”, “Entrance”, “Storage”,
and “Unknown”. Door types are “Interior door” and “Front door”.

4.2. HouseDiffusion Architecture

HouseDiffusion is a diffusion model based architecture.
The forward process follows (1), where γt is a standard co-
sine noise schedule [35]. The reverse process is a Trans-
former [45] based neural network, which takes the floorplan
representation at time t and infers the representation at time
t − 1 (See Fig. 2). We append a superscript t to denote the
floorplan sample at time t (e.g., P t

i or Ct
i,j).

Feature embedding: Given a floorplan sample {P t} at
time t, every room/door corner Ct

i,j becomes a node in the
Transformer architecture with a d(= 512) dimensional em-
bedding vector Ĉt

i,j . We initialize the embedding as

Ĉt
i,j ← Linear([AU(Ct

i,j), Ri,1(i),1(j), t]) (3)

AU augments the corner coordinate by 1) uniformly sam-
pling L(= 8) points along the wall to the next corner; and
2) concatenating the sampled point coordinates. The aug-
mentation helps to reason incident relationships along the
walls. Ri is a 25D room-type one hot vector. 1(·) denotes
a 32D one-hot vector for a room index i and a corner index
j. t is a scalar. A linear layer converts the embedding to a
512D vector.

Continuous denoising: Embedding vectors {Ĉt
i,j} will

go through attention layers with structured masking (See
Fig. 3). There are three types of attentions in our atten-
tion layer: 1) Component-wise Self Attention (CSA), lim-
iting attentions among nodes in the same room or door 2)
Global Self Attention (GSA), a standard self-attention be-
tween every pair of corners across all rooms; and 3) Rela-
tional Cross Attention (RCA), limiting attentions to from-
room-to-door or from-door-to-room that are connected in
the constraint graph. We learn three sets of key/query/value
matrices in each of the attention layer per head, while we
use four multi-heads. The results of the three attentions are
summed, followed by a standard Add & Norm layer. The
continuous denoising repeats the block of this attention and
Add & Norm layers four times. At the end, a single linear
layer infers noise ϵθ(Ci,j , t) at each node.

Discrete denoising: Geometric incident relationships (e.g.,
colinearity, orthogonality, or corner sharing) rarely emerge
through coordinate regression. For example, two coordi-
nates almost never become the same by regression. Our
approach infers coordinates in a discrete form. Concretely,
after obtaining Ct−1

i,j and C0
i,j from the continuous denois-

ing process, we affinely map C0
i,j back to the range [0, 255],

apply rounding, and use an “int2bit” function [8] to con-
vert to a binary representation, that is, 8-dimensional binary
vector. We use a similar formula as formula (3) to obtain a
512D embedding vector for each corner:

Linear([AU(C0
i,j), int2bit(C0

i,j), Ri,1(i),1(j), t]) (4)
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Figure 2. The forward process takes the ground-truth floorplan x0 and adds a Gaussian noise to create a noisy floorplan sample xt. The
reverse process takes a noisy floorplan at time t with a bubble diagram as the condition. The process infers the corresponding noise ϵ̃ and
x̃0 in the continuous and the discrete (binary) representations, respectively.
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Figure 3. Given the input bubble diagram, our model benefits from
three attention modules explicitly processing different levels of re-
lations between coordinates. The figure shows how a group of
coordinates share information with other groups in each attention
module. The black cells represent the masked-out attentions.

We pass C0
i,j as the input to the augmentation and we pass

the binary representation obtained by int2bit function along
with the conditions to help the network by providing the
initial binary representation. We repeat two blocks of at-
tention with structured masking, followed by a linear layer
to produce an 8-dimensional vector as C0

i,j . During testing,
we binary threshold C0

i,j and obtain the integer coordinate.
During training, we directly use the values without thresh-
olding for a loss function.
Loss functions: We train our model end-to-end with the

simple L2-norm regression loss by Ho et al. [13] on both
continuous and discrete regressions with the same weight.
Concretely, ϵθ(Ci,j , t) is compared with the ground-truth
noise ϵ from the forward process. C0

i,j is compared with
the ground-truth corner coordinate in binary representation.
The inference of C0

i,j becomes accurate only near the end
of the denoising process. Therefore, the discrete branch is
used during training only when t < 20. At testing, we use
the denoised integer coordinates from the discrete branch to
pass to the next iteration only when t < 32.

5. Experiments
We use PyTorch to implement the proposed ap-

proach based on a public implementation of Guided-
Diffusion [9]. 2 Adam [20] is the optimizer with decoupled
weight decay [24] for 250k steps with batch-size of 512 on
a single NVIDIA RTX 6000. An initial learning rate is 1e-3.
We divide the learning rate by 10 after every 100k steps. We
set the number of diffusion steps to 1000 (unless otherwise
noted) and uniformly sample t during training.

We compare against other graph-constrained floor-
plan generative models (House-GAN++ [34] and House-
GAN [33]) and scene-graph constrained image generative
models (Ashual et al. [2], and Johnson et al. [18]). House-
GAN++ is the current state-of-the-art for the task.

We use 60,000 vector floorplans from RPLAN [47]
dataset, and the same pre-processing steps as in House-
GAN++, where floorplan images have a resolution of 256×
256. We divide the floorplan samples into four groups based
on the number of rooms (i.e., 5, 6, 7, or 8 rooms). For

2https://github.com/openai/guided-diffusion
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Input Graph Dataset Sample HouseDiffusion (Ours) House-GAN++

Front Door Interior Door UnkownOutside

Bathroom Dining RoomStudy Room Balcony Living RoomBedroomStorage EntranceKitchen

Manhattan

Non-Manhattan

Figure 4. Generated floorplan samples against House-GAN++ [34]. See supplementary for more examples. Our results look more diverse
and higher quality, where the major issue of House-GAN++ is duplicate or missing rooms, ignoring the input constraint.
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House-GAN++Input Graph Ours House-GAN++Input Graph Ours

Figure 5. HouseDiffusion results are more compatible with the input bubble diagram by ensuring the generation of a single polygonal loop
for each room/door. Green , Yellow , and Red indicate correct, missing, and extraneous connections, respectively.

generating floorplans in each group, we exclude samples in
the group from the training so that methods cannot simply
memorize samples. Following House-GAN++, the same
three metrics are used for evaluations: Diversity, Com-
patibility, and Realism. Diversity is the Frechet Inception
Distance (FID) [12]. Compatibility is the modified Graph
Edit Distance [1] between the input bubble diagram and the
one reconstructed from the generated floorplan. Realism is
based on user studies (See Section 5.1 for more details).

To verify the capability of non-Manhattan floorplan
generation, we create a new benchmark “Non-Manhattan-
RPLAN” based on RPLAN by randomly adding two cor-
ners to an outer wall. See supplementary for more details.

5.1. Quantitative Evaluations

Table 1 shows the main quantitative evaluations. For ex-
isting methods, we copy the numbers reported in the House-
GAN++ paper [34]. For the Realism, their paper shows
the average score against all the other methods, while we
use the score against just the ground-truth, because compar-
isons between weaker baselines do not provide useful infor-
mation. Our system, HouseDiffusion, consistently outper-
forms all the previous methods in all the metrics. Compared
to the current state-of-the-art House-GAN++ [34], House-
Diffusion makes an average improvement of 67% in diver-
sity and 32% in compatibility. We also make significant
improvements in realism, which we discuss next in detail.
For non-manhattan RPLAN dataset, HouseDiffusion also
makes significant improvements in diversity and compati-
bility, where House-GAN++ cannot handle non-manhattan
structures. The realism score is not used, because the non-
manhattan structures were added by heuristics and even the
ground-truth may not look realistic.

We follow the same process as in House-GAN++ to ob-
tain the realism scores. We generate 1000 floorplan sam-
ples by each system, present two samples (from different
systems) to a participant, and ask to choose “A is better”,
“B is better”, or “both are equal”. A method “A” earns
+1, -1, or 0 point with the above answers, respectively.
Each pair of systems are evaluated 150 times by 10 partici-

pants (i.e., 15 times by each participant). Table 1 shows the
average realism score of each system against the ground-
truth. Table 2 shows the direct comparisons between House-
GAN++, HouseDiffusion, and the ground-truth. Both tables
show that HouseDiffusion achieves significant improve-
ments with a score of −0.19 even against the ground-truth,
which is very good. The number implies that participants
choose our result to be as realistic as the Ground-Truth
(“both are equal”) for 81% of the time (assuming they either
preferred Ground-Truth or chose equal). Note that House-
GAN++ paper reports −0.18 for their best configuration
against the ground-truth, but this variant (denoted as “Ours
static*”) requires expensive post-processing [7] and filters
out incompatible samples based on the ground-truth bubble-
diagram that account for 90% of the generated samples. Our
results are direct outputs from our network architecture.

5.2. Qualitative Evaluations

Figure 4 qualitatively compares HouseDiffusion with
House-GAN++ by two generated floorplans per bubble-
diagram in both Manhattan and Non-Manhattan cases.
Please refer to the supplementary for more examples and
the supplementary video for the animations of the denois-
ing process. HouseDiffusion consistently generates higher-
quality samples. The major issue of House-GAN++ is that
the system tends to miss or generate too many rooms, ignor-
ing the input bubble-diagram constraint. For example, the
top example in Fig. 4 should have one living-room (red),
two bedrooms (yellow), and one study (orange), but House-
GAN++ makes errors in every single sample. The issue
is also highlighted in Fig. 5, which visualizes the bubble-
diagrams of generated floorplan samples. HouseDiffusion
guarantees exactly the correct set of rooms in the output and
produces clean wall structures without artifacts (e.g., jagged
boundaries) thanks to the vector representation.

5.3. Ablation Studies

We conduct a series of ablation studies to verify the ef-
fectiveness of our technical contributions and provide an in-
depth analysis of our system.
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Table 1. Main quantitative results, comparing HouseDiffusion (ours) with the previous methods on the three metrics. In all experiments,
our method significantly outperform all the other methods.

Realism (↑) Diversity (↓) Compatibility (↓)

Dataset Model 8 5 6 7 8 5 6 7 8

RPLAN

Ashual et al. [2] -1.00 120.6±0.5 172.5±0.2 162.1±0.4 183.0±0.4 7.5±0.0 9.2±0.0 10.0±0.0 11.8±0.0

Johnson et al. [18] -1.00 167.2±0.3 168.4±0.4 186.0±0.4 186.0±0.4 7.7±0.0 6.5±0.0 10.2±0.0 11.3±0.1

House-GAN [33] -0.95 37.5±1.1 41.0±0.6 32.9±1.2 66.4±1.7 2.5±0.1 2.4±0.1 3.2±0.0 5.3±0.0

House-GAN++ [34] -0.52 30.4±4.4 37.6±3.0 27.3±4.9 32.9±4.9 1.9±0.3 2.2±0.3 2.4±0.3 3.9±0.5

Ours -0.19 11.2±0.2 10.3±0.2 10.4±0.4 9.5±0.1 1.5±0.0 1.2±0.0 1.7±0.0 2.5±0.0

NM-RPLAN
House-GAN++ [34] — 77.3±0.8 60.0±0.7 73.8±0.8 58.2±1.0 1.5±0.0 2.9±0.0 2.1±0.0 3.2±0.0

Ours — 12.0±0.2 11.0±0.1 10.3±0.2 10.5±0.3 1.2±0.0 1.3±0.0 1.6±0.0 2.5±0.0

Table 2. Realism scores among House-GAN++, ours, and the
ground-truth. Our method achieves 0.71 against House-GAN++,
indicating that the participants choose ours to be more realistic
85% of the times (i.e., 0.71 ≈ 0.85− 0.15).

House-GAN++ Ours Ground Truth

House-GAN++ [34] — -0.71 -0.87

Ours 0.71 — -0.19

Ground Truth 0.87 0.19 —

Table 3. The effectiveness of our discrete and continuous denois-
ing scheme, in comparison to an existing discrete only represen-
tation AnalogBits and our system without the discrete branch/loss
that reduces to a standard denoising scheme.

Cont. Disc. Divers. (↓) Compat. (↓)

AnalogBits [8] ✓ 14.5±0.3 6.0±0.03

Ours w/o disc. ✓ 38.8±0.9 2.2±0.0

Ours ✓ ✓ 9.5±0.1 2.5±0.0

Discrete and continuous denoising: To verify the effec-
tiveness of our discrete and continuous denoising scheme,
we compare with a recent work AnalogBits [8], which em-
ploys a binary representation to generate discrete numeric
values in a diffusion model framework. We also create
HouseDiffusion only with continuous denoising by simply
dropping the discrete branch/loss. Table 3 demonstrates
that the proposed discrete and continuous denoising sig-
nificantly improves the diversity with a small sacrifice on
the compatibility. We hypothesize that AnalogBits merely
learns the rounding with the binary representation alone
when t is small, which reduces the generation quality.

Attention modules: HouseDiffusion employs three differ-
ent types of attentions. Table 4 and Fig. 6 qualitatively and
quantitatively measure their effectiveness by dropping the
three attentions one by one. Global Self Attention (GSA)

Table 4. Quantitative evaluation of the three attention mechanisms.
The second last row triples the number of GSA layers instead of
the combination of CSA, GSA, and RCA.

CSA GSA RCA Diversity (↓) Compatibility (↓)

✓ ✓ 9.9±0.1 2.9±0.0

✓ ✓ 12.8±0.2 4.0±0.0

✓ ✓ 11.4±0.2 6.8±0.0

✓✓✓ 10.8±0.2 6.5±0.0

✓ ✓ ✓ 9.5±0.1 2.5±0.0

Input Graph Full Prediction w/o RCAw/o CSA w/o GSA

Figure 6. Qualitative evaluation of the three attention mechanisms.
The shape quality degrades significantly in the absence of CSA or
GSA. Door placements become corrupted in the absence of RCA.

has the highest impact on realism (qualitatively in Fig. 6)
and diversity as expected, because this accounts for the
attentions between every pair of nodes. Relational Cross
Attention (RCA) enforces connections between rooms and
doors and has the most impact on the compatibility met-
ric. Component-wise Self Attention (CSA) focuses on indi-
vidual rooms and reveals a significant impact on the room
shape quality in Fig. 6, causing self-intersections and “im-
possible” shapes without it. The second last row of Table 4
is a version with three times more GSA attention layers in-
stead of the combination of CSA, GSA, and RCA, which
demonstrates the importance of using all the attention types.

Geometry modification: Figure 7 demonstrates a new ca-
pability of HouseDiffusion, allowing us to specify the ex-
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Input Graph Dataset Sample Generation Results

Number of corners for Dining-room
4 6 8 10

Figure 7. HouseDiffusion allows us to specify the number of corners per room. In this above examples, we increase the number of corners
for the dining-room (red room), while keeping all the other rooms to have 4 corners.
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Figure 8. Using discrete head in a few steps gives less opportu-
nity to the network to refine the discrete coordinates, while using
it early can also lead to removing necessarily continuous informa-
tions. We fix discrete head to activate when t < 32.

act number of corners per room, which is not possible by
a raster-based system such as House-GAN++. The figure
shows that HouseDiffusion generates floorplans with in-
creasingly more complex dining-room, where the surround-
ing rooms change their layouts to be consistent.

Discrete steps: Having both discrete and continuous de-
noising branches is essential for generating high-quality
floorplans, while the discrete branch is active in the last 32
iterations at test time. We vary this hyperparameter and
measure the performance change in Fig. 8. Limiting to
fewer iterations reduces the opportunities of discrete anal-
ysis and harms performance. On the other hand, activating
the discrete branch too early also degrades the performance,
because the discrete analysis is on the final floorplan shape
at time 0, whose inference is not accurate at early iterations.
We found that 32 is a good number overall, which is used
throughout our experiments.

Table 5. The effects of the corner augmentation in the feature em-
bedding (3).

Domain Diversity (↓) Compatibility (↓)

Single Corner 10.0±0.3 3±0.0

Augmented Corner 9.5±0.1 2.5±0.0

Corner augmentation: Table 5 shows the corner augmen-
tation effects in the feature embedding (3). While both the
diversity and compatibility improve, the effect is higher for
compatibility where the augmented points on the walls en-
able better analysis of geometric incident relationships.

6. Conclusion

This paper presents a novel floorplan generative model
that directly generates vector-graphics floorplans. The ap-
proach uses a Diffusion Model with a Transformer network
module at the core, which denoises 2D pixel coordinates
both in discrete and continuous numeric representations.
The discrete representation ensures precise geometric in-
cident relationships among rooms and doors. The trans-
former module has three types of attentions that exploit the
structural relationships of architectural components. Quali-
tative and quantitative evaluations demonstrate that the pro-
posed system makes significant improvements over the cur-
rent state-of-the-art with large margins in all the metrics,
while boasting new capabilities such as the generation of
non-Manhattan structures or the exact specification of the
number of corners. Our future work is the handling of large-
scale buildings. We will share all our code and models.
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