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Abstract

A phrase grounding model receives an input image and
a text phrase and outputs a suitable localization map. We
present an effective way to refine a phrase ground model
by considering self-similarity maps extracted from the la-
tent representation of the model’s image encoder. Our
main insights are that these maps resemble localization
maps and that by combining such maps, one can obtain
useful pseudo-labels for performing self-training. Our re-
sults surpass, by a large margin, the state of the art in
weakly supervised phrase grounding. A similar gap in per-
formance is obtained for a recently proposed downstream
task called WWbL, in which only the image is input, without
any text. Our code is available at https://github.
com/talshaharabany/Similarity-Maps-for-
Self-Training-Weakly-Supervised-Phrase-
Grounding.

1. Introduction
The most important technological foundation of the on-

going revolution in the field of jointly processing images
with text is that of computing a similarity score between an
image and a text phrase. Models such as CLIP [27] are able
to learn powerful similarity functions based on large datasets
that contain pairs of images and suitable captions. Build-
ing upon this technology, endless possibilities opened up
for zero-shot and few-shot learning applications, including
image captioning [19, 35], image editing [6, 13, 23, 25, 41],
and image recognition [24, 40].

Phrase grounding is a related image-text task, in which,
given an image and a text phrase, the method identifies
the image region described by the phrase. One can train a
phrase grounding network in a weakly supervised manner,
by employing the CLIP similarity. Such a model would
learn to produce masks that create a foreground region that
is similar to the phrase and a background region that is not.
To avoid trivial solutions, in which the mask includes the
entire image, one should also include a regularization term.

Recently, Shaharabany et al. have obtained state-of-the-
art results in phrase grounding using this scheme with the
addition of a constraint that considers also the explainability
map of Chefer et al. [8], when applied to the CLIP model.
This map is expected to focus on foreground regions and can,
therefore, provide an additional training cue.

In this work, we focus on the output of the image encoder
of the phrase grounding network of [32]. This encoder cre-
ates a spatial image representation that is aligned with the
text encoding of CLIP. In other words, each spatial location
of the tensor that the image encoder outputs is associated
with a vector that is correlated with a representation of the
textual description of the corresponding image location.

As a result, spatial locations that are associated with the
same image object have similar encoding and vice versa.
Building upon this insight, we compute for each image loca-
tion, the cosine-similarity to the local encoding of all other
locations. These similarity maps (one per location) are text-
agnostic since they involve only the image input of the phrase
grounding network.

As we demonstrate, these maps capture different objects
in the image, i.e., the similarity map that is obtained by
correlating the image embedding at the spatial location (x, y)
provides a delineation of the object that can be found at this
image location. This is a type of semantic “seed fill” effect,
in which all image regions that are associated with the same
object in the seed location are highlighted. These regions do
not need to be connected, i.e., multiple persons in the image
would be highlighted by a seed placed on one of them.

This localization-map effect is reminiscent of the emer-
gence of segmentation maps in self-supervised transformer
networks [5]. The two effects are, however, different. First,
the effect in the transformer case relies on the attention maps,
which do not exist in the networks we employ. Second, the
attention maps rely on a single CLS token, and our effect is
true to every spatial location. Third, the type of supervision
and the task are both different.

The effect described is also different than the relevancy
maps obtained by explainability methods such as Grad-
CAM [31] or recent transformer explainability methods [8].
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For example, our similarity maps do not require backtracking
the relevancy scores all the way from the network’s output.
Also, the maps are per seed location and not per label.

By aggregating multiple similarity maps, we obtain fairly
accurate foreground masks. Using these masks as pseudo
labels, we refine the phrase grounding model using a super-
vised loss term. On all of the known phrase grounding bench-
marks, we demonstrate that our refinement method leads to
a marked improvement across multiple scores. Similarly, a
sizable gap over the current state-of-the-art is also shown
in the recently proposed computer vision task of “What is
Where by Looking” (WWbL) [32], for which the phrase
grounding network is coupled with a captioning model.

Our contributions are: (i) observing that spatial similar-
ity maps of the latent space of phrase grounding networks
capture the boundaries of objects, (ii) developing a method
for aggregating multiple such similarity maps to obtain a
comprehensive segmentation map, (iii) using the obtained
maps to finetune the phrase grounding network, and (iv) sur-
passing the current state-of-the-art by a sizable gap in both
phrase grounding and WWbL.

2. Related Work
In the weakly supervised phrase localization task, text

phrases are associated with specific image locations [1, 16,
39]. Text embedding is often extracted from a pretrained
language model and is aligned with an image representation
to obtain a shared semantic domain [11, 17, 30]. Recent
contributions employ CLIP [28] for linking text with image
locations [20, 32]. Self-supervision methods were also used
to obtain an initial map by means of explainability [3, 32].
However, we are unaware of any other phrase-grounding
method that employs pseudo labels that are extracted from a
phrase-grounding network.

Since our method employs the result of a phrase ground-
ing model to collect data that is used to finetune the same
model, our work falls under the category of self-training.
Self-training methods use a model to infer pseudo-labels
for unlabeled or partly labeled samples and use the result-
ing samples to further improve the same model [2]. For
example, domain adaptation of detection networks can be
performed by labeling samples of the target domain using a
network trained on the source domain [29]. Another example
is a teacher-student framework in which the teacher provides
pseudo labels that are as accurate as possible, and the student
is further regularized by noise injection [38]. Self-training
can also be applied to multiple networks that are trained
jointly, as in the case of a semi-supervised semantic seg-
mentation method that employs two differently initialized
networks that produce labels to one another [10]. We are not
aware of any other self-training work in which the labels are
produced by analyzing the embedding space and not using
the network’s output.

The recently introduced WWbL task extends phrase
grounding by generating both the text and the associated
image regions. The WWbL method [32] employs a multi-
step procedure on top of phrase grounding, which combines
Selective Search [36] with the image captioning method
BLIP [19] in order to provide captioning to objects in the
scene and then apply phrase grounding to these captions.
WWbL, therefore, provides a novel application for phrase
grounding methods, which does not require any text input,
and serves, in our case, as a way to test the downstream
success of our method.

3. Method
Given an input text t and an RGB image I ∈ R3×W×H ,

our method’s starting point is the current state-of-the-art
architecture for weakly supervised phrase grounding [32].
We then apply a refinement procedure in order to improve
this model.

Let g be the phrase grounding network of [32], i.e.,

M = g(I, Zt(t)) (1)

where the output mask M ∈ RW×H contains values be-
tween 0 and 1, and Zt is the text encoder of CLIP [27], with
an output dimension of 512.

Network g is based on an encoder-decoder architecture
adapted to support text-based conditioning. The image en-
coder of g, called ZI , is a VGG network [33] with a receptive
field of size 16×16, i.e., the image is downscaled four times.
The output of ZI has 512 channels, to match the dimensions
of the text encoder Zt.

The map ZI(I) ∈ RW/16×H/16×512 is viewed as a spa-
tial field of vectors in R512. Each such vector is normalized
to have a norm of one. To link the image information with
the text information, a dot product is computed between the
normalized vector at each location in the map and the vector
Zt(t) (CLIP also has normalized outputs). Following this
cosine similarity step, a map Zs(I, t) is obtained with values
between -1 and 1. Zs(I, t) has a single channel and the same
spatial dimensions as ZI(I).

The next step of [32] is to spatially re-weight all channels
of ZI(I) by multiplying them pointwise by Zs(I, t). The
result is passed to the decoder U , which consists of three
upsampling blocks, to obtain the single channel map M of
Eq. 1. This map is obtained after applying a Sigmoid and
has values between 0 and 1.

Our proposed solution for phrase-grounding refinement
is based on calculating self-similarity maps based on the
data of the spatial map ZI(I). These maps are aggregated
and serve as pseudo-labels for fine-tuning g and obtaining a
fine-tuned network g++.

Let J be the map that is obtained after normalizing ZI(I)
along the channel index. A set of W/16×H/16 maps is
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Figure 1. Sample self-similarity maps for given image locations. (a) input image. (b-c) self-similarity maps for the green star and green
diamond image locations (resp.), which are inside the same object. (d-e) self-similarity maps for the locations marked by a red triangle and a
blue square, respectively. Evidently, the similarity map for an image location highlights the object in that region, and two similarity maps
that are associated with image locations on the same object produce similar maps.

obtained by considering every spatial location of J . Specif-
ically, let jx,y ∈ R512 denote the vector of all channels at
one specific map location (x, y). The similarity map Sx,y

has the same spatial dimensions as J and at location (x′, y′)
has the scalar value jx,y · jx′,y′ .

Sx,y are text-agnostic as the text representation Zt(t)
does not play a role in their creation. Sample maps, for
specified image locations, are depicted in Fig. 1. As can be
seen, the similarity map Sx,y is consistent with the object in
the corresponding image location (16x, 16y) (upsampling
four times, due to the encoder’s downsampling effect).

This is not surprising, since, within the spatial region that
is associated with a single object, the cosine similarity be-
tween ZI(I) and Zt(t) is expected to be similar, i.e., high if
that image location is described by the text and low otherwise.
Therefore, the embeddings of two spatial locations from the
same object-associated region would be high. Conversely,
the embeddings at image locations that are associated with
different objects are expected to be low.

Next, our method filters the set of computed maps
{Sx,y}x,y in order to identify the maps that are relevant
to a given input text t. This is done by comparing the output
map M = g(I, Zt(t)) to each of the maps in the set.

Specifically, each map Sx,y is binarized by threshold at
a value of zero (recall that the values of the similarity maps

are cosine similarities between -1 and 1). Similarly, the map
M is binarized using a threshold that is half of the map’s
maximal value. Since M is in the size of the original image,
its binarized version is downscaled by a factor of 16 in each
dimension to match that of Sx,y .

The Intersection Over Union (IOU) score is then com-
puted between the two binary maps, the one based on Sx,y

and the one derived from M . If this score is above a rela-
tively conservative threshold of τ = 0.6, the map Sx,y is
considered relevant to the text t. Finally, all relevant maps
are averaged to obtain the map M̄ . In the case that no loca-
tion x, y produced a map Sx,y that leads to an IOU above τ ,
we select the map with the maximal IOU score.

Fig. 2 presents examples of the mask aggregation process,
which extracts the mask M̄ based on the text, image, and
phrase grounding network g. As can be seen, the obtained
masks M̄ are often much more comprehensive than the orig-
inal map M , without covering significantly more of the
background regions. The appendix includes a pseudo-code
outlining the steps involved in our approach.

The finetuning of g to obtain the refined network g++

employs the map M̄ as the pseudo-label. Four-loss terms
are used, given the input image I and the text t. The pseudo-
supervised loss is given by

Lpseudo(I, t, M̄) = ∥M̄ − g++(I, Zt(t))∥2 , (2)
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dren

A person

A boy

A young
boy

A pale
gray horse

An ele-
phant

A british
airways
airplane

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Sample self-similarity maps and their aggregation. (a) the input text t. (b) the input image I . (c) the output M = g(I, t). (d-f)
three self-similarity maps Sx,y that overlap M . (g) the aggregated map M̄ . Evidently, the aggregated map is much more comprehensive.
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where M̄ is the pseudo label obtained from g when applying
it to image I and text t.

The other three loss terms follow [32]. The foreground
loss Lfore(I, t) is given by

Lfore(I, t) = −CLIP (g++(I, Zt(t))⊙ I, t), (3)

where ⊙ is a pointwise multiplication. This loss maximizes
the CLIP similarity between the foreground region of the
obtained mask g++(I, ZT ) and the text t.

The background loss Lback(I, t) is

Lback(I, t) = CLIP ((1− g++(I, Zt(t)))⊙ I, t). (4)

This loss minimizes the CLIP similarity between the back-
ground of image I , as denoted by the obtained mask, and the
text t.

Finally regularization loss Lreg(I) is applied to create
compact maps

Lreg(I, t)) = ∥g++(I, Zt(t))∥ (5)

The combined loss is defined as an unweighted sum of the
four loss terms, in order to avoid adding hyper-parameters,
i.e., L(I, t, M̄) = Lpseudo(I, t, M̄) + Lfore(I, t) +
Lback(I, t) + Lreg(I, t).

4. Experiments
We present our results for both weakly supervised phrase

grounding (WSPG) and WWbL. The networks g and g++

are trained on either MSCOCO 2014 [21] or the Visual
Genome (VG) dataset [18]. Evaluation is done on the test
splits of Flickr30k [26], ReferIt [9, 14], and VG.

The training split of Akbari et al. [1] is used for MSCOCO
2014. It consists of 82,783 training images and 40,504 vali-
dation images, each image with five captions describing it.
VG contains 77,398 training, 5000 validation, and 5000 test
images. Each image is associated with both free-form text
and annotated bounding boxes.

The Flickr30k Entities dataset [26], which is derived from
Flickr30k, contains 224K phrases describing objects in more
than 31K images. Each image is associated with five cap-
tions. For evaluation, we use the 1k images of the test split
of Akbari et al [1]. ReferIt [9, 14] consists of 20K images
and 99,535 manually captioned and segmented images. This
data was collected in a two-player game with approximately
130K isolated entity descriptions. Here, too, we use the test
split of Akbari et al. [1].
Implementation details The proposed network g++ is ob-
tained by fine-tuning network g with the loss terms presented
at Sec. 3. The visual backbone of g is VGG16 [33], which is
also used by the vast majority of the phrase grounding work.

Finetuning takes place using an SGD optimizer with a
batch size of 32 and a learning rate of 0.0001. This learning
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Figure 3. Sample phrase grounding results. (a) the phrase. (b)
the input image and the ground truth bounding box. (c) results
for network g [32] shown as a heatmap. (d) same for the refined
network g++.

rate is 3 times lower than the original learning rate of g. The
optimizer momentum is 0.9 and weight decay regularization
is 0.0001. Finetuning runs for 3000 iterations.
Results Phrase grounding tasks are evaluated with respect
to the accuracy of the pointing game [39], which is calculated
from the output map by finding the maximum-value location
for the given query and checking whether this point is located
in the region of the object.

Another metric shown (“BBox accuracy”) extracts a
bounding box from the output mask and compares it with the
bounding-box annotations. An accurate prediction is defined
as one for which the IOU is over 0.5. To extract the bounding
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a woman walking down the street a line of parked cars

a person climbing a rock a forest

a small black dog a person

(a) input (b) g (c) g++ (d) g (e) g++

Figure 4. Samples WWbL results on images from Flickr1K comparing between g [32](b,d) and our g++(c,e). The automatically generated
captions (these are independent of the phrase grounding network used) are on top of the relevant masks.

Method VG trained MS-COCO trained

VG Flickr ReferIt VG Flickr ReferIt

FCVC [12] - - - 14.03 29.03 33.52
VGLS [37] - - - 24.40 - -
TD [39] 19.31 42.40 31.97 - - -
SSS [16] 30.03 49.10 39.98 - - -
MG-BiLSTM [1] 50.18 57.91 62.76 46.99 53.29 47.89
MG-ELMo [1] 48.76 60.08 60.01 47.94 61.66 47.52
GbS [3] 53.40 70.48 59.44 52.00 72.60 56.10
CLIP+GAE [7] 54.72 72.47 56.76 54.72 72.47 56.76
g [32] 62.31 75.63 65.95 59.09 75.43 61.03
g++ (ours) 66.63 79.95 70.25 62.96 78.10 61.53

Table 1. Weakly Supervised Phrase Grounding (WSPG) results,
showing the “pointing game" accuracy for multiple benchmarks.

box from an output map M , the procedure of Shaharabany
et al. [32] is employed. First, a threshold of 0.5 is applied to

M, and then the method of Suzuki et al. [34] is applied to
find image contours. A set of bounding boxes is obtained by
considering the enclosing box of each contour. These bound-
ing boxes are scored by summing the values of M within the
contour and those with low scores are discarded. Following
a non-maximal suppression step, the minimal bounding box
that contains the remaining bounding boxes is used.

As mentioned, we use the same training/validation/test
splits as Akbari et al. [1]. For ReferIt, Visual Genome and
Flickr30K, each query is treated as a single sentence.

Tab. 1 lists the results for the Flickr30k, ReferIt, and VG
for the weakly-supervised phrase grounding task. Evidently,
our method is superior to all baselines, whether training
takes place over VG or MS-COCO. In particular, there is a
sizable improvement with respect to the network g that we
refine, which is currently the state-of-the-art [32].

In addition to the pointing game results, Tab. 2 presents
bounding box accuracy for the phrase grounding task (this
data is not available for most baselines). Here, too, our
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Figure 5. A parameter sensitivity analysis presenting the pointing game score for the Flickr dataset. (a) sensitivity to parameter τ , in which
the default value is 0.6, and (b) varying the threshold on the map M as a fraction of the maximal value (default is 0.5). Shown in panel (a) is
the performance of using M̄ instead of M of g (same as the first ablation) and the performance of the full g++ refinement. In (b), due to
lack of time, only the former appears. The dashed horizontal lines denote the performance of the baseline model g.

VG Trained MS-COCO Trained

Ta
sk Model Point Accuracy Bbox Accuracy Point Accuracy Bbox Accuracy

VG Flickr ReferIt VG Flickr ReferIt VG Flickr ReferIt VG Flickr ReferIt

W
W

bL MG [1] 32.15 49.48 38.06 12.23 24.79 16.43 32.91 50.12 36.34 11.48 23.75 13.31
g [32] 43.91 58.59 44.89 17.77 31.46 18.89 44.20 61.38 43.77 17.76 32.44 21.76
g++ (ours) 45.90 62.98 45.14 20.01 33.71 21.07 47.39 65.93 44.52 20.58 36.40 22.07

W
SP

G MG [1] 48.76 60.08 60.01 14.45 27.78 18.85 47.94 61.66 47.52 15.77 27.06 15.15
g [32] 62.31 75.63 65.95 27.26 36.35 32.25 59.09 75.43 61.03 27.22 35.75 30.08
g++ (ours) 66.63 79.95 70.25 30.95 45.56 38.74 62.96 78.10 61.53 29.14 46.62 32.43

W
SP

G
ab

la
tio

ns

M̄ based on g 63.10 77.60 66.61 24.07 26.40 33.33 61.19 77.80 61.15 21.56 22.17 27.41
Only Lpseudo 65.50 78.84 68.49 23.50 39.06 29.16 62.37 78.07 60.15 22.10 40.12 26.62
Lpseudo + Lreg 59.40 73.95 64.31 22.35 26.25 26.25 56.97 74.99 60.03 19.94 22.22 23.55
Lpseudo + 1/3Lreg 65.80 78.94 68.68 30.03 43.46 37.27 60.44 76.81 58.83 27.05 44.99 30.89
Lpseudo + Lfore + Lback 65.47 79.51 69.77 25.71 44.96 34.29 62.61 78.05 60.86 25.51 45.90 30.66
No aggregation 66.22 79.24 70.03 27.36 44.44 35.71 61.72 78.02 59.55 27.28 46.34 31.42
Segmentation encoder 56.52 73.26 61.22 19.72 20.37 23.91 56.53 74.25 59.12 19.78 21.65 22.52
Classification encoder 60.49 74.40 66.67 4.85 4.07 16.50 55.91 72.84 63.08 4.67 4.44 15.41

Table 2. WWbL and Weakly Supervised Phrase Grounding (WSPG) results for the test sets showing both “pointing game" accuracy and
bounding box accuracy. The ablations show the performance of various reductions of our method on the WSPG task (see text for details).

method outperforms the baseline methods by a wide margin.
Sample results are shown in Fig. 3, compared with g [32].

The WWbL task is an open-world localization task, in
which the only input is a given image: given an input image,
the goal is to localize and describe all the elements compos-
ing the scene. To solve this, Shaharabany et al. [32] employ a
multi-stage algorithm, in which selective search [36] is used
to extract object proposals and BLIP is used to caption these
regions. Similar captions are pruned using the Community

Detection (Cd) method [4]. The phrase grounding model
then assigns heatmaps to the filtered list of captions. Since
phrase grounding is applied last, WWbL provides a direct
way to compare phrase grounding methods on automatically
generated captions.

The WWbL task is evaluated with the same two met-
rics (pointing game and bounding-box accuracy). For each
ground-truth pair of bounding box and caption, the closest
caption in CLIP space from the list of automatically gener-
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ated captions is selected. The associated output map of the
phrase grounding method is then compared to the ground
truth bounding box using the pointing accuracy metric. In ad-
dition, bounding boxes are extracted for the output heatmaps,
as described above.

WWbL results are listed in Tab. 2, with the leading WSPG
results provided for reference. The table shows the perfor-
mance obtained by g, g++, and a baseline that employs the
phrase grounding method MG [1] as part of the same WWbL
captioning procedure described above. Evidently, g++ ob-
tains the best results among the three across all benchmarks
and the two scores. Fig. 4 presents samples of the results of
g++, compared to those of g [32] for images from Flickr1K.
Ablation Study We present multiple ablations, each vali-
dating a different part of our approach. The results of these
experiments are provided for the phrase grounding task and
are also listed in Tab. 2.

The first ablation considers the pseudo-label generation
process but instead of using it to finetune g to obtain g++, it
uses it as the output of the phrase grounding task. In other
words, this ablation directly provides M̄ as the output. As
can be seen, using M̄ of g improves upon g in the pointing
game accuracy but not in the bounding box accuracy. More-
over, it scores below our complete solution g++ on all scores
across all benchmarks.

The second ablation employs only the loss of the pseudo
label Lpsudo but not the other three-loss terms. As a general
trend, we can see that it improves the results of g and ob-
tains much of the benefit of g++ (not on all datasets when
considering the bounding box accuracy).

Both these ablations may indicate that the other three
loss terms, including the CLIP-based loss terms Lfore and
Lback and the regularization loss, help maintain a reasonable
bounding box for the resulting mask. To check whether the
regularization loss can elevate Lpsuedo to the level of g++

performance, we conducted an ablation with both Lpseudo +
Lreg . As can be seen, the addition of the regularization term
to the pseudo-label loss hurts performance.

Since the regularization term in this experiment is bal-
anced by a single loss (and not three), this could indicate
that too much regularization takes place. We, therefore, re-
peat the experiment with a third of the regularization, which
seems to improve, on most benchmarks and scores, above
using only Lpsuedo. Lastly, using the three other loss terms,
without regularization leads to a performance that is some-
times better and sometimes worse than adding a third of the
regularization term to the self-training loss, and still below
that of the full method.

The next ablation “No aggregation” selects the similar-
ity map Sx,y that has the highest IOU with M instead of
averaging multiple maps that are similar to M . The rest of
the training pipeline of g++ is kept the same. Evidently,
this ablation maintains much of the advantages of g++ over

other phrase grounding methods but obtains slightly lower
accuracy than the complete method.

The last set of ablations employs an alternative encoder
instead of the image encoder of ZI . The purpose of these
experiments is to check whether the emergence of segmen-
tation maps of the latent space is a unique characteristic of
the phrase grounding network we employ or if it is a general
phenomenon. Specifically, we (1) employ the encoder of
a Fully-Convolutional semantic segmentation network [22]
with a ResNet-50 [15] backbone, which is also trained on
the MS-COCO dataset, and (2) employ a latent representa-
tion of a VGG16 classification network trained on ImageNet
(the same backbone of g). As can be seen from the ablation
results, these two alternative encoders do not lead to an im-
provement in the refined network over the baseline network
g. Sample self-similarity maps obtained from the alterna-
tive encoders are provided in the supplementary appendix,
showing that the alternative maps do not provide the level of
object-delineation provided by ZI .
Parameter sensitivity Our method has very few param-
eters. There is a threshold on the cosine similarity values
that is taken at the middle of the range, i.e., at zero, and
a threshold on M that is taken at half the maximal value.
Both of which are natural choices. Additionally, there is a
threshold τ on the IOU between the binarized M and the
binarized Sx,y that is set to 0.6. This number is often used
as a relatively conservative threshold for IOU.

Fig. 5 presents results when varying the binarization pa-
rameters. These are shown for M̄ based on g (same as the
first ablation), which is a direct way to measure the quality
of M̄ , and for the refined g++ (the latter is shown only for
τ due to lack of time). Our method is largely insensitive to
both these thresholds, obtaining similar performance scores
in a relatively wide range of values.

5. Conclusions

Image encoders provide a rich spatial representation of
the input image. Despite the widespread use of such en-
coders, we are unaware of other contributions that apply
image-processing techniques to this embedding space in or-
der to obtain spatial information. Our work demonstrates that
this is an oversight as the information in the embedding ten-
sor is readily available for further exploitation. By using the
informative correlations between the data in various image
locations, we are able to extract segmentation pseudo-labels
that are extremely beneficial in advancing the performance
in the phrase grounding task beyond the state-of-the-art.
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